If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Similar documents
If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

How Cell potentials Depend on Concentrations

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Physical Properties of Period 3 Elements

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

15.5A: Electrophilic aromatic substitution reactions - the general picture

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Trends in Atomic Radius

3D: Selecting an Analytical Method

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

3.1 Energy minimum principle

13.3A: The general mechanism for an aldol reaction

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

4.3A: Electronic transitions

Electronic Structure and Reactivity of the Transition Metals

Electronegativity Trends

The Hydrogen Molecule-Ion

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

1 A thermodynamic view of the world

2.1A: Another look at the H 2 molecule: bonding and antibonding sigma molecular orbitals

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Zeroth-Order Reactions

1.5A: Formation of sigma bonds: the

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

1 Enthalpy diagrams and their uses

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

1.4A: Common functional groups in organic compounds

password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Oxygen and the aquatic environment

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Periodic Properties of the Elements

Physics 215 Quantum Mechanics 1 Assignment 1

For example, in one dimension if we had two particles in a one-dimensional infinite potential well described by the following two wave functions.

A. Evolution of a Reaction Mechanism

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Systems of Identical Particles

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

Isotropic harmonic oscillator

Quantum Physics II (8.05) Fall 2002 Assignment 12 and Study Aid

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

G : Quantum Mechanics II

Notes on Spin Operators and the Heisenberg Model. Physics : Winter, David G. Stroud

Lecture 19 (Nov. 15, 2017)

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

d 3 r d 3 vf( r, v) = N (2) = CV C = n where n N/V is the total number of molecules per unit volume. Hence e βmv2 /2 d 3 rd 3 v (5)

Lecture 01. Introduction to Elementary Particle Physics

Consequently, the exact eigenfunctions of the Hamiltonian are also eigenfunctions of the two spin operators

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012

Solution Set of Homework # 6 Monday, December 12, Textbook: Claude Cohen Tannoudji, Bernard Diu and Franck Laloë, Second Volume

Group representation theory and quantum physics

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

Second quantization (the occupation-number representation)

Wigner 3-j Symbols. D j 2. m 2,m 2 (ˆn, θ)(j, m j 1,m 1; j 2,m 2). (7)

Introduction to Heisenberg model. Javier Junquera

LS coupling. 2 2 n + H s o + H h f + H B. (1) 2m

Angular momentum. Quantum mechanics. Orbital angular momentum

Transcription:

Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki PhysWiki: The Dynamic Physics E-textbook > Quantum Mechanics > Fitzpatrick's Quantum Mechanics > 10: Identical Particles > 10.1: Permutation Symmetry 10.1: Permutation Symmetry Consider a system consisting of a collection of identical particles. In classical mechanics, it is, in principle, possible to continuously monitor the position of each particle as a function of time. Hence, the constituent particles can be unambiguously labeled. In quantum mechanics, on the other h, this is not possible because continuous position measurements would disturb the system. It follows that identical particles cannot be unambiguously labeled in quantum mechanics. Consider a quantum system consisting of two identical particles. Suppose that one of the particles--particle 1, say--is characterized by the state ket. Here, represents the eigenvalues of the complete set of commuting observables associated with the particle. Suppose that the other particle-- particle 2--is characterized by the state ket. The state ket for the whole system can be written in the product form (1028) where it is understood that the first ket corresponds to particle 1, the second to particle 2. We can also consider the ket (1029) which corresponds to a state in which particle 1 has the eigenvalues, particle the eigenvalues. Suppose that we were to measure all of the simultaneously measurable properties of our two-particle system. We might obtain the results for one particle, for the other. However, we have no way of knowing whether the corresponding state ket is or, or any linear combination of these two kets. In other words, all state kets of the form (1030) correspond to an identical set of results when the properties of the system are measured. This phenomenon is known as exchange degeneracy. Such degeneracy is problematic because the specification of a complete set of observable eigenvalues in a system of identical particles does not seem to uniquely determine the corresponding state ket. Fortunately, nature has a way of avoiding this difficulty. Consider the permutation operator, which is defined such that (1031) In other words, swaps the identities of particles. It is easily seen that http://physwiki.ucdavis.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/10%3a_identical_particles/10.1%3a_permutation_symmetry 1/5

(1032) (1033) Now, the Hamiltonian of a system of two identical particles must necessarily be a symmetric function of each particle's observables (because exchange of identical particles could not possibly affect the overall energy of the system). For instance, (1034) Here, we have separated the mutual interaction of the two particles from their interaction with an external potential. It follows that if (1035) then (1036) where is the total energy. Operating on both sides of (1035) with, making use of Equation (1033), we obtain (1037) or (1038) where use has been made of (1036). We deduce that (1039) which implies [from (1033)] that (1040) In other words, an eigenstate of the Hamiltonian is a simultaneous eigenstate of the permutation operator. Now, according to Equation (1033), the permutation operator possesses the eigenvalues, respectively. The corresponding properly normalized eigenstates are http://physwiki.ucdavis.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/10%3a_identical_particles/10.1%3a_permutation_symmetry 2/5

(1041) (1042) Here, it is assumed that. Note that is symmetric with respect to interchange of particles--i.e., (1043) whereas is antisymmetric--i.e., (1044) Let us now consider a system of three identical particles. We can represent the overall state ket as (1045) where,, are the eigenvalues of particles 1, 2, 3, respectively. We can also define the two-particle permutation operators (1046) (1047) (1048) It is easily demonstrated that (1049) (1050) (1051) (1052) (1053) http://physwiki.ucdavis.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/10%3a_identical_particles/10.1%3a_permutation_symmetry 3/5

(1054) As before, the Hamiltonian of the system must be a symmetric function of the particle's observables: i.e., (1055) (1056) (1057) (1058) (1059) (1060) where is the total energy. Using analogous arguments to those employed for the two-particle system, we deduce that (1061) Hence, an eigenstate of the Hamiltonian is a simultaneous eigenstate of the permutation operators,,. However, according to Equations (1052)-(1054), the possible eigenvalues of these operators are. Let us define the cyclic permutation operator, where (1062) It follows that (1063) It is also clear from Equations (1055) (1060) that (1064) Thus, an eigenstate of the Hamiltonian is a simultaneous eigenstate of the permutation operators,,,. Let,, represent the eigenvalues of these operators, respectively. We know that,,. Moreover, it follows from (1063) that (1065) The above equations imply that http://physwiki.ucdavis.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/10%3a_identical_particles/10.1%3a_permutation_symmetry 4/5

(1066) either (1067) or (1068) In other words, the multi-particle state ket must be either totally symmetric, or totally antisymmetric, with respect to swapping the identities of any given pair of particles. Thus, in terms of properly normalized single particle kets, the properly normalized totally symmetric totally antisymmetric kets are (1069) (1070) respectively. The above arguments can be generalized to systems of more than three identical particles in a straightforward manner. Contributors Richard Fitzpatrick (Professor of Physics, The University of Texas at Austin) Copyright 2015 PhysWiki Powered by MindTouch Unless otherwise noted, content in the UC Davis PhysWiki by University of California, Davis is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. Permissions beyond the scope of this license may be available at copyright@ucdavis.edu. http://physwiki.ucdavis.edu/quantum_mechanics/fitzpatrick's_quantum_mechanics/10%3a_identical_particles/10.1%3a_permutation_symmetry 5/5