arxiv: v1 [nucl-ex] 20 Jan 2018

Similar documents
Pseudorapidity dependence of multiplicity and transverse momentum fluctuations in pp collisions at SPS energies

nucleus-nucleus collisions at the NA61/SHINE experiment

Correlations and fluctuations in p+p and Be+Be at the SPS energies from NA61/SHINE

Rapid change of multiplicity fluctuations in system size dependence at SPS energies

arxiv: v1 [nucl-th] 21 Nov 2018

arxiv: v1 [nucl-ex] 25 Jan 2012

PoS(CPOD2014)017. New Theoretical Results on Event-by-Event Fluctuations

Studies on the QCD Phase Diagram at SPS and FAIR

arxiv: v1 [hep-ph] 18 Feb 2016

PoS(WPCF2011)012. New results on event-by-event fluctuations in A+A collisions at the CERN SPS. Grzegorz Stefanek for the NA49 Collaboration

Measures of charge fluctuations in nuclear collisions

Multiplicity fluctuations of identified hadrons in p+p interactions at SPS energies

arxiv: v1 [nucl-ex] 10 Feb 2012

The Study of the Critical Point of QCD using Fluctuations. Gary Westfall Terry Tarnowsky Hui Wang Michigan State University

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Azimuthal anisotropy of the identified charged hadrons in Au+Au collisions at S NN. = GeV at RHIC

arxiv: v1 [hep-ex] 9 Jan 2019

arxiv: v1 [nucl-ex] 1 Oct 2018

Heavy-ion collisions in a fixed target mode at the LHC beams

arxiv: v1 [hep-ex] 18 May 2015

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector

Recent results from the NA61/SHINE experiment

Mapping the Nuclear Matter Phase Diagram with STAR: Au+Al at 2.8 AGeV and Au+Au at 19.6 GeV

PHY397K - NUCLEAR PHYSICS - 2

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

Overview* of experimental results in heavy ion collisions

arxiv: v1 [nucl-ex] 7 Jan 2019

Energy Dependence of Multiplicity Fluctuations in Heavy Ion Collisions. Benjamin Lungwitz, IKF Universität Frankfurt for the NA49 collaboration

Fluctuations of the azimuthal particle distribution in NA49 at the CERN SPS

arxiv: v1 [hep-ex] 14 Jan 2016

New results related to QGP-like effects in small systems with ALICE

arxiv: v1 [nucl-ex] 13 Jun 2013

On the double-ridge effect at the LHC

arxiv: v2 [nucl-th] 31 Aug 2012

arxiv: v1 [nucl-ex] 22 Jan 2012

arxiv: v2 [nucl-ex] 13 Mar 2013

Recent highlights in the light-flavour sector from ALICE

PoS(CPOD07)013. Fluctuations in Statistical Models. Mark Gorenstein

Recent Results of NA49

Physics goals NA49-future Experimental landscape

Experimental Approach to the QCD Phase Diagram & Search for the Critical Point

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Energy scan with Be+Be collisions: cross-section, centrality determination, pion spectra and mean multiplicities

Understanding hadronization on the basis of fluctuations of conserved charges

arxiv: v2 [nucl-ex] 22 Jun 2015

arxiv: v1 [hep-ph] 8 Nov 2017

arxiv:nucl-ex/ v1 26 Feb 2007

Analysis of fixed target collisions with the STAR detector

The Quark-Gluon Plasma and the ALICE Experiment

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Kristjan Gulbrandsen NBI ALICE/Discovery group

Small Collision Systems at RHIC

EPOS 2 and LHC Results

Measurement of W-boson production in p-pb collisions at the LHC with ALICE

QGP event at STAR. Patrick Scott

Heavy flavour production at RHIC and LHC

67. W.M. Snow et al. (M. Sarsour), NSR collaboration, Parity violating neutron spin rotation in He-4 and H., Nuovo Cim. C035N04, (2012).

Monte Carlo Non-Linear Flow modes studies with AMPT

Studying hot QCD matter at the CERN-LHC with heavy quarks

First Run II results from ALICE

Strange Hadron Production from STAR Fixed-Target Program

Hints of incomplete thermalization in RHIC data

arxiv: v1 [hep-ex] 10 Jan 2019

arxiv:hep-ph/ v1 25 Jul 2005

Jet Physics with ALICE

Correlations of Electrons from Heavy Flavor Decay with Hadrons in Au+Au and p+p Collisions arxiv: v1 [nucl-ex] 11 Jul 2011

Correlations, multiplicity distributions, and the ridge in pp and p-pb collisions

Jet production, charged particles in pp-interactions, HIJING, pseudorapidity, transverse momentum, transverse mass

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Angular correlations of identified particles in the STAR BES data

Hadron Resonance Gas Model

& Λ Production in ALICE

arxiv: v1 [hep-ex] 18 Jan 2016

CHEMICAL POTENTIAL DEPENDENCE OF PARTICLE RATIOS WITHIN A UNIFIED THERMAL APPROACH

Identified charged hadron production in pp, p Pb and Pb Pb collisions at LHC energies with ALICE

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

arxiv:nucl-ex/ v2 18 Jun 2003

arxiv: v1 [hep-ex] 14 Jul 2014 Katarzyna Grebieszkow

LHC: Status and Highlights

Measurements of net-particle fluctuations in Pb-Pb collisions at ALICE

Searching for the QCD critical point in nuclear collisions

Ultra-relativistic nuclear collisions and Production of Hot Fireballs at SPS/RHIC

Fluctuations and Search for the QCD Critical Point

Event-by-event fluctuations the future of ion physics

Energy scan programs in HIC

arxiv:hep-ph/ v2 8 Aug 2002

Measurements of the electron-positron continuum in ALICE

Project NICA. at the LHEP JINR. ROGACHEVSKY Oleg for MPD collaboration. ISMD 2017 September, Tlaxcala City

Open heavy-flavour production in pp, p Pb and Pb Pb collisions in ALICE

arxiv:hep-ph/ v3 2 Jan 2001

Review of collective flow at RHIC and LHC

Soft physics results from the PHENIX experiment

arxiv: v1 [nucl-ex] 11 Jul 2011

arxiv: v2 [nucl-ex] 6 Oct 2008

Fluctuations of conserved charges and freeze-out conditions in heavy ion collisions

van der Waals Interactions in Hadron Resonance Gas:

arxiv:hep-ph/ v1 19 Jul 2000

Strangness production in p+p interactions at 20, 31, 40, 80 and 158 GeV/c from NA61/SHINE at the CERN SPS

Heavy Ion Physics Lecture 3: Particle Production

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

Transcription:

arxiv:80.06690v [nucl-ex] 20 Jan 208 Pseudorapidity dependence of multiplicity and transverse momentum fluctuations in pp collisions at SPS energies Daria Prokhorova for the NA6/SHINE Collaboration St. Petersburg State University, St. Petersburg, 99034, Russia E-mail: daria.prokhorova@cern.ch Abstract. A search for the critical behavior of strongly interacting matter was performed at the NA6/SHINE experiment by studying event-by-event fluctuations of multiplicity and transverse momentum of charged hadrons produced in inelastic p+p collisions at 20, 3, 40, 80 and 58 GeV/c beam momentum. Results for the energy dependence of the scaled variance of the multiplicity distribution and for two families of strongly intensive measures of multiplicity and transverse momentum fluctuations [P, N] and Σ[P, N] are presented. hese quantities were studied in different pseudorapidity intervals, which correspond to changing the baryon chemical potential and the temperature at the freeze-out stage. he strongly intensive measures [N F, N B] and Σ[N F, N B] were also used in the analysis of short- and long-range multiplicity correlations. Results on multiplicity and transverse momentum fluctuations significantly depend on the charges of the selected hadrons and the width and/or location of pseudorapidity intervals. he event generator EPOS does not describe the data for the [P, N] measure, but provides a fair description of Σ[P, N]. he measure Σ[N F, N B] of forward-backward fluctuations is reproduced reasonably well by the EPOS model.. Introduction Nowadays numerous experimental and theoretical investigations of high energy nucleusnucleus collisions show that the quark-gluon plasma could exist in nature. Moreover, the results of CERN LHC [] and BNL RHIC [2] experiments and the observation of the transition between hadronic matter and quark-gluon plasma at CERN SPS energies [3], [4], [5] revealed that the key question in nuclear and particle physics now is to determine the structure of the phase transition between the hadron gas and the deconfined matter. It is expected that in the phase diagram of strongly interacting matter the hadron gas and quark-gluon plasma regions are separated by a first order phase transition line at high baryo-chemical potentials and moderate temperatures. A crossover between both phases is assumed for high temperatures and low baryo-chemical potentials. he first order phase transition line then ends in a critical point. But the exact location of the critical end-point in the phase diagram is unknown. Moreover, some lattice QCD calculations suggest that there might be no critical point at all and only a crossover separates the two phases. he strong interactions programme of NA6/SHINE, a fixed-target experiment at the CERN SPS [6], includes the study of the properties of deconfinement and the search for the critical

behaviour of strongly interacting matter. he main strategy of the NA6/SHINE collaboration in the search for the critical point is to perform a comprehensive two-dimensional scan of the phase diagram of strongly interacting matter by changing the collision energy and the system size [7]. If the critical point exists it is expected that at some values of these parameters a region of increased fluctuations should be observed. At the top of this shark fin hill the value of the critical fluctuations is expected to be a imum. However, the critical signal could be shadowed since results on fluctuations are sensitive to conservation laws, resonance decays, volume fluctuations in the system of the colliding nuclei, quantum statistical effects and the limited acceptance of the experiment. Hence one should try to reduce the contribution from trivial fluctuations. his led to the idea to use intensive and strongly intensive quantities as probes of the critical behaviour [8], [9]. 2. Quantities of interest In order to make proper comparison of the results from different colliding systems, one should choose so-called intensive variables which are independent of the system size. Since in the vicinity of a critical point central second moments of distributions of extensive event quantity A are believed to diverge [0], the scaled variance ω[a], an intensive quantity, was chosen for the analysis. he normalization results in ω[a] = 0 in the absence fluctuations of A and ω[a] = in the case of a Poisson distribution of A []. One should keep in mind that ω[a] is still sensitive to fluctuations of the volume. Due to the imperfect centrality determination in A+A collisions, one should expect eventby-event volume fluctuations. Consequently, to eliminate the influence of usually poorly known distributions of the system volume, it was suggested to use strongly intensive quantities which are independent both of the volume and fluctuations of the volume within the statistical model of the ideal Boltzmann gas in the grand canonical ensemble formulation [9], []. wo families of strongly intensive variables [A, B] and Σ[A, B] were suggested which are functions of two extensive event quantities A and B. he normalization of these variables can be chosen such that []: [A, B] = Σ[A, B] = 0 in the absence of fluctuations of A and B [A, B] = Σ[A, B] = in the Independent Particle Model 3. Analysis details he main goal of this work is to extend the investigation of the phase diagram by measuring the pseudorapidity dependence of fluctuations. Analysis of proton-proton collisions is the baseline for future investigations of nucleus-nucleus collisions. his paper presents results referring to all charged hadrons with p <.5 GeV/c produced in the analysis acceptance of the NA6/SHINE experiment [2] in inelastic proton-proton collisions at beam momenta of 20, 3, 40, 80 and 58 GeV/c. Only data-based corrections for off-target interactions were performed. Simulation-based corrections using the event generator EPOS.99 [3] and the NA6/SHINE detector simulation chain are in progress for other biases. he analysis has two parts. In the one window analysis the intensive quantity ω[n] and the strongly intensive quantities [P, N] and Σ[P, N] are studied as functions of the width of the chosen pseudorapidity interval. his corresponds to changing the rapidity averaged baryochemical potential at the freeze-out stage [4]. he two windows analysis performs a search for short- and long-range correlations via study of the dependence of the strongly intensive quantity Σ[N F, N B ] on the distance between two separated pseudorapidity windows in which the Forward and Backward multiplicities are evaluated.

3.. he one window analysis Here A was taken as the event multiplicity of charged hadrons N and B as the scalar sum P of their transverse momenta. With denoting the average value over all events and the inclusive average value (over all particles and all events), one can define the following intensive quantities [8]: ω[n] = N 2 N 2, ω[p ] = P 2 P 2 () N P and strongly intensive quantities [8]: with normalization []: Σ[P, N] = C [ N ω[p ] + P ω[n] 2 ( P N P N )] (2) [P, N] = C [ N ω[p ] P ω[n]], (3) C = C Σ = N ω(p ), ω(p ) = p2 p 2 p (4) 3.2. he two windows analysis aking the extensive event quantities A as the multiplicity N F in the Forward pseudorapidity window and B as the multiplicity N B in the Backward pseudorapidity window, the above formulae will transform [5] into : Σ[N F, N B ] = C Σ [ N B ω[n F ] + N F ω[n B ] 2 ( N F N B N F N B )] (5) ω[n F ] = N 2 F N F 2 N F, ω[n B ] = N B 2 N B 2, C Σ = N B + N F (6) N B 3.3. Definitions of pseudorapidity intervals All results are presented as functions of η/ η in the lab system according to the Fig.. In the following the lower edges of the pseudorapidity intervals are moving from ybeam lab /2 to ylab beam corresponding to the range from y cms = 0 to ybeam cms. ηlab is restricted to this range to exclude the influence of the bad acceptance coverage at small η lab and to reduce contributions from elastic processes at η lab > ybeam lab. Figure. Sketch of the uncorrected pseudorapidity distribution of charged hadrons with chosen windows (pseudorapidity intervals) for one window analysis, for two windows analysis

4. Results he presented preliminary results refer to all charged hadrons with p <.5 GeV/c produced in the acceptance of the NA6/SHINE experiment [2] in inelastic p+p collisions. ω[n].6.4.2 p+p (NA6/SHINE) 20 GeV/c 3 GeV/c 40 GeV/c 80 GeV/c 58 GeV/c [P.4.2 0.6 p+p (NA6/SHINE) 20 GeV/c 3 GeV/c 40 GeV/c 80 GeV/c 58 GeV/c 0.2 0.4 0.6 0.4 0.2 0.4 0.6 Figure 2. Dependence on the width of the rapidity window (see Fig. of scaled variance ω[n], strongly intensive quantity [P, N] in the one window analysis at SPS energies for all charged hadrons produced in inelastic p+p collisions in the NA6/SHINE acceptance. [P.2 p+p (NA6/SHINE) EPOS.99 58 GeV/c Σ[P.5. p+p (NA6/SHINE) EPOS.99 58 GeV/c.05 0.6 0.4 0.2 0.4 0.6 0.2 0.4 0.6 Figure 3. Dependence on the width of the pseudorapidity window (see Fig. of strongly intensive quantities [P, N], Σ[P, N] in the one window analysis for data and EPOS.99 at beam momentum of 58 GeV/c for all charged hadrons produced in inelastic p+p collisions in the NA6/SHINE acceptance. he studied fluctuation measures significantly depend on the width and the location of the pseudorapidity intervals. Results for ω[n] and [P, N] depend on the collision energy (see Fig.2). he values of ω[n] rise with increasing beam energy and width of the rapidity interval. he values of [P, N] are less than one with deviation increasing with beam energy and width of the rapidity interval. On the other hand the values of Σ[P, N] are similar at all beam momenta and show the same rising tendency with increasing width of the rapidity interval (see conference slides). he azimuthal acceptance changes only slightly for different beam momenta. A significant discrepancy between data and EPOS.99 calculations is observed

] B,N F ] Σ[N.5. EPOS.99 20 GeV/c p+p (NA6/SHINE) 20 GeV/c B,N F Σ[N.5. EPOS.99 58 GeV/c p+p (NA6/SHINE) 58 GeV/c.05.05 0 0.5 0 0.5 Figure 4. Dependence of the strongly intensive fluctuation measure Σ[N F, N B ] for all charged hadrons produced in inelastic p+p collisions in the NA6/SHINE acceptance at beam momenta of 20 GeV/c, 58 GeV/c on the distance between the Forward and the Backward pseudorapidity window in the two windows analysis (see Fig. for [P, N] at all collision energies (see example for 58 GeV/c presented in Fig. 3, left). It is more pronounced for the larger width of the pseudorapidity interval. However, EPOS.99 well describes ω[n] and Σ[P, N] (see Fig. 3, right and conference slides). In the two windows analysis there is an increase of the value of Σ[N F, N B ] with the distance between forward and backward pseudorapidity intervals which is more pronounced for the higher energy (see Fig. 4). EPOS.99 predictions are in a good agreement with the data. Acknowledgments his work was supported by the Saint-Petersburg State University research grants.38.242.205,.4.385.207. References [] Schukraft J et al [for ALICE Collaboration] 20 J. Phys. G 38 24003 [2] Adams J et al [for SAR Collaboration] 2005 Nucl. Phys. A 757 02 [3] Alt C et al [NA49 Collaboration] 2008 Phys. Rev. C 77 024903 [4] Gazdzicki M, Gorenstein M I and Seyboth P 20 Acta Phys. Polon. B 42 307 [5] Gazdzicki M, Gorenstein M I and Seyboth P 204 Int. J. Mod. Phys. E 23 430008 [6] Abgrall N et al [NA6/SHINE Collaboration] 204 JINS 9 P06005 [7] Gazdzicki M and Seyboth P 206 Acta Phys. Polon. B 47 20 [8] Aduszkiewicz A et al [NA6/SHINE Collaboration] 206 Eur. Phys. J. C 76 635 [9] Gorenstein M and Gazdzicki M 20 Phys. Rev. C 84 04904 [0] Vovchenko V, Anchishkin D V and Gorenstein M I 205 J. Phys. A: Math. heor. 48 30500 [] Gazdzicki M, Gorenstein M, and Mackowiak-Pawlowska M 203 Phys. Rev. C 88 024907 [2] Czopowicz Acceptance map used in paper https://edms.cern.ch/document/549298/ [3] Werner K and Pierog 2006 Phys. Rev. 74 044902 [4] Becattini F, Manninen J and Gazdzicki M 2006 Phys. Rev. C 73 044905 [5] Andronov E V 205 heor. Math. Phys. 85, no. 383 390