Algebraic integers of small discriminant

Similar documents
Algebraic number theory Revision exercises

Maximal Class Numbers of CM Number Fields

Algebraic number theory

Some algebraic number theory and the reciprocity map

EXPLICIT INTEGRAL BASIS FOR A FAMILY OF SEXTIC FIELD

NUMBER FIELDS WITHOUT SMALL GENERATORS

POWER INTEGRAL BASES IN A PARAMETRIC FAMILY OF TOTALLY REAL CYCLIC QUINTICS

THE DIFFERENT IDEAL. Then R n = V V, V = V, and V 1 V 2 V KEITH CONRAD 2 V

Introduction to Arithmetic Geometry Fall 2013 Lecture #7 09/26/2013

Acta Acad. Paed. Agriensis, Sectio Mathematicae 28 (2001) POWER INTEGRAL BASES IN MIXED BIQUADRATIC NUMBER FIELDS

ARITHMETIC IN PURE CUBIC FIELDS AFTER DEDEKIND.

Math 121 Homework 2 Solutions

ON THE LIMIT POINTS OF THE FRACTIONAL PARTS OF POWERS OF PISOT NUMBERS

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

Approximation exponents for algebraic functions in positive characteristic

A 4 -SEXTIC FIELDS WITH A POWER BASIS. Daniel Eloff, Blair K. Spearman, and Kenneth S. Williams

Hamburger Beiträge zur Mathematik

ERIC LARSON AND LARRY ROLEN

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

RATIONAL LINEAR SPACES ON HYPERSURFACES OVER QUASI-ALGEBRAICALLY CLOSED FIELDS

INTEGRAL BASES FOR AN INFINITE FAMILY OF CYCLIC QUINTIC FIELDS*

Integral bases and monogenity of pure fields

Math 259: Introduction to Analytic Number Theory How small can disc(k) be for a number field K of degree n = r 1 + 2r 2?

Explicit Methods in Algebraic Number Theory

Galois theory (Part II)( ) Example Sheet 1

A Gel fond type criterion in degree two

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

On the norm form inequality F (x) h.

Understanding hard cases in the general class group algorithm

On the lines passing through two conjugates of a Salem number

An Infinite Family of Non-Abelian Monogenic Number Fields

x mv = 1, v v M K IxI v = 1,

CONSTRUCTIBLE NUMBERS AND GALOIS THEORY

TWO CLASSES OF NUMBER FIELDS WITH A NON-PRINCIPAL EUCLIDEAN IDEAL

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

GALOIS GROUPS AS PERMUTATION GROUPS

CM-Fields with Cyclic Ideal Class Groups of 2-Power Orders

P -adic root separation for quadratic and cubic polynomials

Determining elements of minimal index in an infinite family of totally real bicyclic biquadratic number fields

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

On Siegel s lemma outside of a union of varieties. Lenny Fukshansky Claremont McKenna College & IHES

FACTORIZATION OF IDEALS

ON 2-CLASS FIELD TOWERS OF SOME IMAGINARY QUADRATIC NUMBER FIELDS

Section X.55. Cyclotomic Extensions

Number Theory Fall 2016 Problem Set #6

1 Number Fields Introduction Algebraic Numbers Algebraic Integers Algebraic Integers Modules over Z...

Selected exercises from Abstract Algebra by Dummit and Foote (3rd edition).

Class numbers of cubic cyclic. By Koji UCHIDA. (Received April 22, 1973)

Gaussian integers. 1 = a 2 + b 2 = c 2 + d 2.

Practice Algebra Qualifying Exam Solutions

A parametric family of quartic Thue equations

REDUCTION OF ELLIPTIC CURVES OVER CERTAIN REAL QUADRATIC NUMBER FIELDS

Public-key Cryptography: Theory and Practice

MINKOWSKI THEORY AND THE CLASS NUMBER

22M: 121 Final Exam. Answer any three in this section. Each question is worth 10 points.

ON 3-CLASS GROUPS OF CERTAIN PURE CUBIC FIELDS. Frank Gerth III

THE TRIANGULAR THEOREM OF THE PRIMES : BINARY QUADRATIC FORMS AND PRIMITIVE PYTHAGOREAN TRIPLES

On squares in Lucas sequences

INTRODUCTORY ALGEBRAIC NUMBER THEORY

SPECIAL CASES OF THE CLASS NUMBER FORMULA

Explicit solution of a class of quartic Thue equations

arxiv: v1 [math.nt] 2 Jul 2009

arxiv: v1 [math.nt] 3 Jun 2016

Five peculiar theorems on simultaneous representation of primes by quadratic forms

COUNTING MOD l SOLUTIONS VIA MODULAR FORMS

Recursive definitions on surreal numbers

PRIME NUMBERS IN CERTAIN ARITHMETIC PROGRESSIONS M. Ram Murty 1 & Nithum Thain Introduction

Notes on Chapter 2 of Dedekind s Theory of Algebraic Integers

To Professor W. M. Schmidt on his 60th birthday

ON THE EQUATION X n 1 = BZ n. 1. Introduction

Part II Galois Theory

arxiv: v1 [math.gr] 3 Feb 2019

Places of Number Fields and Function Fields MATH 681, Spring 2018

On the existence of unramified p-extensions with prescribed Galois group. Osaka Journal of Mathematics. 47(4) P P.1165

A family of quartic Thue inequalities

Continuing the pre/review of the simple (!?) case...

Norm-Euclidean Ideals in Galois Cubic Fields

The primitive root theorem

CLASS GROUPS, TOTALLY POSITIVE UNITS, AND SQUARES

ALGEBRA PH.D. QUALIFYING EXAM SOLUTIONS October 20, 2011

AN EXAMINATION OF CLASS NUMBER FOR Q( d) WHERE d HAS CONTINUED FRACTION EXPANSION OF PERIOD THREE

THESIS. Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University

SEVERAL PROOFS OF THE IRREDUCIBILITY OF THE CYCLOTOMIC POLYNOMIALS

1, for s = σ + it where σ, t R and σ > 1

THERE ARE NO ELLIPTIC CURVES DEFINED OVER Q WITH POINTS OF ORDER 11

CONSTRUCTION OF THE REAL NUMBERS.

Course 2316 Sample Paper 1

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

POLYNOMIAL SOLUTIONS OF PELL S EQUATION AND FUNDAMENTAL UNITS IN REAL QUADRATIC FIELDS

Integral Bases 1 / 14

Just like the ring of Gaussian integers, the ring of Eisenstein integers is a Unique Factorization Domain.

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS

be a sequence of positive integers with a n+1 a n lim inf n > 2. [α a n] α a n

ARITHMETIC OF POSITIVE INTEGERS HAVING PRIME SUMS OF COMPLEMENTARY DIVISORS

Integral Points on Curves Defined by the Equation Y 2 = X 3 + ax 2 + bx + c

(January 14, 2009) q n 1 q d 1. D = q n = q + d

On The Weights of Binary Irreducible Cyclic Codes

Extension fields II. Sergei Silvestrov. Spring term 2011, Lecture 13

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

SIMPLE RADICAL EXTENSIONS

Transcription:

ACTA ARITHMETICA LXXV.4 (1996) Algebraic integers of small discriminant by Jeffrey Lin Thunder and John Wolfskill (DeKalb, Ill.) Introduction. For an algebraic integer α generating a number field K = Q(α), the discriminants of α and K are related by the equation (1) D(α) = D(K)(I(α)) 2, where I(α) = [O K : Z[α]], the index of the ring generated by α in the full ring of integers O K of K. Classically, the index of the field K is the greatest common divisor of all indices I(α) for α O K with K = Q(α). Dedekind was the first to show that the index may not be 1 by exhibiting certain cubic and quartic fields with this property. By results of Bauer and von Żyliński early this century, it is known that a rational prime p divides the index of some field of degree d if and only if p < d. Later work by Engstrom [2] investigated which powers of these primes may occur as common index divisors. In contrast to the index of the field, we focus here on the minimal index of the primitive algebraic integers of the field, which we denote by I(K). In other words, I(K) = min{i(α)}, where the minimum is over all α O K with K = Q(α). The simplest situation is of course I(K) = 1, in which case O K is said to have a power basis. This happens trivially for any quadratic field, but when the degree of K is larger than 2 one does not expect this to be the case in general. In fact, much work has been done on the problem of classifying fields of certain types which have a power basis (in some cases with complete success). We refer the reader to the papers of Gras [3 and 4] and Cougnard [1] for more on this topic. A natural question to ask, and the one which we address here, is how large I(K) can be. In view of the remarks above on the index, this is only interesting when considering fields of degree less than a given bound. Here we determine upper bounds for I(K) in terms of just the degree and discriminant of K, with sharper bounds using more properties of the field. We [375]

376 J. L. Thunder and J. Wolfskill also construct examples which indicate that these upper bounds are sharp, at least in terms of the discriminant. Statement of results. In the results stated below, K is a number field of degree d and discriminant D(K). We write d = r + 2s, where r is the number of real places and s is the number of complex places of K. Theorem 1. Let d > 2, let c denote the maximum degree of a proper subfield of K, and let t be the minimum of c and log 2 d. Then I(K) < (d 2 t(2/π) s/(d c) ) d(d 1)/2 D(K) (d2 3d+2c)/(4d 4c). Note that the exponent on the discriminant in the statement of Theorem 1 is between (d 2)/4 and (d 2)/2. The upper bound for I(K) in Theorem 1 is largest when c is maximal, i.e., when c = d/2. In this case the exponent on the discriminant is (d 2)/2. Corollary 1. For any number field K I(K) < (d 2 log 2 d) d(d 1)/2 D(K) (d 2)/2. The upper bound for I(K) in Theorem 1 is smallest when K has no non-trivial subfields. This is the case, for example, when the degree d is prime. Corollary 2. If K has no proper subfields besides Q, then I(K) < d d(d 1) D(K) (d 2)/4. The general result of Corollary 1 can be sharpened if K has a real place. Theorem 2. If K has at least one real place, then I(K) ((2/π) s 2 d/2 ) d 1 D(K) (d 2)/2. For an arbitrary number field K, the upper bound on I(K) in Theorem 1 may be far from the truth, since of course it could happen that I(K) = 1. Thus, a lower bound for I(K) cannot be given in general, but only for fields of some particular type. To our knowledge, the only result in this direction is that of Hall [5] who showed that I(K) can be arbitrarily large for pure cubic fields. This is in marked contrast to the known result that the index of such a field is either 1 or 2. Unfortunately, it would be very difficult to deduce an explicit lower bound for I(K) strictly in terms of the discriminant by Hall s argument. We will discuss this in more detail later. When the degree is even, however, we can show that the dependence on the discriminant in the upper bound of Corollary 1 cannot be improved, at least in the absence of further information about the field.

Algebraic integers of small discriminant 377 Theorem 3. Let d 4 be even. Then there are infinitely many fields K of degree d such that I(K) D(K) (d 2)/2, where the implicit constant depends only on d. The implicit constant in Theorem 3 is actually determined by a particular choice of a certain field of degree d/2. This choice can be made canonically, so that the constant depends only on d. In the case d = 4 the lower bound of Theorem 3 can be achieved more simply (and the implicit constant made concrete) by considering pure quartic fields. Theorem 4. For an odd rational prime p, the field K = Q( 4 2p 2 ) satisfies I(K) = 2 11 D(K). Proof of Theorems 1 and 2. We begin with an effective version of the primitive element theorem. Lemma 1. Let α, β be algebraic over Q with α Q and β Q(α). Let [Q(α, β) : Q] = e. Then Q(α, β) = Q(α + zβ) for some z Z satisfying z < e 2 /2. P r o o f. Let z Z and suppose that α + zβ is not a primitive element of Q(α, β). Then either z = 0 or α + zβ = α (i) + zβ (j) for some conjugates α (i) of α and β (j) of β distinct from α and β, respectively. Thus, the number of such integers which fail to give a primitive element is no larger than 1+(e/2 1)(e 1). Since e 4, there is an integer z with α+zβ a primitive element and z 1 + (e/2 1)(e 1)/2 < e 2 /2. Now let the notation be as in the statement of Theorem 1. Denote the embeddings of K into C by a a (j) for 1 j d, and order these so that the first r are real and a (j+s) = a (j) for r < j r + s. For X R d write where Define ϱ : K R d by X = (x 1,..., x r+s ), { R if j r, x j R 2 otherwise. ϱ(a) = (a (1),..., a (r), Ra (r+1), Ia (r+1),..., Ra (r+s), Ia (r+s) ). Let Λ = ϱ(o K ). This is a lattice of determinant det(λ) = 2 s D(K) 1/2 ([6, Chap. V, 2, Lemma 2]). Let B R d be the convex body defined by B = {X R d : x j 1 for all j}.

378 J. L. Thunder and J. Wolfskill Let λ 1... λ d be the successive minima of Λ with respect to B. By Minkowski s second convex bodies theorem (see [7]), λ 1... λ d 2d det(λ) Vol(B) = (2/π) s D(K) 1/2. Further, we have λ 1 = 1 since ϱ(1) B and ϱ(a) λb implies that the norm N(a) of a satisfies N(a) λ d. Hence, (2) λ d c c+1 d j=c+1 λ j (2/π) s D(K) 1/2. Next, we choose successive elements α 1,..., α u O K with u t such that K = Q(α 1,..., α u ), α 1 Q, α j+1 Q(α 1,..., α j ), and ϱ(α j ) λ c+1 B for each j. These may be determined as follows (the choice is not unique). Let α 1 O K \Q be such that ϱ(α 1 ) λ 2 B and let L 1 = Q(α 1 ). If L 1 = K, stop. Otherwise, let d 1 = [L 1 : Q] < d and let α 2 O K \ L 1 with ϱ(α 2 ) λ d1 +1B. Such an α 2 must exist since at most d 1 elements of L 1 may be linearly independent over Z. Let L 2 = Q(α 1, α 2 ). If L 2 = K, stop. Otherwise, continue in the same fashion, eventually getting K = Q(α 1,..., α u ). Note that u log 2 d. Further, u c since d u 1 c and 1, α 1,..., α u 1 are elements of L u 1 which are linearly independent over Z. At this point we apply Lemma 1 to obtain a primitive element α O K of the form α = α 1 + z 2 α 2 +... + z u α u, where the z j s are rational integers with z j < d 2 /2. We have α (j) < λ c+1 td 2 /2 for each j, so that (3) D(α) = i<j Theorem 1 follows from (1) (3). α (i) α (j) 2 < (d 2 tλ c+1 ) d(d 1). The proof of Theorem 2 is simpler than that given for Theorem 1 above, using only Minkowski s first theorem. With Λ as above and 1 > ε > 0 we define C R d by C = {X R d : x 1 (2/π) s D(K) 1/2 (1 ε) 1 d, x j 1 ε for j > 1}. Then C is a convex body with volume Vol(C) = 2 d det(λ). By Minkowski s first convex bodies theorem (see [7]), there is a non-zero α O K with ϱ(α) C. We claim that K = Q(α). To see this claim, let v be the place of K corresponding to the embedding a a (1). (Note that v is real by the hypothesis of Theorem 2 and our ordering of the embeddings.) If K Q(α), then v lies above a place w of Q(α). Since both v and w are real, we have another place v lying above w, whence another embedding a a (l) with l 1 and α (1) = α (l). But then α (1) < 1 by the definition of C, which implies that N(α) < 1. Since α is a non-zero integral element, this is impossible and we must have K = Q(α).

Algebraic integers of small discriminant 379 Since α is a primitive element of K its discriminant from K to Q is not zero. Thus, D(α) = i j By (1) we get α (i) α (j) (2(2/π) s D(K) 1/2 (1 ε) 1 d ) 2d 2 (2(1 ε)) (d 1)(d 2) = (2/π) 2s(d 1) (2/(1 ε)) d(d 1) D(K) d 1. I(K) (2/π) s(d 1) (2/(1 ε)) d(d 1)/2 D(K) (d 2)/2. Theorem 2 follows by letting ε 0. Proof of Theorems 3 and 4. Let d = 2n with n 2. The fields K of Theorem 3 will be constructed as imaginary quadratic extensions of a fixed totally real field of degree n. A preparatory result is needed first. Lemma 2. Let L be a normal totally real field of degree n. Then there exists an α O L which is totally positive and such that L = Q(β 2 α) for any non-zero β O L. P r o o f. Each ideal class of O L contains infinitely many primes of inertial degree one (see [6], Chap. VIII, 2). Therefore, for infinitely many rational primes p there is an α p O L with N(α p ) = p, where N denotes the norm from L to Q. Now each α p has some pattern of signs for its conjugates, and there are only 2 n possible such patterns. Thus, there must be distinct rational primes p 1, p 2 for which α p (j) 1 and α p (j) 2 have the same sign for each j. Let α = α p1 α p2. We have α O L is totally positive by construction. Let β O L \ {0}. The prime ideal (p 1 ) splits completely in O L : α (1) p,..., α (n) p (p 1 ) = π 1... π n, where π 1 = (α p1 ). This implies that the order at π 1 of αβ 2 is odd, whereas the order at π j is even for j > 1. Thus, if F = Q(αβ 2 ) and P is the prime of O F lying below π 1, then π 1 is the only prime above P. Finally, as the local degree of π 1 over p 1 is 1, we get F = L. Let L and α be as in Lemma 2. In what follows, the discriminant of α appears. This will depend only on d if one chooses L and α in some canonical way. For example, one could choose L with minimal conductor among all nth degree totally real subfields of cyclotomic fields. Once L is fixed, choose α among those elements satisfying Lemma 2 so that D( α) is minimal. Given L and α, let p be a rational prime which is unramified in L and relatively prime to the norm of 2α. Let K = L( pα), an imaginary quadratic

380 J. L. Thunder and J. Wolfskill extension of L of degree d = 2n. Letting γ = pα we have 1, γ, γ 2 /p, γ 3 /p,..., γ d 2 /p n 1, γ d 1 /p n 1 are elements of O K which are linearly independent over Z. Hence (4) D(K) disc(1, γ,..., γ d 1 /p n 1 ) = p n D( α) p n, where the implicit constant depends only on d. Now let θ O K and assume that K = Q(θ). We write θ in the form θ = a + b pα, a, b L, b 0. By considering the trace and norm of θ from K to L and our hypotheses on p, we find (5) 4αb 2 O L \ {0}. In particular, note that 4αb 2 satisfies the statements in Lemma 2. For x L we denote the conjugates of x over Q by x (1),..., x (n). Similarly, we let θ (j) = a (j) + b (j) pα (j). Then the d conjugates of θ over Q are θ (1),..., θ (n) and their complex conjugates. Thus, (6) D(θ) n = θ (j) θ (j) 2 θ (j) θ (l) 2 θ (j) θ (l) 2 = j=1 j l n 2b (j) pα (j) 2 (a (j) a (l) ) + i p(b (j) α (j) b (l) α (l) ) 2 j=1 j l n 2 (pαb 2 ) (j) 2 j=1 j l (a (j) a (l) ) + i p(b (j) α (j) + b (l) α (l) ) 2 (pαb 2 ) (j) (pαb 2 ) (l) 2 (pαb 2 ) (j) + (pαb 2 ) (l) 2 = (p/4) n(2n 1) D( 4αb 2 ) p n(2n 2) 2 2n(2n 1) D(K) by (4), (5), and the choice of α. Theorem 3 follows from (1), (4) and (6). For the proof of Theorem 4, let p be an odd prime and let α = 4 2p 2. Let K = Q(α). Then 1, α, α 2 /p, α 3 /p are elements of O K which are linearly independent over Z. Further, disc(1, α, α 2 /p, α 3 /p) = p 4 D(α) = 2 11 p 2.

Algebraic integers of small discriminant 381 Since α 2 = p 2 and p is odd, p must ramify in K; therefore p 2 divides D(K). Also, α satisfies an Eisenstein polynomial for the prime 2, so the powers of α constitute a 2-local integral basis. This shows that the four elements above constitute an integral basis for K, so that (7) D(K) = 2 11 p 2 = 2 11 I(α). Now let θ O K be a primitive element of K and write θ = a+bα, where a, b Z[ 2] and b 0. Denoting conjugation in Q( 2) by a superscript, the four conjugates of θ are a ± bα and a ± b iα. Thus, (8) D(θ) = 2bα 2 2b α 2 (a a ) + (b ib )α 2 (a a ) + (b + b i)α 2 (a a ) (b + b i)α 2 (a a ) (b b i)α 2 = (2α) 4 N(b) 2 (a a ) 2 (b b i) 2 α 2 2 (a a ) 2 (b + b i) 2 α 2 2 2 8 α 12 N(b) 6, where N(b) denotes the norm of b from Q( 2) to Q. From (1), (7) and (8) we get I(θ) p 2, proving Theorem 4. Finally, we remark that obtaining lower bounds for I(K) appears to be far more difficult when K has odd degree. To illustrate this point, consider the simple situation K = Q( 3 pq 2 ), where p and q are distinct primes with p 2 q 2 (mod 9). A typical algebraic integer in K has the form θ = w + x 3 pq 2 + y 3 p 2 q with w, x, y Z, and it is straightforward to compute that I(θ) = qx 3 py 3. Thus, I(K) is determined as the smallest non-zero integer, in absolute value, represented by the binary form F (X, Y ) = qx 3 py 3. Hall in [5] showed that one can make I(K) arbitrarily large by imposing successive congruence conditions on p and q, so that the Thue inequality F (x, y) m has no solutions for arbitrarily large m. It would be extremely difficult to quantify m in terms of the discriminant of F, much less to obtain such a result with m a power of the discriminant in analogy with Theorems 3 and 4. The situation is similar in any cubic field, as Hall showed. Achieving a lower bound for I(K) is equivalent to showing that a certain Thue inequality has no solutions. More generally for higher degrees, achieving a lower bound for I(K) is equivalent to showing that a certain norm form inequality has no solutions. Generally speaking, such results are simply out of reach at the present time.

382 J. L. Thunder and J. Wolfskill References [1] J. Cougnard, Sur la monogénéité de l anneau des entiers d une extension diédrale imaginaire de degré 2p (p premier), Arch. Math. (Basel) 48 (1987), 223 231. [2] H. T. Engstrom, On the common index divisors of an algebraic field, Trans. Amer. Math. Soc. 32 (1930), 223 237. [3] M.-N. Gras, Non monogénéité de l anneau des entiers des extensions cycliques de Q de degré premier l 5, J. Number Theory 23 (1986), 347 353. [4] M.-N. Gras et F. Tanoé, Corps biquadratiques monogènes, Manuscripta Math. 86 (1995), 63 79. [5] M. Hall, Indices in cubic fields, Bull. Amer. Math. Soc. 43 (1937), 104 108. [6] S. Lang, Algebraic Number Theory, Springer, New York, 1986. [7] G. Lekkerkerker, Geometry of Numbers, Wolters-Noordhoff, Groningen, 1969. Department of Mathematics Northern Illinois University DeKalb, Illinois 60115 U.S.A. E-mail: jthunder@math.niu.edu wolfskil@math.niu.edu Received on 31.8.1995 and in revised form on 23.11.1995 (2853)