(Structured) Coding for Real-Time Streaming Communication

Similar documents
Error Control for Real-Time Streaming Applications

Layered Error-Correction Codes for Real-Time Streaming over Erasure Channels

AN increasing number of multimedia applications require. Streaming Codes with Partial Recovery over Channels with Burst and Isolated Erasures

A Truncated Prediction Framework for Streaming over Erasure Channels

Streaming-Codes for Multicast over Burst Erasure Channels

MANY multimedia applications such as interactive audio/video conferencing, mobile gaming and cloud-computing require

Convolutional Codes with Maximum Column Sum Rank for Network Streaming

Performance-based Security for Encoding of Information Signals. FA ( ) Paul Cuff (Princeton University)

Secure Degrees of Freedom of the MIMO Multiple Access Wiretap Channel

Secret Key Agreement Using Asymmetry in Channel State Knowledge

Efficient Use of Joint Source-Destination Cooperation in the Gaussian Multiple Access Channel

Energy State Amplification in an Energy Harvesting Communication System

On the Secrecy Capacity of Fading Channels

Lecture 8: MIMO Architectures (II) Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Incremental Coding over MIMO Channels

PREDICTIVE quantization is one of the most widely-used

On Scalable Source Coding for Multiple Decoders with Side Information

Error Exponent Region for Gaussian Broadcast Channels

Sequential Coding of Gauss Markov Sources With Packet Erasures and Feedback

Degrees-of-Freedom Robust Transmission for the K-user Distributed Broadcast Channel

II. THE TWO-WAY TWO-RELAY CHANNEL

ELEC546 Review of Information Theory

Diversity-Multiplexing Tradeoff in MIMO Channels with Partial CSIT. ECE 559 Presentation Hoa Pham Dec 3, 2007

Exploiting Partial Channel State Information for Secrecy over Wireless Channels

Anatoly Khina. Joint work with: Uri Erez, Ayal Hitron, Idan Livni TAU Yuval Kochman HUJI Gregory W. Wornell MIT

Decomposing the MIMO Wiretap Channel

Appendix B Information theory from first principles

Generalized Writing on Dirty Paper

Graph-based Codes for Quantize-Map-and-Forward Relaying

On the Impact of Quantized Channel Feedback in Guaranteeing Secrecy with Artificial Noise

Lecture 7 MIMO Communica2ons

Capacity of Memoryless Channels and Block-Fading Channels With Designable Cardinality-Constrained Channel State Feedback

Lecture 5 Channel Coding over Continuous Channels

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1. Overview. Ragnar Thobaben CommTh/EES/KTH

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

Minimum Energy Per Bit for Secret Key Acquisition Over Multipath Wireless Channels

On the Required Accuracy of Transmitter Channel State Information in Multiple Antenna Broadcast Channels

Lecture 4 Noisy Channel Coding

Interactive Decoding of a Broadcast Message

NOMA: Principles and Recent Results

Compressed Sensing Using Bernoulli Measurement Matrices

Incremental Coding over MIMO Channels

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

The Optimality of Beamforming: A Unified View

Diversity Multiplexing Tradeoff in Multiple Antenna Multiple Access Channels with Partial CSIT

On the Duality of Gaussian Multiple-Access and Broadcast Channels

Asymptotic Distortion Performance of Source-Channel Diversity Schemes over Relay Channels

Turbo Codes for xdsl modems

Iterative Quantization. Using Codes On Graphs

Training-Symbol Embedded, High-Rate Complex Orthogonal Designs for Relay Networks

Interleave Division Multiple Access. Li Ping, Department of Electronic Engineering City University of Hong Kong

On Source-Channel Communication in Networks

Sparse Regression Codes for Multi-terminal Source and Channel Coding

Simultaneous SDR Optimality via a Joint Matrix Decomp.

Single-User MIMO systems: Introduction, capacity results, and MIMO beamforming

Diversity-Fidelity Tradeoff in Transmission of Analog Sources over MIMO Fading Channels

Digital communication system. Shannon s separation principle

C.M. Liu Perceptual Signal Processing Lab College of Computer Science National Chiao-Tung University

Approximate Ergodic Capacity of a Class of Fading Networks

SOURCE coding problems with side information at the decoder(s)

How Much Training and Feedback are Needed in MIMO Broadcast Channels?

Improved MU-MIMO Performance for Future Systems Using Differential Feedback

Side-information Scalable Source Coding

Distributed Decoding of Convolutional Network Error Correction Codes

Secret-Key Generation from Channel Reciprocity: A Separation Approach

Group Secret Key Agreement over State-Dependent Wireless Broadcast Channels

A robust transmit CSI framework with applications in MIMO wireless precoding

Ahmed S. Mansour, Rafael F. Schaefer and Holger Boche. June 9, 2015

Soft-Output Trellis Waveform Coding

Physical-Layer MIMO Relaying

Distributed Reed-Solomon Codes

Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms

A Half-Duplex Cooperative Scheme with Partial Decode-Forward Relaying

Lecture 4. Capacity of Fading Channels

Fading Wiretap Channel with No CSI Anywhere

Single-Symbol ML Decodable Distributed STBCs for Partially-Coherent Cooperative Networks

ON SCALABLE CODING OF HIDDEN MARKOV SOURCES. Mehdi Salehifar, Tejaswi Nanjundaswamy, and Kenneth Rose

Joint Source-Channel Coding Optimized On Endto-End Distortion for Multimedia Source

Lecture 4 Capacity of Wireless Channels

Joint FEC Encoder and Linear Precoder Design for MIMO Systems with Antenna Correlation

Multiple Description Transform Coding of Images

Communication constraints and latency in Networked Control Systems

Shannon s A Mathematical Theory of Communication

Quantization for Distributed Estimation

Multiuser Successive Refinement and Multiple Description Coding

Harnessing Interaction in Bursty Interference Networks

Lecture 4 Capacity of Wireless Channels

Tracking and Control of Gauss Markov Processes over Packet-Drop Channels with Acknowledgments

Capacity Region of the Two-Way Multi-Antenna Relay Channel with Analog Tx-Rx Beamforming

RECURSIVE TRAINING WITH UNITARY MODULATION FOR CORRELATED BLOCK-FADING MIMO CHANNELS

Multi-User Gain Maximum Eigenmode Beamforming, and IDMA. Peng Wang and Li Ping City University of Hong Kong

An Alternative Proof for the Capacity Region of the Degraded Gaussian MIMO Broadcast Channel

Wavelet Scalable Video Codec Part 1: image compression by JPEG2000

Throughput-Delay Analysis of Random Linear Network Coding for Wireless Broadcasting

Delayed Sequential Coding of Correlated Sources

Network Control: A Rate-Distortion Perspective

Secret Key Agreement Using Conferencing in State- Dependent Multiple Access Channels with An Eavesdropper

ELEC546 MIMO Channel Capacity

Transcription:

(Structured) Coding for Real-Time Streaming Communication Ashish Khisti Department of Electrical and Computer Engineering University of Toronto Joint work with: Ahmed Badr (Toronto), Farrokh Etezadi (Toronto), Wai-Tian Tan (Cisco), John Apostolopoulos (Cisco), Mitchell Trott (Luminate Wireless) October 9, 2014 University of Michigan, Ann Arbor

Multimedia Streaming Source Stream Latency Receiver 1 1 2 3 Interrup;on 1 2 3 4 5 6 Network 1 2 3 4 Receiver 2 Latency Interrup;on Streaming Server 1 2 3 4 5 6 Receiver 3 Applications Application Bit-Rate (Mbps) MSDU (B) Delay (ms) PLR Video Conf. 2 Mbps 1500 100 ms 10 4 Interactive Gaming 1 Mbps 512 50 ms 10 4 Video Streaming 4 Mbps 1500 500 ms 10 6 October 9, 2014 University of Michigan, Ann Arbor 2/ 1

Multimedia Streaming Source Stream Latency Receiver 1 1 2 3 Interrup;on 1 2 3 4 5 6 Network 1 2 3 4 Receiver 2 Latency Interrup;on Streaming Server 1 2 3 4 5 6 Receiver 3 Packet-Loss Analysis Burst Losses - High Performance Degradation FEC vs Retransmission October 9, 2014 University of Michigan, Ann Arbor 2/ 1

Outline Real-Time Streaming Communication Streaming Error Correction Streaming Compression Collaborators: Ahmed Badr (Toronto) John Apostolopoulos (Cisco) Wai-Tian Tan (Cisco) Collaborators: Farrokh Etezadi (Toronto) Mitchell Trott October 9, 2014 University of Michigan, Ann Arbor 3/ 1

Outline Real-Time Streaming Communication Streaming Error Correction Streaming Compression Collaborators: Ahmed Badr (Toronto) John Apostolopoulos (Cisco) Wai-Tian Tan (Cisco) Collaborators: Farrokh Etezadi (Toronto) Mitchell Trott Physical Layer Security (Time Permitting) October 9, 2014 University of Michigan, Ann Arbor 3/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Real-Time Communication System October 9, 2014 University of Michigan, Ann Arbor 4/ 1

Proposed Channel Model 1- Good Bad 1- Bad State Good State Bad State Gilbert-Elliott Model Structural Properties Performance Gains October 9, 2014 University of Michigan, Ann Arbor 5/ 1

Proposed Channel Model 1- Good Bad 1- Bad State Good State Bad State Gilbert-Elliott Model Sliding Window Erasure Channel: C(N, B, W ) In any sliding window of length W, the channel can introduce only one of the following: An erasure burst of maximum length B Upto N erasures in arbitrary positions October 9, 2014 University of Michigan, Ann Arbor 5/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = 6 N = 2 October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = W 6= 6 N = N 2= 2 October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = W 6= W 6= 6 N = N 2= N 2= 2 October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = W 6= W 6= W 6= 6 N = N 2= N 2= B 2= 3 October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = W 6= W 6= W 6= W 6= 6 N = N 2= N 2= B 2= B 3= 3 C(N = 1, B, W ): Burst-Erasure Channel October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = W 6= W 6= W 6= W 6= 6 N = N 2= N 2= B 2= B 3= 3 C(N = 1, B, W ): Burst-Erasure Channel 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 B W-1 B W-1 October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Sliding Window Erasure Channel: Remarks (N,B,W) = (2,3,6) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 W = W 6= W 6= W 6= W 6= 6 N = N 2= N 2= B 2= B 3= 3 C(N = 1, B, W ): Burst-Erasure Channel C(N, B, W ): Worst-Case B W-N B W-N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 October 9, 2014 University of Michigan, Ann Arbor 6/ 1

Problem Setup - Sliding Window Erasure Channel Model Source Model : i.i.d. sequence s[t] p s ( )= Unif{(F q ) k } Streaming Encoder: x[t] = f t (s[0],..., s[t]), x[t] (F q ) n Erasure Channel: (Sliding Window Model) Delay-Constrained Decoder: ŝ[t] = g t (y[0],..., y[t + T ]) Rate R = k n Streaming Capacity A rate R is achievable over the C(N, B, W ) channel, if there is a sequence of encoding and decoding functions, f t ( ) and g t ( ) respectively over a sufficiently large field F q, with delay T and rate R = k n. The supremum of achievable rates is the streaming capacity. October 9, 2014 University of Michigan, Ann Arbor 7/ 1

Problem Setup - Sliding Window Erasure Channel Model Source Model : i.i.d. sequence s[t] p s ( )= Unif{(F q ) k } Streaming Encoder: x[t] = f t (s[0],..., s[t]), x[t] (F q ) n Erasure Channel: (Sliding Window Model) Delay-Constrained Decoder: ŝ[t] = g t (y[0],..., y[t + T ]) Rate R = k n Streaming Capacity A rate R is achievable over the C(N, B, W ) channel, if there is a sequence of encoding and decoding functions, f t ( ) and g t ( ) respectively over a sufficiently large field F q, with delay T and rate R = k n. The supremum of achievable rates is the streaming capacity. Worst Case Definition Arbitrarily large field size October 9, 2014 University of Michigan, Ann Arbor 7/ 1

Main Result Badr-Patil-Khisti-Tan-Apostolopoulos, IEEE Trans. on Inform. Theory (Under Review) Theorem Consider the C(N, B, W ) channel, with W B + 1, and let the delay be T. Upper-Bound For any rate R code, we have: ( R 1 R ) B + N min(w, T + 1) Lower-Bound: There exists a rate R code that satisfies: ( ) R B + N min(w, T + 1) 1. 1 R The gap between the upper and lower bound is 1 unit of delay. October 9, 2014 University of Michigan, Ann Arbor 8/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: Recover s 0, s 1, s 2, s 3 H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: Recover s 0, s 1, s 2, s 3 H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Baseline Codes - Full Rank Condition k n s 0 s 1 s 2 s 3 s 4 s 5 s 6 s 7 x i p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p i = s i H 0 + s i 1 H 1 +... + s i M H M, Erasure Codes: Recover s 0, s 1, s 2, s 3 H i F k n k q Random Linear Codes Strongly-MDS Codes (Gabidulin 88, Gluesing-Luerssen 06 ) p 4 H 4 H 3 H 2 H 1 s 0 p 5 p 6 = H 5 H 4 H 3 H 2 s 1 0 H 5 H 4 H 3 s 2 p 7 0 0 H 5 H 4 s 3 }{{} full rank October 9, 2014 University of Michigan, Ann Arbor 9/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 Rate 1/2 Baseline Erasure Codes, T = 7 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 v 8 v 9 v 10 v 11 p 8 p 9 p 10 p 11 x i v 0,v 1,v 2,v 3 October 9, 2014 University of Michigan, Ann Arbor 10/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 Rate 1/2 Baseline Erasure Codes, T = 7 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 v 8 v 9 v 10 v 11 p 8 p 9 p 10 p 11 x i Rate 1/2 Repetition Code, T = 8 v 0,v 1,v 2,v 3 u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u -8 u -7 u -6 u -5 u -4 u -3 u -2 u -1 u 8 u 9 u 10 u 11 u 0 u 1 u 2 u 3 x i u 0 u 1 u 2 u 3 October 9, 2014 University of Michigan, Ann Arbor 10/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 v u u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u -8 u -7 u -6 u -5 u -4 u -3 u -2 u -1 u 0 u 1 u 2 u 3 u u October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 u 0 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 u -8 u 1 u -7 u 2 u -6 u 3 u -5 u 4 u -4 u 5 u -3 u 6 u -2 u 7 u -1 u 8 u 0 u 9 u 1 u 10 u 2 u 11 p 11 u 3 u v u u R= u+v 3u+v = 1 2 October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 s i u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 +u -8 +u -7 +u -6 +u -5 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 +u -4 u v u x i R= u+v 2 u+v = 2 3 October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 s i u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 +u -8 +u -7 +u -6 +u -5 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 +u -4 u v u x i R= u v 2 u v Encoding: 1 Source Splitting: s i = (u i, v i ), u i F B q, v i F T B q 2 Erasure Code on v i : Generate v i (v i, p i ) where p i F B q is obtained from a Strongly-MDS code. 3 Repetition Code on u i : Repeat the u i symbols with a shift of T 4 Merging: Combine the repeated u i s with the p i s 5 Rate: R = T T +B October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 s i u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 +u -8 +u -7 +u -6 +u -5 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 +u -4 u v u x i R= u+v 2 u+v = 2 3 v 0,v 1,v 2,v 3 Encoding: 1 Source Splitting: s i = (u i, v i ), u i F B q, v i F T B q 2 Erasure Code on v i : Generate v i (v i, p i ) where p i F B q is obtained from a Strongly-MDS code. 3 Repetition Code on u i : Repeat the u i symbols with a shift of T 4 Merging: Combine the repeated u i s with the p i s 5 Rate: R = T T +B October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 s i u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 +u -8 +u -7 +u -6 +u -5 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 +u -4 u v u x i R= u v 2 u v v 0,v 1,v 2,v 3 u 0 u 1 u 2 u 3 Encoding: 1 Source Splitting: s i = (u i, v i ), u i F B q, v i F T B q 2 Erasure Code on v i : Generate v i (v i, p i ) where p i F B q is obtained from a Strongly-MDS code. 3 Repetition Code on u i : Repeat the u i symbols with a shift of T 4 Merging: Combine the repeated u i s with the p i s 5 Rate: R = T T +B October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = T T +B = 2 3 s i u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 +u -8 +u -7 +u -6 +u -5 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 +u -4 u v u x i R= u+v 2 u+v = 2 3 v 0,v 1,v 2,v 3 u 0 u 1 u 2 u 3 Encoding: s 0 s 1 s 2 s 3 1 Source Splitting: s i = (u i, v i ), u i F B q, v i F T B q 2 Erasure Code on v i : Generate v i (v i, p i ) where p i F B q is obtained from a Strongly-MDS code. 3 Repetition Code on u i : Repeat the u i symbols with a shift of T 4 Merging: Combine the repeated u i s with the p i s 5 Rate: R = T T +B October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code - Example B = 4, T = 8, R = s i T T +B = 2 3 v u 0 p v 0 v u 1 p v 1 v u 2 p v 2 v u 3 p v 3 v u 4 p v 4 v u 5 p v 5 v u 6 p v 6 v u 7 7 p v 7 7 v u 8 p v 8 v u 9 p v 9 v u 10 p v 10 v u 11 p v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 +u -8 +u -7 +u -6 +u -5 +u -4 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 u -8 u -7 u -6 u -5 +u u -4-4 u -3 u 0 u 1 R= u u+v u v 2 u 3 u 4 u 5 u 6 u 7 8 9 10 3u+v 1 2 v u v 0,v 1,v 2,v 3 u 0 u 1 u 2 u 2 = 2 3 11 3 u -8 u -7 u -6 u -5 u -4 u -3 u -2 u -1 u 0 u 1 u 2 Encoding: u -2 u -1 u 0 u 1 u 2 u 3 u 3 s 0 s 1 s 2 s 3 uv vu u u u u x i 1 Source Splitting: s i = (u i, v i ), u i F B q, v i F T B q 2 Erasure Code on v i : Generate v i (v i, p i ) where p i F B q is obtained from a Strongly-MDS code. 3 Repetition Code on u i : Repeat the u i symbols with a shift of T 4 Merging: Combine the repeated u i s with the p i s 5 Rate: R = T T +B October 9, 2014 University of Michigan, Ann Arbor 11/ 1

Streaming Code Burst Erasure Channel 1 Source Splitting: s i = (u i, v i ), u i F B q, v i F T B q 2 Erasure Code on v i : Generate v i (v i, p i ) where p i F B q is obtained from a Strongly-MDS code. 3 Repetition Code on u i : Repeat the u i symbols with a shift of T 4 Merging: Combine the repeated u i s with the p i s October 9, 2014 University of Michigan, Ann Arbor 12/ 1

Robust Extension: C(N, B, W ) Channel Layered Code Design u 0 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 v 0 v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 v 11 p 0 p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9 p 10 p 11 u +u -8 +u -7 +u -6 +u -5 +u -4 +u -3 +u -2 +u -1 +u 0 +u 1 +u 2 +u 3 q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8 q 9 q 10 q 11 k q 0 u v x i Burst-Erasure Streaming Code: (u i, v i, p i + u i T ) Erasure Code: q i = M t=1 u i t H u t, q i F k q Concatenation: (u i, v i, p i + u i T, q i ) Attains the lower bound R = T T + B + k October 9, 2014 University of Michigan, Ann Arbor 13/ 1

Distance and Span Properties Consider (n, k, m) Convolutional code: x i = m j=0 s i jg j 0 1 2 3 4 States Trellis Diagram October 9, 2014 University of Michigan, Ann Arbor 14/ 1

Distance and Span Properties Consider (n, k, m) Convolutional code: x i = m j=0 s i jg j 0 1 2 3 4 States Trellis Diagram Free Distance October 9, 2014 University of Michigan, Ann Arbor 14/ 1

Distance and Span Properties Consider (n, k, m) Convolutional code: x i = m j=0 s i jg j Column Distance: d T G 0 G 1... G T [ ] 0 G 0... G T 1 s0... s T d T = min [s 0,...,s T ] s 0 0 wt..... 0... G 0 October 9, 2014 University of Michigan, Ann Arbor 14/ 1

Distance and Span Properties Consider (n, k, m) Convolutional code: x i = m j=0 s i jg j Column Distance: d T G 0 G 1... G T [ ] 0 G 0... G T 1 s0... s T d T = min [s 0,...,s T ] s 0 0 wt..... 0... G 0 October 9, 2014 University of Michigan, Ann Arbor 14/ 1

Distance and Span Properties Consider (n, k, m) Convolutional code: x i = m j=0 s i jg j Column Distance: d T G 0 G 1... G T [ ] 0 G 0... G T 1 s0... s T d T = min [s 0,...,s T ] s 0 0 wt..... 0... G 0 0 1 2 3 4 States Column Span in [0,3] October 9, 2014 University of Michigan, Ann Arbor 14/ 1

Distance and Span Properties Consider (n, k, m) Convolutional code: x i = m j=0 s i jg j Column Distance: d T G 0 G 1... G T [ ] 0 G 0... G T 1 s0... s T d T = min [s 0,...,s T ] s 0 0 wt..... 0... G 0 Column Span: c T G 0 G 1... G T [ ] 0 G 0... G T 1 c T = min span s0... s T [s 0,...,s T ]..... s 0 0 0... G 0 October 9, 2014 University of Michigan, Ann Arbor 14/ 1

Column-Distance & Column Span Tradeoff Badr-Patil-Khisti-Tan-Apostolopoulos 2014 Theorem Consider a C(N, B, W ) channel with delay T and W T + 1. A streaming code is feasible over this channel if and only if it satisfies: d T N + 1 and c T B + 1 October 9, 2014 University of Michigan, Ann Arbor 15/ 1

Column-Distance & Column Span Tradeoff Badr-Patil-Khisti-Tan-Apostolopoulos 2014 Theorem Consider a C(N, B, W ) channel with delay T and W T + 1. A streaming code is feasible over this channel if and only if it satisfies: d T N + 1 and c T B + 1 Theorem For any rate R convolutional code and any T 0 the Column-Distance d T and Column-Span c T satisfy the following: ( R 1 R ) c T + d T T + 1 + 1 1 R There exists a rate R code (MiDAS Code) over a sufficiently large field that satisfies: ( ) R c T + d T T + 1 1 R 1 R October 9, 2014 University of Michigan, Ann Arbor 15/ 1

Simulation Result Gilbert-Elliott Channel (α, β) = (5 10 4, 0.5), T = 12 and R 0.5 Gilbert Elliott Channel Good State: Pr(loss) = ε Bad State: Pr(loss) = 1 1- Good Bad Gilbert Channel (, ) = (5x10 4,0.5) Simulation Length = 10 7 1- Probability of Occurence 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Burst Length October 9, 2014 University of Michigan, Ann Arbor 16/ 1

Simulation Results Gilbert-Elliott Channel (α, β) = (5 10 4, 0.5), T = 12 and R 0.5 10 1 Gilbert Elliott Channel (, ) = (5E 4,0.5), T = 12 10 2 Loss Probability 10 3 10 4 10 5 1 2 3 4 5 6 7 8 9 10 x 10 3 Code N B Code N B Strongly MDS 6 6 MiDAS 2 9 Burst-Erasure 1 11 October 9, 2014 University of Michigan, Ann Arbor 17/ 1

Simulation Results-II Fritchman Channel (α, β) = (1e 5, 0.5) and T = 40 and R = 40/79, 9 states α Good E 1 E 2 E 3 E N-1 E N 1- α 1-1- 1-1- 1- α = 1e 5 β = 0.5 0.12 Histogram of Burst Lengths for 9 States Fritchman Channel (, ) = (1E 5,0.5) Analytical Actual 0.1 0.08 Probability of Occurence 0.06 0.04 0.02 0 5 10 15 20 25 30 35 40 Burst Length October 9, 2014 University of Michigan, Ann Arbor 18/ 1

Simulation Results-II Fritchman Channel (α, β) = (1e 5, 0.5) and T = 40 and R = 40/79, 9 states 10 2 10 3 Uncoded RLC SCo E RLC (Shift = 32) E RLC (Shift = 36) 9 States Fritchman Channel (, ) = (1e 005,0.5), T = 40 Loss Probability 10 4 10 5 10 6 10 7 1 2 3 4 5 6 7 8 x 10 3 Code N B Code N B Strongly MDS 20 20 MiDAS-I 8 31 Burst Erasure 1 39 MiDAS-II 4 35 October 9, 2014 University of Michigan, Ann Arbor 18/ 1

Multicast Streaming Codes Burst Erasure Broadcast Channel Src. Stream Encoder X[i] B 1 Decoder 1 Delay = T 1 B 2 Decoder 2 Delay = T 2 Motivation B 1 < B 2 Receiver 1 : Good Channel State Receiver 2: Weaker Channel State Delay adapts to Channel State October 9, 2014 University of Michigan, Ann Arbor 19/ 1

Multicast Streaming Codes Burst Erasure Broadcast Channel Src. Stream Encoder X[i] B 1 Decoder 1 Delay = T 1 B 2 Decoder 2 Delay = T 2 Capacity Function Capacity function C(T 1, T 2, B 1, B 2 ) Single User Upper Bound: C min ( T1 T 1 +B 1, Concatenation Lower Bound: C 1 1+ B 1 T 1 + B 2 T 2 ) T 2 T 2 +B 2 October 9, 2014 University of Michigan, Ann Arbor 19/ 1

Multicast Streaming Setup Burst Erasure Broadcast Channel Src. Stream Encoder X[i] B 1 Decoder 1 Delay = T 1 B 2 Decoder 2 Delay = T 2 Capacity Function Capacity function C(T 1, T 2, B 1, B 2 ) Single User Upper Bound: C min ( T1 T 1 +B 1, Concatenation Lower Bound: C 1 1+ B 1 T 1 + B 2 T 2 ) T 2 T 2 +B 2 October 9, 2014 University of Michigan, Ann Arbor 20/ 1

Multicast Streaming Capacity Badr-Khisti-Lui (IT Trans. To Appear 2014) Assume w.l.o.g. B 2 B 1 T 2 B T + 2 2 = T1 B1 B1 Region A Capacity T2 T + B 2 2 B C B 1 + B 2 E (B 1, B 2 ) DE-SCo B 2 D T 2 =T 1 +B 1 T 2 =T 1 SCo A T 1 B C D E T1 T + B 2 1 T1 T + B 1 1 Partial Characterization 1 T2 B1 T B + B 2 2 October 9, 2014 University of Michigan, Ann Arbor 21/ 1

Other Extensions Mismatched Streaming Codes (Patil-Badr-Khisti-Tan Asilomar 2013) Partial Recovery Streaming Codes (Badr-Khisti-Tan-Apostolopoulos JSTSP 2014) Multiple Erasure Bursts (Li-Khisti-Girod Asilomar 2011) - Interleaved Low-Delay Codes Multiple Links (Lui-Badr-Khisti CWIT 2011) - Layered coding for burst erasure channels Multiple Source Streams with Different Decoding Delays (Lui (Unpublished) 2011) - Embedded Codes Other Results Burst Erasure Channels: Martinian and Sundberg (IT-2004) Other Recent Results: Leong-Ho (ISIT 2012), Leong-Qureshi-Ho (ISIT 2013) October 9, 2014 University of Michigan, Ann Arbor 22/ 1

Outline Real-Time Streaming Communication Streaming Error Correction Streaming Compression Collaborators: Ahmed Badr (Toronto) John Apostolopoulos (Cisco) Wai-Tian Tan (Cisco) Collaborators: Farrokh Etezadi (Toronto) Mitchell Trott October 9, 2014 University of Michigan, Ann Arbor 23/ 1

Compression Vs Error Propagation GOP Picture Structure 1 Compression Predictive Coding Still Image Coding Error Propagation Interleaving Approach Error Control Coding 1 Source : http://www.networkwebcams.com October 9, 2014 University of Michigan, Ann Arbor 24/ 1

Motivation - Video Streaming Compression Efficiency Predictive Coding Still Image Compression Robustness to Error Propagation October 9, 2014 University of Michigan, Ann Arbor 25/ 1

Motivation - Video Streaming Compression Efficiency Predictive Coding MPEG Still Image Compression Robustness to Error Propagation October 9, 2014 University of Michigan, Ann Arbor 25/ 1

Motivation - Video Streaming Compression Efficiency Predictive Coding MPEG Fundamental Tradeoff Still Image Compression Robustness to Error Propagation October 9, 2014 University of Michigan, Ann Arbor 25/ 1

Information Theoretic Model Src Packets s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8 Compressed Packets f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 Channel f 1 f 2 f 3 * f 5 f 6 f 7 f 8 Reproduced Stream s 1 s 2 s 3 S 4 S 5 S 6 s 7 s 8 System Parameters: Compression Rate: R Erasure Burst Length: B Recovery Window: W Lossless or Lossy Recovery B=1 W=2 October 9, 2014 University of Michigan, Ann Arbor 26/ 1

Problem Setup Source Model: Sequence of vectors Temporally Markov, Spatially i.i.d. (see Viswanathan and Berger ( 00), Wang and Xu ( 10), Song-Chen-Wang-Liu ( 13), Ma-Ishwar ( 11)) Pr(s n i s n i 1, s n i 2,..., ) = n Pr(s ij s i 1,j ) j=1 Channel Model: { Burst Erasure Model f i, i / {j, j + 1,..., j + B 1} g i =, otherwise October 9, 2014 University of Michigan, Ann Arbor 27/ 1

Problem Setup Source Model: Sequence of vectors Temporally Markov, Spatially i.i.d. (see Viswanathan and Berger ( 00), Wang and Xu ( 10), Song-Chen-Wang-Liu ( 13), Ma-Ishwar ( 11)) Pr(s n i s n i 1, s n i 2,..., ) = n Pr(s ij s i 1,j ) j=1 Channel Model: { Burst Erasure Model f i, i / {j, j + 1,..., j + B 1} g i =, otherwise Encoder: F i : {s n 0,..., sn i } f i {1, 2,..., 2 nr }. Decoder: G i : {g 0,..., g i } ŝ n i Lossless Recovery: Pr(si n ŝi n ) ε n except for i [j,..., j + B + W 1]. October 9, 2014 University of Michigan, Ann Arbor 27/ 1

Rate-Recovery Function Definition (Rate-Recovery Function) The minimum compression rate R that is achieved when: Burst-Erasure Length = B Recovery Window = W Lossless or Lossy Recovery s n 0 s n 1 s n 2 s n j 1 s n j s n j+1 s n j+b 1 s n j+b s n j+b+w 1 s n j+b+w f 0 f 1 f 2 f j 1 f j f j+1 f j+b 1 f j+b f j+b+w 1 f j+b+w f 0 f 1 f 2 f j 1 f j+b f j+b+w 1 f j+b+w ŝ n 0 ŝ n 1 ŝ n 2 ŝ n j 1 ŝ n j+b+w Erased Not to be recovered Error Propagation Window October 9, 2014 University of Michigan, Ann Arbor 28/ 1

Rate-Recovery Function Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) s n 0 s n 1 s n 2 s n j 1 s n j s n j+1 s n j+b 1 s n j+b s n j+b+w 1 s n j+b+w f 0 f 1 f 2 f j 1 f j f j+1 f j+b 1 f j+b f j+b+w 1 f j+b+w f 0 f 1 f 2 f j 1 f j+b f j+b+w 1 f j+b+w ŝ n 0 ŝ n 1 ŝ n 2 ŝ n j 1 Erased Not to be recovered Error Propagation Window Theorem (Upper and Lower Bounds - Lossless Case) ŝ n j+b+w R + (B, W ) = H(s 1 s 0 ) + 1 W + 1 I(s B; s B 1 s 1 ) R (B, W ) = H(s 1 s 0 ) + 1 W + 1 I(s B+W ; s B 1 s 1 ) Upper bound : Binning based scheme. Upper and Lower Bounds Coincide: W = 0 and W. October 9, 2014 University of Michigan, Ann Arbor 29/ 1

Lower Bound - Rate Recovery Function Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Let W = 1. Encoding of s n j, sn j+1 sn j 1 s n j, sn j+1 Encoder f j f j+1 Decoder j Decoder j+1 ŝ n j ŝ n j+1 s n j B 1 October 9, 2014 University of Michigan, Ann Arbor 30/ 1

Lower Bound - Rate Recovery Function Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Let W = 1. Encoding of s n j, sn j+1 sn j 1, sn j+1 s n j, sn j+1 Encoder f j f j+1 Decoder j Decoder j+1 ŝ n j ŝ n j+1 s n j B 1 October 9, 2014 University of Michigan, Ann Arbor 30/ 1

Lower Bound - Rate Recovery Function Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Let W = 1. Encoding of s n j, sn j+1 sn j 1, sn j+1 s n j, sn j+1 Encoder f j f j+1 Decoder j Decoder j+1 ŝ n j ŝ n j+1 s n j B 1 Lower Bound: R j + R j+1 H(s j s j 1, s j+1 ) + H(s j+1 s j B 1 ). October 9, 2014 University of Michigan, Ann Arbor 30/ 1

Gauss-Markov Source Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Stationary Gauss-Markov Source, s i N (0, 1). s i = ρs i 1 + z i, z i N (0, 1 ρ 2 ) {s j } j<i October 9, 2014 University of Michigan, Ann Arbor 31/ 1

Gauss-Markov Source Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Stationary Gauss-Markov Source, s i N (0, 1). s i = ρs i 1 + z i, z i N (0, 1 ρ 2 ) {s j } j<i Quadratic Distortion Measure: [ ] 1 n E (s i (k) ŝ i (k)) 2 D, n k=1 October 9, 2014 University of Michigan, Ann Arbor 31/ 1

Gauss-Markov Source Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Stationary Gauss-Markov Source, s i N (0, 1). s i = ρs i 1 + z i, z i N (0, 1 ρ 2 ) {s j } j<i Quadratic Distortion [ Measure: ] 1 n E (s i (k) ŝ i (k)) 2 D, n k=1 No Recovery Period, W = 0. s 0 s 1 s j 1 s j s j+1 s j+b 1 s j+b f 0 f 1 f j 1 f j f j+1 f j+b 1 f j+b f 0 f 1 f j 1 f j+b ŝ 0 ŝ 1 ŝ j 1 Erased ŝ j+b October 9, 2014 University of Michigan, Ann Arbor 31/ 1

Gauss-Markov Source Etezadi-Khisti-Trott (IEEE Trans. Information Theory, Aug. 2014) Stationary Gauss-Markov Source, s i N (0, 1). s i = ρs i 1 + z i, z i N (0, 1 ρ 2 ) {s j } j<i Quadratic Distortion Measure: [ ] 1 n E (s i (k) ŝ i (k)) 2 D, n k=1 No Recovery Period, W = 0 Lossy Rate Recovery Function R(B, D) High Resolution Limit R(B, D) = 1 2 log ( 1 ρ 2(B+1) D Upper and Lower bounds. W > 0: Novel Hybrid Coding Schemes ) + o D (1). October 9, 2014 University of Michigan, Ann Arbor 31/ 1

Gauss-Markov Sources W > 0 (In Progress) Predictive Coding: u i = s i ŝ i (u i 1 ) + n i Memoryless Quantize and Binning: u i = s i + n i Truncated Prediction (Hybrid): u i = s i ŝ i (u i i W ) + n i s n 0 s n 1 s n 2 s n j 1 s n j s n j+1 s n j+b 1 s n j+b s n j+b+w 1 s n j+b+w f 0 f 1 f 2 f j 1 f j f j+1 f j+b 1 f j+b f j+b+w 1 f j+b+w f 0 f 1 f 2 f j 1 f j+b f j+b+w 1 f j+b+w ŝ n 0 ŝ n 1 ŝ n 2 ŝ n j 1 ŝ n j+b+w Erased Not to be recovered Error Propagation Window October 9, 2014 University of Michigan, Ann Arbor 32/ 1

Gauss-Markov Sources W > 0 (In Progress) Predictive Coding: u i = s i ŝ i (u i 1 ) + n i Memoryless Quantize and Binning: u i = s i + n i Truncated Prediction (Hybrid): u i = s i ŝ i (u i i W ) + n i October 9, 2014 University of Michigan, Ann Arbor 32/ 1

Block Fading Channels w 1 w 2 w 3 w 4 w 5 w 6 h 1 h 2 h 3 h 4 h 5 h 6 w 1 w 2 w 3 w 4 w 5 Block Fading Channel y i = h i x i + z i, i = 1, 2,... Block Fading Channels: n symbols per block Source Packet: One in each coherence block nr bits Decoding Delay: T coherence blocks Quasi-Static Model: T = 1 Ergodic Model T October 9, 2014 University of Michigan, Ann Arbor 33/ 1

Streaming DMT of Fading Channels Theorem (Khisti-Draper, IT-Trans To Appear, 2014) The diversity multiplexing tradeoff for streaming source with a delay of T coherence blocks and a block-fading channel model is d(r) = T d 1 (r) where d 1 (r) is the quasi-static DMT. Coding Scheme: Time-Sharing Upper Bound: Outage Amplification Argument October 9, 2014 University of Michigan, Ann Arbor 34/ 1

Achievability: Fading Channels T = 2 T parallel channel code Divide each coherence block into T sub-blocks Apply parallel channel code across T sub-blocks w 1 w 2 w 3 w 4 w 5 w 6 h 1 h 2 h 3 h 4 h 5 h 6 w 1 w 2 w 3 w 4 w 5 October 9, 2014 University of Michigan, Ann Arbor 35/ 1

Achievability: Fading Channels T = 2 T parallel channel code Divide each coherence block into T sub-blocks Apply parallel channel code across T sub-blocks w 1 w 2 w 3 w 4 w 5 w 6 X 1 X 2 X 3 X 4 X 5 X 6 w 1 w 2 w 3 w 4 w 5 October 9, 2014 University of Michigan, Ann Arbor 35/ 1

Achievability: Fading Channels T = 2 T parallel channel code Divide each coherence block into T sub-blocks Apply parallel channel code across T sub-blocks w 1 w 2 w 3 w 4 w 5 w 6 X 1 Y 0 X 2 Y 1 X 3 Y 2 X 4 Y 3 X 5 Y 4 X 6 Y 5 w 1 w 2 w 3 w 4 w 5 October 9, 2014 University of Michigan, Ann Arbor 35/ 1

Achievability: Fading Channels T = 2 T parallel channel code Divide each coherence block into T sub-blocks Apply parallel channel code across T sub-blocks w 1 w 2 w 3 w 4 w 5 w 6 X 1 Y 0 X 2 Y 1 X 3 Y 2 X 4 Y 3 X 5 Y 4 X 6 Y 5 w 1 w 2 w 3 w 4 w 5 DMT: d(r) = 2 2r October 9, 2014 University of Michigan, Ann Arbor 35/ 1

Physical Layer Security October 9, 2014 University of Michigan, Ann Arbor 36/ 1

Secret-Key Generation over Fading Channels Khisti, IT-Trans Submitted Aug. 2013 m A A Forward Link A BA y = h x + n B B y = h x + n BA AB A AB Reverse Link B m B K A z + AE = g AE xa nae z BE = g BE xb + nbe K B E Two-way block-fading channel Coherence Period: T Channel Reciprocity Non Coherent Main-Channel, Perfect CSI for eavesdropper Interactive Communication October 9, 2014 University of Michigan, Ann Arbor 37/ 1

Secret-Key Generation over Fading Channels Khisti, IT-Trans Submitted Aug. 2013 m A A Forward Link A BA y = h x + n B B y = h x + n BA AB A AB Reverse Link B m B K A z + AE = g AE xa nae z BE = g BE xb + nbe K B E High SNR Capacity: C 1 [ ( T I(h AB; h BA ) + E log 1 + h AB 2 )] [ ) g A 2 + E log (1 + h BA 2 )] g B 2 ) Optimal Scheme: Training + Interactive Communication October 9, 2014 University of Michigan, Ann Arbor 37/ 1

Secure Communication - Wiretap Channel Secure Multi-Antenna Multicast (A. Khisti IT-2011, A. Khisti and D. Zhang Comm Letters 2013) Practical Codes for MIMO Wiretap Channel (A. Khina and Y. Kochman ISIT 2014) V-Blast Type Decomposition Scalar AWGN Wiretap Codebooks MIMO Arbitrarily Varying Wiretap Channel (A. Yener and X. He, IT-Trans 2013, T-COMM 2014) Fading Wiretap Channel with Imperfect CSI (Z. Rezki and M. S. Alouini, T-COMM 2014, T-Wireless 2014) Private Broadcasting (T. Liu IT-Trans 2014) Secure Broadcasting with Independent Secret Keys (R. Schaefer, CISS 2014) October 9, 2014 University of Michigan, Ann Arbor 38/ 1

Conclusions Real-Time Streaming Communication Part I: Channel Coding Channels with Burst and Isolated Erasures Explicit Codes New Distance and Span Metrics Part II: Source Coding Tradeoff between compression rate and error propagation Lossless Recovery Gaussian Sources with Quadratic Distortion October 9, 2014 University of Michigan, Ann Arbor 39/ 1