Sinusoidal Steady State Analysis

Similar documents
Sinusoidal Steady State Power Calculations

Sinusoidal Steady State Analysis (AC Analysis) Part I

Chapter 10: Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis

Electric Circuit Theory

Chapter 5 Steady-State Sinusoidal Analysis

Sinusoids and Phasors

Sinusoidal Response of RLC Circuits

EE292: Fundamentals of ECE

Chapter 9 Objectives

REACTANCE. By: Enzo Paterno Date: 03/2013

Sinusoidal Steady State Analysis (AC Analysis) Part II

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Sinusoidal Steady-State Analysis

Chapter 10: Sinusoids and Phasors

Sinusoidal Steady-State Analysis

CIRCUIT ANALYSIS II. (AC Circuits)

Phasors: Impedance and Circuit Anlysis. Phasors

Review of DC Electric Circuit. DC Electric Circuits Examples (source:

Lecture 11 - AC Power

Single Phase Parallel AC Circuits

Three Phase Circuits

2 Signal Frequency and Impedances First Order Filter Circuits Resonant and Second Order Filter Circuits... 13

Module 4. Single-phase AC Circuits

P A R T 2 AC CIRCUITS. Chapter 9 Sinusoids and Phasors. Chapter 10 Sinusoidal Steady-State Analysis. Chapter 11 AC Power Analysis

SINUSOIDAL STEADY STATE CIRCUIT ANALYSIS

EE221 Circuits II. Chapter 14 Frequency Response

1 Phasors and Alternating Currents

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

Electric Circuits I FINAL EXAMINATION

EE 212 PASSIVE AC CIRCUITS

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

CHAPTER 45 COMPLEX NUMBERS

EE221 Circuits II. Chapter 14 Frequency Response

6.1 Introduction

Chapter 33. Alternating Current Circuits

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

Fall 2011 ME 2305 Network Analysis. Sinusoidal Steady State Analysis of RLC Circuits

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

EE292: Fundamentals of ECE

ECE 201 Fall 2009 Final Exam

An op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details.

Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

BASIC NETWORK ANALYSIS

PHYSICS NOTES ALTERNATING CURRENT

R-L-C Circuits and Resonant Circuits

RLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is

09/29/2009 Reading: Hambley Chapter 5 and Appendix A

AC analysis - many examples

Lecture 4: R-L-C Circuits and Resonant Circuits

Handout 11: AC circuit. AC generator

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Driven RLC Circuits Challenge Problem Solutions

Electronics. Basics & Applications. group talk Daniel Biesinger

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

Note 11: Alternating Current (AC) Circuits

Chapter 21: RLC Circuits. PHY2054: Chapter 21 1

Solution: K m = R 1 = 10. From the original circuit, Z L1 = jωl 1 = j10 Ω. For the scaled circuit, L 1 = jk m ωl 1 = j10 10 = j100 Ω, Z L

Toolbox: Electrical Systems Dynamics

Oscillations and Electromagnetic Waves. March 30, 2014 Chapter 31 1

Introduction to AC Circuits (Capacitors and Inductors)

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

ECE 421/521 Electric Energy Systems Power Systems Analysis I 2 Basic Principles. Instructor: Kai Sun Fall 2013

Announcements: Today: more AC circuits

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas

Basics of Electric Circuits

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

CHAPTER 2 ELECTRICAL CIRCUITS & FIELDS. In the circuit shown below, the current through the inductor is 2 A (B) (A) (C) (D) 0A

Radio Frequency Electronics

2. The following diagram illustrates that voltage represents what physical dimension?

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

Basics of Network Theory (Part-I)

Chapter 10: Sinusoidal Steady-State Analysis

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Part 4: Electromagnetism. 4.1: Induction. A. Faraday's Law. The magnetic flux through a loop of wire is

Circuits. Fawwaz T. Ulaby, Michel M. Maharbiz, Cynthia M. Furse. Solutions to the Exercises

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

12 Chapter Driven RLC Circuits

Chapter 10 AC Analysis Using Phasors

Lecture 05 Power in AC circuit

Chapter 10: Sinusoidal Steady-State Analysis

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current

Gen. Phys. II Exam 2 - Chs. 21,22,23 - Circuits, Magnetism, EM Induction Mar. 5, 2018

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

Read each question and its parts carefully before starting. Show all your work. Give units with your answers (where appropriate). 1 / 3 F.

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

04-Electric Power. ECEGR 452 Renewable Energy Systems

Learnabout Electronics - AC Theory

GATE 20 Years. Contents. Chapters Topics Page No.

AC Circuit Analysis and Measurement Lab Assignment 8

Electric Circuits I Final Examination

ELEC 202 Electric Circuit Analysis II Lecture 10(a) Complex Arithmetic and Rectangular/Polar Forms

GATE : , Copyright reserved. Web:

Transformer. Transformer comprises two or more windings coupled by a common magnetic circuit (M.C.).

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

Transcription:

Sinusoidal Steady State Analysis 9 Assessment Problems AP 9. [a] V = 70/ 40 V [b] 0 sin(000t +20 ) = 0 cos(000t 70 ).. I = 0/ 70 A [c] I =5/36.87 + 0/ 53.3 =4+j3+6 j8 =0 j5 =.8/ 26.57 A [d] sin(20,000πt +30 ) = cos(20,000πt 60 ) Thus, V = 300/45 00/ 60 = 22.3 + j22.3 (50 j86.60) = 62.3 + j298.73 = 339.90/6.5 mv AP 9.2 [a] v =8.6 cos(ωt 54 ) V [b] I = 20/45 50/ 30 =4.4 + j4.4 43.3+j25 = 29.6 + j39.4=48.8/26.68 Therefore i =48.8 cos(ωt + 26.68 ) ma [c] V =20+j80 30/5 =20+j80 28.98 j7.76 = 8.98 + j72.24=72.79/97.08 v =72.79 cos(ωt +97.08 ) V AP 9.3 [a] ωl = (0 4 )(20 0 3 ) = 200 Ω [b] Z L = jωl = j200 Ω 9

9 2 CHAPTER 9. Sinusoidal Steady State Analysis [c] V L = IZ L = (0/30 )(200/90 ) 0 3 = 2/20 V [d] v L = 2 cos(0,000t + 20 ) V AP 9.4 [a] X C = ωc = [b] Z C = jx C = j50 Ω 4000(5 0 6 ) = 50 Ω [c] I = V Z C = 30/25 50/ 90 =0.6/5 A [d] i =0.6 cos(4000t + 5 ) A AP 9.5 I = 00/25 =90.63 + j42.26 I 2 = 00/45 = 8.92 + j57.36 I 3 = 00/ 95 = 8.72 j99.62 I 4 = (I + I 2 + I 3 )=(0+j0) A, therefore i 4 =0A AP 9.6 [a] I = 25/ 60 Z /θ z = 25 Z /( 60 θ Z) But 60 θ Z = 05.. θz =45 Z =90+j60 + jx C.. X C = 70 Ω; X C = ωc = 70.. C= =2.86 µf (70)(5000) [b] I = V s Z = 25/ 60 (90 + j90) =0.982/ 05 A;.. I =0.982 A AP 9.7 [a] ω = 2000 rad/s ωl =0Ω, ωc = 20 Ω Z xy =20 j0+5+j20 = 20(j0) +5 j20 (20 + j0) =4+j8+5 j20=(9 j2) Ω

Problems 9 3 [b] ωl =40Ω, ωc = 5Ω Z xy =5 j5+20 j40=5 j5+ =5 j5+6+j8 = (2 + j3) Ω [ ] ( ) 20(jωL) [c] Z xy = + 5 j06 20 + jωl 25ω [ ] (20)(j40) 20 + j40 = 20ω2 L 2 400 + ω 2 L + j400ωl j06 +5 2 400 + ω 2 L2 25ω The impedance will be purely resistive when the j terms cancel, i.e., 400ωL 400 + ω 2 L = 06 2 25ω Solving for ω yields ω = 4000 rad/s. [d] Z xy = 20ω2 L 2 400 + ω 2 L +5=0+5=5Ω 2 AP 9.8 The frequency 4000 rad/s was found to give Z xy =5Ωin Assessment Problem 9.7. Thus, V = 50/0, I s = V = 50/0 Z xy 5 Using current division, I L = = 0/0 A 20 20 + j20 (0) = 5 j5 =7.07/ 45 A i L =7.07 cos(4000t 45 ) A, I m =7.07 A AP 9.9 After replacing the delta made up of the 50 Ω, 40 Ω, and 0 Ω resistors with its equivalent wye, the circuit becomes

9 4 CHAPTER 9. Sinusoidal Steady State Analysis The circuit is further simplified by combining the parallel branches, (20 + j40) (5 j5) = (2 j6) Ω Therefore I = 36/0 4+2 j6+4 =4/28.07 A AP 9.0 V = 240/53.3 = 44 + j92 V V 2 = 96/ 90 = j96 V jωl = j(4000)(5 0 3 )=j60 Ω jωc = j 6 0 6 (4000)(25) = j60 Ω Perform source transformations: V j60 V 2 20 = 44 + j92 j60 = j 96 20 = j4.8 A =3.2 j2.4 A Combine the parallel impedances: Y = j60 + 30 + j60 + 20 = j5 j60 = 2 Z = Y =2Ω V o = 2(3.2+j2.4)=38.4+j28.8 V = 48/36.87 V v o = 48 cos(4000t +36.87 ) V

Problems 9 5 AP 9. Use the lower node as the reference node. Let V = node voltage across the 20 Ω resistor and V Th = node voltage across the capacitor. Writing the node voltage equations gives us V 20 2/45 + V 0I x j0 We also have I x = V 20 =0 and V Th = j0 0 j0 (0I x) Solving these equations for V Th gives V Th = 0/45 V. To find the Thévenin impedance, we remove the independent current source and apply a test voltage source at the terminals a, b. Thus It follows from the circuit that 0I x = (20 + j0)i x Therefore I x =0 and I T = V T j0 + V T 0 Z Th = V T I T, therefore Z Th =(5 j5) Ω AP 9.2 The phasor domain circuit is as shown in the following diagram:

9 6 CHAPTER 9. Sinusoidal Steady State Analysis The node voltage equation is 0 + V 5 + V j(20/9) + V j5 + V 00/ 90 20 =0 Therefore Therefore V =0 j30=3.62/ 7.57 v =3.62 cos(50,000t 7.57 ) V AP 9.3 Let I a, I b, and I c be the three clockwise mesh currents going from left to right. Summing the voltages around meshes a and b gives 33.8 =(+j2)i a +(3 j5)(i a I b ) and 0=(3 j5)(i b I a )+2(I b I c ). But V x = j5(i a I b ), therefore I c = 0.75[ j5(i a I b )]. Solving for I = I a =29+j2 =29.07/3.95 A. AP 9.4 [a] M =0.4 0.0625 = 0. H, ωm =80Ω [b] I = Z 22 =40+j800(0.25) + 360 + j800(0.25) = (400 + j300) Ω Therefore Z 22 = 500 Ω, Z22 = (400 j300) Ω ( ) 80 2 Z r = (400 j300) = (0.24 j7.68) Ω 500 245.20 84 + 00 + j400 + Z r =0.50/ 53.3 A i =0.5 cos(800t 53.3 ) A ( ) jωm j80 [c] I 2 = I = 500/36.87 (0.5/ 53.3 )=0.08/0 A Z 22 i 2 = 80 cos 800t ma

Problems 9 7 AP 9.5 I = V s Z + Z 2 /a 2 = =4+j3 =5/36.87 A 25 0 3 /0 500 + j6000 + (25) 2 (4 j4.4) V = V s Z I =25,000/0 (4 + j3)(500 + j6000) = 37,000 j28,500 V 2 = 25 V = 480 + j40 = 868.5/42.39 V I 2 = V 2 = 868.5/42.39 Z 2 4 j4.4 = 25/ 43.3 A Also, I 2 = 25I

9 8 CHAPTER 9. Sinusoidal Steady State Analysis Problems P 9. [a] ω =2πf = 3769.9 rad/s, f = ω 2π = 600 Hz P 9.2 V rms = [b] T =/f =.67 ms [c] V m =0V [d] v(0) = 0 cos( 53.3 )=6V [e] φ = 53.3 ; φ = 53.3 (2π) = 0.9273 rad 360 [f] V =0when 3769.9t 53.3 =90. Now resolve the units: (3769.9 rad/s)t = 43.3 =2.498 rad, t = 662.64 µs (80 /π) [g] (dv/dt) =( 0)3769.9 sin(3769.9t 53.3 ) T/2 0 (dv/dt) =0 when 3769.9t 53.3 =0 or 3769.9t = 53.3 57.3 /rad Therefore t = 245.97 µs T T/2 0 V 2 m sin 2 2π T tdt ( ) 2π Vm 2 sin 2 tdt= V m 2 T 2 T/2 0 =0.9273 rad ( cos 4π ) T t dt = V mt 2 4 Therefore V rms = VmT 2 T 4 = V m 2 P 9.3 [a] 40 V [b] 2πf = 00π; f =50Hz [c] ω = 00π = 34.59 rad/s [d] θ(rad) = 2π 360 (60 )= π =.05 rad 3 [e] θ =60 [f] T = f = 50 =20ms [g] v = 40 when 00πt + π 3 = π;.. t=6.67 ms

Problems 9 9 [ ( [h] v = 40 cos 00π t 0.0 ) + π ] 3 3 = 40 cos[00πt (π/3)+(π/3)] = 40 cos 00πt V [i] 00π(t t o )+(π/3) = 00πt (π/2).. 00πt o = 5π 6 ; t o =8.33 ms [j] 00π(t + t o )+(π/3) = 00πt +2π.. 00πt o = 5π 3 ; t o =6.67 ms 6.67 ms to the left P 9.4 [a] Left as φ becomes more positive [b] Left P 9.5 [a] By hypothesis v = 80 cos(ωt + θ) dv = 80ω sin(ωt + θ) dt.. 80ω =80,000; ω = 000 rad/s [b] f = ω 2π = 59.55 Hz; T = f =6.28 ms 2π/3 6.28 = 0.3333,.. θ= 90 ( 0.3333)(360) = 30.. v= 80 cos(000t +30 ) V

9 0 CHAPTER 9. Sinusoidal Steady State Analysis P 9.6 [a] T 2 =8+2=0ms; T =20ms P 9.7 u = f = T = =50Hz 20 0 3 [b] v = V m sin(ωt + θ) ω =2πf = 00π rad/s 00π( 2 0 3 )+θ =0;.. θ= π 5 v = V m sin[00πt +36 ] 80.9 =V m sin 36 ; V m = 37.64 V rad =36 v = 37.64 sin[00πt +36 ] = 37.64 cos[00πt 54 ] V to+t = V 2 m = V 2 m 2 = V 2 m 2 = V 2 m 2 = V 2 m V 2 m cos 2 (ωt + φ) dt t o to+t t o 2 + cos(2ωt +2φ) dt 2 { } to+t to+t t o dt + cos(2ωt +2φ) dt { T + 2ω { T + ( T 2 ) t o [ ] } sin(2ωt +2φ) t o+t t o } 2ω [sin(2ωt o +4π +2φ) sin(2ωt o +2φ)] + ( ) T 2ω (0) = V m 2 2 P 9.8 P 9.9 V m = 2V rms = 2(20) = 69.7 V [a] The numerical values of the terms in Eq. 9.8 are V m =20, R/L = 066.67, ωl =60 R2 + ω 2 L 2 = 00 φ =25, θ = tan 60/80, θ =36.87 Substitute these values into Equation 9.9: i = [ 95.72e 066.67t + 200 cos(800t.87 ) ] ma, t 0 [b] Transient component = 95.72e 066.67t ma Steady-state component = 200 cos(800t.87 ) ma [c] By direct substitution into Eq 9.9 in part (a), i(.875 ms) =28.39 ma [d] 200 ma, 800 rad/s,.87

Problems 9 [e] The current lags the voltage by 36.87. P 9.0 [a] From Eq. 9.9 we have L di dt = V mr cos(φ θ) e (R/L)t ωlv m sin(ωt + φ θ) R2 + ω 2 L 2 R2 + ω 2 L 2 Ri = V mr cos(φ θ)e (R/L)t R2 + ω 2 L 2 + V mr cos(ωt + φ θ) R2 + ω 2 L 2 L di [ ] R cos(ωt + φ θ) ωl sin(ωt + φ θ) dt + Ri = V m R2 + ω 2 L 2 But R R2 + ω 2 L = cos θ and ωl 2 R2 + ω 2 L = sin θ 2 Therefore the right-hand side reduces to V m cos(ωt + φ) At t =0, Eq. 9.9 reduces to i(0) = V m cos(φ θ) R2 ω 2 L 2 + V m cos(φ θ) R2 + ω 2 L 2 =0 V m [b] i ss = cos(ωt + φ θ) R2 + ω 2 L2 Therefore L di ss dt and = ωlv m sin(ωt + φ θ) R2 + ω 2 L2 V m R Ri ss = cos(ωt + φ θ) R2 + ω 2 L2 L di [ ] ss R cos(ωt + φ θ) ωl sin(ωt + φ θ) dt + Ri ss = V m R2 + ω 2 L 2 = V m cos(ωt + φ) P 9. [a] Y = 50/60 + 00/ 30 =.8/ 3.43 y =.8 cos(500t 3.43 ) [b] Y = 200/50 00/60 = 02.99/40.29 y = 02.99 cos(377t +40.29 ) [c] Y = 80/30 00/ 225 + 50/ 90 = 6.59/ 29.96 y = 6.59 cos(00t 29.96 )

9 2 CHAPTER 9. Sinusoidal Steady State Analysis [d] Y = 250/0 + 250/20 + 250/ 20 =0 y =0 P 9.2 [a] 000Hz [b] θ v =0 [c] I = 200/0 jωl = 200 ωl / 90 = 25/ 90 ; [d] 200 200 = 25; ωl = ωl 25 =8Ω 8 [e] L = =.27 mh 2π(000) [f] Z L = jωl = j8ω θ i = 90 P 9.3 [a] ω = 2πf = 34,59.27 rad/s [b] I = V = 0 0 3 /0 = jωc(0 0 3 )/0 =0 0 3 ωc/90 Z C /jωc.. θ i =90 [c] 628.32 0 6 =0 0 3 ωc P 9.4 [d] C = ωc = 0 0 3 628.32 0 =5.92 Ω,.. XC = 5.92 Ω 6 5.92(ω) = (5.92)(00π 0 3 ) C =0.2 µf [e] Z c = j ( ) = j5.92 Ω ωc [a] jωl = j(2 0 4 )(300 0 6 )=j6ω jωc = j (2 0 4 )(5 0 6 ) = j0 Ω; I g = 922/30 A

Problems 9 3 [b] V o = 922/30 Z e Z e = Y e ; Y e = 0 + j 0 + 8+j6 Y e =0.8 + j0.04 S Z e = 0.8 + j0.04 =5.42/ 2.53 Ω V o = (922/30 )(5.42/ 2.53 ) = 5000.25/7.47 V [c] v o = 5000.25 cos(2 0 4 t +7.47 ) V P 9.5 [a] Z L = j(8000)(5 0 3 )=j40 Ω Z C = j (8000)(.25 0 6 ) = j00 Ω P 9.6 600/20 [b] I = 40 + j40 j00 =8.32/76.3 A [c] i =8.32 cos(8000t +76.3 ) A Z =4+j(50)(0.24) j (50)(0.0025) =4+j4 =5.66/45 Ω I o = V Z = 0./ 90 5.66/45 =7.68/ 35 ma i o (t) =7.68 cos(50t 35 ) ma P 9.7 [a] Y = 3+j4 + 6 j2 + j4 =0.2 j0.6+0.04 + j0.03 + j0.25 =0.6 + j0.2 = 200/36.87 ms [b] G = 60 ms [c] B = 20 ms

9 4 CHAPTER 9. Sinusoidal Steady State Analysis [d] I =8/0 A, V = I Y = 8 0.2/36.87 = 40/ 36.87 V I C = V Z C = 40/ 36.87 4/ 90 = 0/53.3 A i C = 0 cos(ωt +53.3 ) A, I m =0A P 9.8 Z L = j(2000)(60 0 3 )=j20 Ω Z C = j (2000)(2.5 0 6 ) = j40 Ω Construct the phasor domain equivalent circuit: Using current division: I = (20 j40) (0.5)=0.25 j0.25 A 20 j40+40+j20 V o = j20i =30+j30=42.43/45 V v o =42.43 cos(2000t +45 ) V P 9.9 [a] V g = 300/78 ; I g =6/33.. Z= V g I g = 300/78 6/33 = 50/45 Ω [b] i g lags v g by 45 : 2πf = 5000π; f = 2500 Hz; T =/f = 400 µs.. i g lags v g by 45 (400 µs) =50µs 360

Problems 9 5 P 9.20 jωc = ( 0 6 )(50 0 3 ) = j20 Ω jωl = j50 0 3 (.2 0 3 )=j60 Ω V g = 40/0 V Z e = j20+30 j60=24 j8ω I g = 40/0 24 j8 =.5+j0.5 ma V o = (30 j60)i g = 30(j60) 30 + j60 (.5+j0.5)=30+j30=42.43/45 V v o =42.43 cos(50,000t +45 ) V P 9.2 [a] Z = R j ωc Z 2 = R 2 /jωc 2 R 2 +(/jωc 2 ) = R 2 +jωr 2 C 2 = R 2 jωr 2 2C 2 +ω 2 R 2 2C 2 2 Z = Z 2 when R = R 2 +ω 2 R 2 2C 2 2 and [b] R = ωc = ωr2 2C 2 +ω 2 R 2 2C 2 2 or C = +ω2 R 2 2C 2 2 ω 2 R 2 2C 2 000 + (40 0 3 ) 2 (000) 2 (50 0 9 ) 2 = 200 Ω C = + (40 03 ) 2 (000) 2 (50 0 9 ) 2 (40 0 3 ) 2 (000) 2 (50 0 9 ) =62.5 nf

9 6 CHAPTER 9. Sinusoidal Steady State Analysis P 9.22 [a] Y 2 = R 2 + jωc 2 Y = R +(/jωc ) = jωc +jωr C = ω2 R C 2 + jωc +ω 2 R 2 C 2 Therefore Y = Y 2 when R 2 = +ω2 R 2 C 2 ω 2 R C 2 and C 2 = C +ω 2 R 2 C 2 [b] R 2 = + (50 03 ) 2 (000) 2 (40 0 9 ) 2 (50 0 3 ) 2 (000)(40 0 9 ) 2 = 250 Ω C 2 = P 9.23 [a] Z = R + jωl 40 0 9 + (50 0 3 ) 2 (000) 2 (40 0 9 ) 2 =8nF Z 2 = R 2(jωL 2 ) R 2 + jωl 2 = ω2 L 2 2R 2 + jωl 2 R 2 2 R 2 + ω 2 L 2 2 Z = Z 2 when R = ω2 L 2 2R 2 R 2 2 + ω 2 L 2 2 and L = R2 2L 2 R 2 2 + ω 2 L 2 2 [b] R = (4000)2 (.25) 2 (5000) 5000 2 + 4000 2 (.25) 2 = 2500 Ω L = P 9.24 [a] Y 2 = R 2 j ωl 2 Y = (5000) 2 (.25) = 625 mh 5000 2 + 4000 2 (.25) 2 R + jωl = R jωl R 2 + ω 2 L 2 Therefore Y 2 = Y when R 2 = R2 + ω 2 L 2 R and L 2 = R2 + ω 2 L 2 ω 2 L [b] R 2 = 80002 + 000 2 (4) 2 8000 L 2 = 80002 + 000 2 (4) 2 000 2 (4) =0kΩ =20H

Problems 9 7 P 9.25 V g = 500/30 V; I g =0./83.3 ma Z = V g I g z = 3000 + j = 5000/ 53.3 Ω = 3000 j4000 Ω ( ω ) 32 03 ω ω 32 03 ω = 4000 ω 2 + 4000ω 32 0 3 =0 ω =7.984 rad/s P 9.26 [a] Z eq = 50,000 + 3 = 50,000 3 = 50,000 3 Im(Z eq )= j20 06 (200 + j0.2ω) ω + + j20 06 ω j20 0 6 (200 + j0.2ω) 200 + j[0.2ω 20 06 ω ] (200 + j0.2ω) [ 200 j ( )] 0.2ω 20 06 ω ω 200 2 + ( 0.2ω 20 06 ω [ ( 20 06 (200) 2 20 06 ω ω ( 20 0 6 (200) 2 20 0 6 [0.2ω (200) 2 =0.2ω ( 0.2ω ) 20 06 ω 0.2ω 0.2ω ) 2 0.2ω )] 20 06 =0 ω )] 20 06 =0 ω 0.2 2 ω 2 0.2(20 0 6 ) + 200 2 =0 ω 2 =64 0 6.. ω= 8000 rad/s.. f= 273.24 Hz [b] Z eq = 50,000 + j2500 (200 + j600) 3 = 50,000 3 + ( j2500)(200 + j600) 200 j900 =20,000 Ω I g = 30/0 20,000 =.5/0 ma i g (t) =.5 cos 8000t ma

9 8 CHAPTER 9. Sinusoidal Steady State Analysis P 9.27 [a] Find the equivalent impedance seen by the source, as a function of L, and set the imaginary part of the equivalent impedance to 0, solving for L: Z C = j (500)(2 0 6 ) = j000 Ω Z eq = j000 + j500l 2000 = j000 + 2000(j500L) 2000 + j500l = j000 + Im(Z eq )= 000 + 2000(j500L)(2000 j500l) 2000 2 + (500L) 2 20002 (500L) 2000 2 + (500L) 2 =0.. 2000 2 (500L) 2000 2 + (500L) 2 = 000 [b] I g =.. 500 2 L 2 2 20002 L + 2000 2 =0 Solving the quadratic equation, L =4H 00/0 j000 + j2000 2000 = 00/0 000 =0./0 A i g (t) =0. cos 500t A P 9.28 [a] jωl + R ( j/ωc)=jωl + jr/ωc R j/ωc = jωl + jr ωcr j = jωl + Im(Z ab )=ωl.. L= jr(ωcr + j) ω 2 C 2 R 2 + CR 2 ω 2 C 2 R 2 + ωcr 2 ω 2 C 2 R 2 + =0.. ω 2 C 2 R 2 += CR2 L.. ω 2 = (CR2 /L) = C 2 R 2 ω = 300 krad/s (25 0 9 )(00) 2 60 0 6 = 900 (25 0 9 ) 2 08 (00) 2

Problems 9 9 [b] Z ab (300 0 3 )=j48 + (00)( j33.33) 00 j33.33 =64Ω P 9.29 jωl = j00 0 3 (0.6 0 3 )=j60 Ω jωc = j (00 0 3 )(0.4 0 6 ) = j25 Ω V T = j25i T +5I 30I I = j60 30 + j60 I T j60 V T = j25i T +25 30 + j60 I T V T I T = Z ab =20 j5 = 25/ 36.87 Ω P 9.30 0 6 [a] Z = 400 j 500(2.5) = 400 j800 Ω Z 2 = 2000 j500l = j0 6 L 2000 + j500l Z T = Z + Z 2 = 400 j800 + j0 6 L 2000 + j500l = 400 + 500 06 L 2 2000 2 + 500 2 L 2 j800 + j 2 0 9 L 2000 2 + 500 2 L 2 Z T is resistive when 2 0 9 L 2000 2 + 500 2 L = 800 2 or 5002 L 2 25 0 5 L + 2000 2 =0 Solving, L =8Hand L 2 =2H.

9 20 CHAPTER 9. Sinusoidal Steady State Analysis P 9.3 [a] Y = [b] When L =8H: Z T = 400 + 500 06 (8) 2 2000 2 + 500 2 (8) 2 = 2000 Ω I g = 200/0 2000 = 00/0 ma i g = 00 cos 500t ma When L =2H: Z T = 400 + 500 06 (2) 2 2000 2 + 500(2) 2 = 800 Ω I g = 200/0 = 250/0 ma 800 i g = 250 cos 500t ma Y 2 = 2500 0 3 =4.4 0 6 S = 4,000 + j5ω 4,000 96 0 6 +25ω 2 j 5ω 96 0 6 +25ω 2 Y 3 = jω2 0 9 Y T = Y + Y 2 + Y 3 For i g and v o to be in phase the j component of Y T must be zero; thus, ω2 0 9 = or 25ω 2 + 96 0 6 = 5ω 96 0 6 +25ω 2 5 2 0 9.. 25ω 2 = 2304 0 6.. ω= 9600 rad/s [b] Y T =4.4 0 6 4,000 + 96 0 6 + 25(9600) =0 2 0 6 S.. Z T = 00 kω V o =(0.25 0 3 /0 )(00 0 3 ) = 25/0 V v o = 25 cos 9600t V

Problems 9 2 P 9.32 [a] Z g = 500 j 06 ω + 03 (j0.5ω) 0 3 + j0.5ω = 500 j 06 ω + 500jω(000 j0.5ω) 0 6 +0.25ω 2 = 500 j 06 ω + 250ω 2 0 6 +0.25ω 2 + j 5 0 5 ω 0 6 +0.25ω 2.. If Z g is purely real, 0 6 ω = 5 05 ω 0 6 +0.25ω 2 2(0 6 +0.25ω 2 )=ω 2.. 4 0 6 = ω 2.. ω= 2000 rad/s [b] When ω = 2000 rad/s Z g = 500 j500+(j000 000) = 000 Ω.. I g = 20/0 000 = 20/0 ma V o = V g I g Z Z = 500 j500 Ω V o = 20/0 (0.02/0 )(500 j500) = 0 + j0=4.4/45 V v o =4.4 cos(2000t +45 ) V P 9.33 Z ab = j8+(2+j4) (0 j20) + (40 j20) = j8+3+j4+8+j6=2+j2ω=6.97/45 Ω P 9.34 First find the admittance of the parallel branches Y p = 2 j6 + 2 + j4 + 2 + j0.5 Z p = Y p = 0.625 j.875 =0.625 j.875 S =0.6 + j0.48 Ω Z ab = j4.48+0.6 + j0.48+2.84=3 j4ω Y ab = Z ab = 3 j4 = 200/53.3 ms = 20 + j60 ms

9 22 CHAPTER 9. Sinusoidal Steady State Analysis P 9.35 Simplify the top triangle using series and parallel combinations: ( + j) ( j)=ω Convert the lower left delta to a wye: Z = Z 2 = (j)() +j j = jω ( j)() +j j = jω Z 3 = (j)( j) +j j =Ω Convert the lower right delta to a wye: Z 4 = ( j)() +j j = jω Z 5 = ( j)(j) +j j =Ω Z 6 = (j)() +j j = jω The resulting circuit is shown below: Simplify the middle portion of the circuit by making series and parallel combinations: ( + j j) (+)= 2 =2/3Ω Z ab = j+2/3+j =2/3Ω

Problems 9 23 P 9.36 V o = V g Z o Z T = 500 j000 300 + j600 + 500 j000 (00/0 ) =.8/ 00.3 V v o =.8 cos(8000t 00.3 ) V P 9.37 jωc = j400 Ω jωl = j200 Ω Let Z = 200 j400 Ω; Z 2 = 600 + j200 Ω I g = 400/0 ma I o = Z 2 Z + Z 2 I g = 600 + j200 800 + j800 (0.4/0 ) = 450 + j50 ma = 474.34/8.43 ma i o = 474.34 cos(20,000t +8.43 ) ma P 9.38 V = j5( j2)=0v 25+0+(4 j3)i =0.. I = 5 4 j3 =2.4+j.8 A I 2 = I j5 =(2.4+j.8) j5 =2.4 j3.2 A

9 24 CHAPTER 9. Sinusoidal Steady State Analysis V Z = j5i 2 +(4 j3)i = j5(2.4 j3.2)+(4 j3)(2.4+j.8) = j2 V 25+(+j3)I 3 +( j2)=0.. I3 =6.2 j6.6 A I Z = I 3 I 2 =(6.2 j6.6) (2.4 j3.2)=3.8 j3.4 A Z = V Z I Z = j2 3.8 j3.4 =.42 j.88 Ω P 9.39 I s =3/0 ma jωc = j0.4ω jωl = j0.4ω After source transformation we have V o = j0.4 j0.4 5 28 + j0.4 j0.4 5 (66 0 3 )=0mV v o = 0 cos 200t mv P 9.40 [a] V a = (50 + j50)(2/0 ) = 00 + j300 V 00 + j300 I b = 20 j40 = j2.5 A =2.5/90 A I c =2/0 + j2.5+6+j3.5 =8+j6A = 0/36.87 A V g =5I c + V a = 5(8 + j6) + 00 + j300 = 40 + j330 V = 358.47/67.0 V

Problems 9 25 [b] i b =2.5 cos(800t +90 ) A i c = 0 cos(800t +36.87 ) A v g = 358.47 cos(800t +67.0 ) V P 9.4 [a] jωl = j(000)(00) 0 3 = j00 Ω jωc = j 0 6 (000)(0) = j00 Ω Using voltage division, V ab = (00 + j00) ( j00) j00 + (00 + j00) ( j00) (247.49/45 ) = 350/0 V Th = V ab = 350/0 V [b] Remove the voltage source and combine impedances in parallel to find Z Th = Z ab : Y ab = j00 + 00 + j00 + =5 j5ms j00 [c] Z Th = Z ab = Y ab = 00 + j00 Ω

9 26 CHAPTER 9. Sinusoidal Steady State Analysis P 9.42 Using voltage division: V Th = 36 36 + j60 j48 (240) = 26 j72 = 227.68/ 8.43 V Remove the source and combine impedances in series and in parallel: Z Th =36 (j60 j48)=3.6+j0.8ω P 9.43 Open circuit voltage: V 2 0 +88I φ + V 2 V 5 2 j50 I φ = 5 (V 2/5) 200 Solving, =0 V 2 = 66 + j88 = 0/26.87 V = V Th Find the Thévenin equivalent impedance using a test source: I T = V T 0 +88I φ + 0.8V t j50 I φ = V T /5 200 ( I T = V T 0 88/5 200 + 0.8 ) j50

Problems 9 27.. V T I T =30 j40 = Z Th I N = V Th Z Th = 66 + j88 30 j40 = 2.2+j0 A =2.2/80 A The Norton equivalent circuit: P 9.44 Short circuit current I β = 6I β 2 2I β = 6I β ;.. Iβ =0 I =0;.. Isc = 0/ 45 A = I N The Norton impedance is the same as the Thévenin impedance. Find it using a test source V T =6I β +2I β =8I β, I β = j 2+j I T

9 28 CHAPTER 9. Sinusoidal Steady State Analysis Z Th = V T I T = 8I β = j8 [(2 + j)/j]i β 2+j =.6+j3.2Ω P 9.45 Using current division: I N = I sc = 50 80 + j60 (4)=.6 j.2 =2/ 36.87 A Z N = j00 (80 + j60) = 00 j50 Ω The Norton equivalent circuit: P 9.46 ω = 2π(200/π) = 400 rad/s Z c = j 400(0 6 ) = j2500 Ω V T = (0,000 j2500)i T + 00(200)I T Z Th = V T I T =30 j2.5 kω P 9.47 I N = 5 j5 Z N +( j3) ma, Z N in kω

Problems 9 29 I N = 8 j3.5 Z N +4.5 j6 ma, Z N in kω 5 j5 Z N + j3 = 8 j3.5 Z N +(4.5 j6) 23 j.5 Z N =3.5 j3.. ZN =4+j3 kω I N = 5 j5 4+j3 + j3 = j6 ma =6/ 90 ma P 9.48 Open circuit voltage: V 250 20 + j0 0.03V V o + 50 j00 =0.. V o = j00 50 j00 V

9 30 CHAPTER 9. Sinusoidal Steady State Analysis V 20 + j0 + j3v 50 j00 + V 50 j00 = 250 20 + j0 V = 500 j250 V; V o = 300 j400 V = V Th = 500/ 53.3 V Short circuit current: I sc = 250/0 70 + j0 =3.5 j0.5 A Z Th = V Th I sc = 300 j400 3.5 j0.5 = 00 j00 Ω The Thévenin equivalent circuit: P 9.49 Open circuit voltage: (9 + j4)i a I b = 60/0

Problems 9 3 I a +(9 j4)i b = 60/0 Solving, I a = 5+j2.5 A; I b =5+j2.5 A V Th =4I a +(4 j4)i b = 0/0 V Short circuit current: (9 + j4)i a I b 4I sc = 60 I a +(9 j4)i b (4 j4)i sc =60 4I a (4 j4)i b +(8 j4)i sc =0 Solving, I sc =2.07/0 Z Th = V Th I sc = 0/0 2.07/0 =4.83 Ω

9 32 CHAPTER 9. Sinusoidal Steady State Analysis Alternate calculation for Z Th : Z =4++4 j4 =9 j4 Z = 4 9 j4 Z 2 = 4 j4 9 j4 Z 3 = 6 j6 9 j4 Z a =4+j4+ 4 9 j4 Z b =4+ 4 j4 9 j4 Z a Z b = Z 3 + Z a Z b = 2640 j320 864 j384 = 56 + j20 9 j4 = 40 j20 9 j4 6 j6 9 j4 + 2640 j320 864 j384 = 476 j856 864 j384 =4.83 Ω

Problems 9 33 P 9.50 [a] I T = V T 000 + V T αv T j000 I T = ( α) V T 000 j000 = j +α j000.. Z Th = V T I T = j000 α +j Z Th is real when α =. [b] Z Th = 000 Ω [c] Z Th = 500 j500 = j000 α +j = 000 000(α ) + j (α ) 2 + (α ) 2 + Equate the real parts: 000 (α ) 2 + = 500.. (α ) 2 +=2.. (α ) 2 = so α =0 Check the imaginary parts: (α )000 (α ) 2 = 500 + α= Thus, α =0. 000 000(α ) [d] Z Th = + j (α ) 2 + (α ) 2 + For Im(Z Th ) > 0, α must be greater than. SoZ Th is inductive for <α 0.

9 34 CHAPTER 9. Sinusoidal Steady State Analysis P 9.5 V 240 j0 + V 50 + V 30 + j0 =0 Solving for V yields V = 98.63/ 24.44 V V o = 30 30 + j0 (V ) = 88.43/ 42.88 V P 9.52 jωl = j(2000)( 0 3 )=j2ω jωc = j 0 6 (2000)(00) = j5ω V g = 20/ 36.87 =6 j2 V V g2 = 50/ 06.26 = 4 j48 V V o (6 j2) j2 Solving, V o = 36/0 V v o (t) = 36 cos 2000t V + V o 0 + V o ( 4 j48) j5 =0

Problems 9 35 P 9.53 From the solution to Problem 9.52 the phasor-domain circuit is Making two source transformations yields I g = I g2 = 6 j2 j2 4 j48 j5 Y = j2 + 0 + j5 Z = Y =+j3ω = 6 j8 A =9.6 j2.8 A =(0. j0.3) S I e = I g + I g2 =3.6 j0.8 A Hence the circuit reduces to V o = ZI e =(+j3)(3.6 j0.8) = 36/0 V.. v o (t) = 36 cos 2000t V

9 36 CHAPTER 9. Sinusoidal Steady State Analysis P 9.54 The circuit with the mesh currents identified is shown below: The mesh current equations are: 20/ 36.87 + j2i + 0(I I 2 )=0 50/ 06.26 + 0(I 2 I ) j5i 2 =0 In standard form: I (0 + j2) + I 2 ( 0) = 20/ 36.87 I ( 0) + I 2 (0 j5) = 50/ 06.26 = 50/73.74 Solving on a calculator yields: I = 6+j0A; I 2 = 9.6+j0A Thus, V o = 0(I I 2 )=36V and v o (t) = 36 cos 2000tV P 9.55 From the solution to Problem 9.52 the phasor-domain circuit with the right-hand source removed is V o = 0 j5 (6 j2)=8 j26 V j2+0 j5

Problems 9 37 With the left hand source removed V o = 0 j2 ( 4 j48)=8+j26 V j5+0 j2 V o = V o + V o =8 j26+8+j26=36v v o (t) = 36 cos 2000t V P 9.56 Write a KCL equation at the top node: V o j8 + V o 2.4I + V o (0 + j0)=0 j4 5 The constraint equation is: I = V o j8 Solving, V o = j80 = 80/90 V P 9.57 Write node voltage equations: Left Node: V 40 + V V o /8 =0.025/0 j20 Right Node: V o 50 + V o j25 +6I o =0

9 38 CHAPTER 9. Sinusoidal Steady State Analysis The constraint equation is I o = V V o /8 j20 Solution: V o =(4+j4)=5.66/45 V V =(0.8+j0.6)=.0/36.87 V I o =(5 j5)=5.8/ 7.57 ma P 9.58 (0 + j5)i a j5i b = 00/0 j5i a j5i b = j00 Solving, I a = j0 A; I b = 20 + j0 A I o = I a I b =20 j20=28.28/ 45 A i o (t) =28.28 cos(50,000t 45 ) A P 9.59 (2 j2)i a 2I g 5( j8)=0

Problems 9 39 2I a + (2 + j4)i g + j20 5(j4)=0 Solving, I g =4 j2 =4.47/ 26.57 A P 9.60 Set up the frequency domain circuit to use the node voltage method: At V : 5/0 + V V 2 j8 + V 20/90 j4 =0 At V 2 : V 2 V j8 + V 2 j4 + V 2 20/90 2 =0 In standard form: ( V j8 + ) ( + V 2 ) =5/0 + 20/90 j4 j8 j4 ( V ) ( + V 2 j8 j8 + j4 + ) = 20/90 2 2 Solving on a calculator: V = 8 3 + j 4 3 V V 2 = 8+j4 V Thus V 0 = V 20/90 = 8 3 j 56 3 =8.86/ 98.3 V

9 40 CHAPTER 9. Sinusoidal Steady State Analysis P 9.6 jωl = j5000(60 0 3 )=j300 Ω jωc = j (5000)(2 0 6 ) = j00 Ω 400/0 + (50 + j300)i a 50I b 50(I a I b )=0 (50 j00)i b 50I a + 50(I a I b )=0 Solving, I a = 0.8 j.6 A; I b =.6+j0.8 A V o = 00I b = 60 + j80 = 78.89/53.43 V v o = 78.89 cos(5000t + 53.43 ) V P 9.62 0/0 =( j)i I 2 + ji 3 5/0 = I +(+j)i 2 ji 3

Problems 9 4 =ji ji 2 + I 3 Solving, I =+j0 A; I 2 =+j5a; I 3 =6A I a = I 3 =5A =5/0 A I b = I I 3 =5+j0 A =.8/63.43 A I c = I 2 I 3 =5+j5A =7.07/45 A I d = I I 2 = j5 A =5/90 A P 9.63 V a (00 j50) 20 Solving, V a =40+j30 V + V a j5 + V a (40 + j30) 2 + j6 =0 I Z + (30 + j20) 40 + j30 j0 + (40 + j30) (40 + j30) 2 + j6 =0 Solving, I Z = 30 j0 A Z = (00 j50) (40 + j30) 30 j0 =2+j2Ω

9 42 CHAPTER 9. Sinusoidal Steady State Analysis P 9.64 [a] jωc = j50 Ω jωl = j20 Ω Z e = 00 j50=20 j40 Ω I g =2/0 V g = I g Z e = 2(20 j40)=40 j80 V V o = j20 80 + j80 (40 j80)=90 j30=94.87/ 8.43 V v o =94.87 cos(6 0 5 t 8.43 ) V [b] ω =2πf =6 0 5 ; f = 8 05 π T = f = π 8 0 =.25πµs 5.. 8.43 (.25πµs) = 20.09 ns 360.. v o lags i g by 20.09 ns P 9.65 jωl = j0 6 (0 0 6 )=j0 Ω jωc = j (0 6 )(0. 0 6 ) = j0 Ω V a = 50/ 90 = j50 V V b = 25/90 = j25 V (0 j0)i + j0i 2 0I 3 = j50

Problems 9 43 j0i +0I 2 0I 3 =0 0I 0I 2 +20I 3 = j25 Solving, I =0.5 j.5 A; I 3 = +j0.5 A I 2 = 2.5 A I a = I = 0.5+j.5 =.58/08.43 A I b = I 3 = j0.5 =.2/ 26.57 A i a =.58 cos(0 6 t + 08.43 ) A i b =.2 cos(0 6 t 26.57 ) A P 9.66 [a] jωl = j(5000)(2 0 3 )=j0 Ω jωl 2 = j(5000)(8 0 3 )=j40 Ω jωm = j0 Ω 70 = (0 + j0)i g + j0i L 0=j0I g + (30 + j40)i L Solving, I g =4 j3 A; I L = A [b] k = i g = 5 cos(5000t 36.87 ) A i L = cos(5000t 80 ) A M L L 2 = 2 6 =0.5

9 44 CHAPTER 9. Sinusoidal Steady State Analysis [c] When t = 00πµs, 5000t = (5000)(00π) 0 6 =0.5π = π/2 rad =90 i g (00πµs) = 5 cos(53.3 )=3A i L (00πµs) = cos( 90 )=0A w = 2 L i 2 + 2 L 2i 2 2 + Mi i 2 = 2 (2 0 3 )(9)+0+0=9mJ When t = 200πµs, 5000t = π rad = 80 i g (200πµs) = 5 cos(80 36.87 )= 4A i L (200πµs) = cos(80 80 )=A w = 2 (2 0 3 )(6) + 2 (8 0 3 )() + 2 0 3 ( 4)() = 2 mj P 9.67 Remove the voltage source to find the equivalent impedance: Z Th =45+j25 + Using voltage division: V Th = V cd = j20i = j20 ( ) 2 20 (5 j5)=85+j85 Ω 5+j5 ( ) 425 = 850 + j850 V = 202./45 V 5+j5 P 9.68 [a] jωl = j(200 0 3 )(0 3 )=j200 Ω jωl 2 = j(200 0 3 )(4 0 3 )=j800 Ω jωc = j (200 0 3 )(2.5 0 9 ) = j400 Ω.. Z 22 = 00 + 200 + j800 j400 = 300 + j400 Ω.. Z 22 = 300 j400 Ω M = k L L 2 =2k 0 3

Problems 9 45 ωm = (200 0 3 )(2k 0 3 ) = 400k [ ] 2 400k Z r = (300 j400) = k 2 (92 j256) Ω 500 Z in = 200 + j200 + 92k 2 j256k 2 Z in = [(200 + 92k 2 ) 2 + (200 256k 2 ) 2 ] 2 d Z in dk = 2 [(200 + 92k2 ) 2 + (200 256k 2 ) 2 ] 2 [2(200 + 92k 2 )384k + 2(200 256k 2 )( 52k)] d Z in =0when dk 768k(200 + 92k 2 ) 024k(200 256k 2 )=0.. k 2 =0.25;.. k= 0.25=0.3536 [b] Z in (min) = 200 + 92(0.25) + j[200 0.25(256)] = 224 + j68 = 280/36.87 Ω I (max) = 560/0 224 + j68 =2/ 36.87 A.. i (peak) =2A Note You can test that the k value obtained from setting d Z in /dk =0 leads to a minimum by noting 0 k. Ifk =, Z in = 392 j56 = 395.98/ 8.3 Ω Thus, Z in k= > Z in k= 0.25 If k =0, Z in = 200 + j200 = 282.84/45 Ω Thus, Z in k=0 > Z in k= 0.25 P 9.69 jωl = j50 Ω jωl 2 = j32 Ω

9 46 CHAPTER 9. Sinusoidal Steady State Analysis jωc = j20 Ω jωm = j(4 0 3 )k (2.5)(8) 0 3 = j40k Ω Z 22 =5+j32 j20=5+j2 Ω Z 22 =5 j2 Ω [ ] 2 40k Z r = (5 j2)=47.337k 2 j3.609k 2 5+j2 Z ab =20+j50+47.337k 2 j3.609k 2 =(20+47.337k 2 )+j(50 3.609k 2 ) Z ab is resistive when 50 3.609k 2 =0 or k 2 =0.44 so k =0.66.. Z ab = 20 + (47.337)(0.44)=40.83 Ω P 9.70 [a] jωl L = j00 Ω jωl 2 = j500 Ω Z 22 = 300 + 500 + j00 + j500 = 800 + j600 Ω Z 22 = 800 j600 Ω ωm = 270 Ω ( ) 270 2 Z r = [800 j600] = 58.32 j43.74 Ω 000 [b] Z ab = R + jωl + Z r =4.68 + j80+58.32 j43.74 = 00 + j36.26 Ω P 9.7 Z L = V 3 I 3 = 80/60 Ω

Problems 9 47 V 2 0 = V 3 ; 0I 2 =I 3 V 8 = V 2 ; 8I = I 2 Z ab = V I Substituting, Z ab = V I = 8V 2 I 2 /8 = 82 V 2 I 2 = 82 (0V 3 ) I 3 /0 = (8)2 (0) 2 V 3 I 3 = (8) 2 (0) 2 Z L = 52, 000/60 Ω P 9.72 In Eq. 9.69 replace ω 2 M 2 with k 2 ω 2 L L 2 and then write X ab as X ab = ωl k2 ω 2 L L 2 (ωl 2 + ωl L ) R22 2 +(ωl 2 + ωl L ) 2 { } = ωl k2 ωl 2 (ωl 2 + ωl L ) R22 2 +(ωl 2 + ωl L ) 2 For X ab to be negative requires R 2 22 +(ωl 2 + ωl L ) 2 <k 2 ωl 2 (ωl 2 + ωl L ) or R 2 22 +(ωl 2 + ωl L ) 2 k 2 ωl 2 (ωl 2 + ωl L ) < 0 which reduces to R 2 22 + ω 2 L 2 2( k 2 )+ωl 2 ωl L (2 k 2 )+ω 2 L 2 L < 0 But k hence it is impossible to satisfy the inequality. Therefore X ab can never be negative if X L is an inductive reactance.

9 48 CHAPTER 9. Sinusoidal Steady State Analysis P 9.73 [a] Z ab = V ab I + I 2 = V 2 I + I 2 = N I = N 2 I 2, I 2 = N N 2 I V V 2 = N N 2, V = N N 2 V 2 V + V 2 = Z L I = ( ) N + V 2 N 2 V 2 ( + N /N 2 )I Z ab = I Z L (N /N 2 + )( + N /N 2 )I.. Z ab = Z L [+(N /N 2 )] 2 Q.E.D. [b] Assume dot on the N 2 coil is moved to the lower terminal. Then V = N N 2 V 2 and I 2 = N N 2 I As before Z ab = V 2 I + I 2 and V + V 2 = Z L I.. Z ab = Z ab = V 2 ( N /N 2 )I = Z L [ (N /N 2 )] 2 Q.E.D. Z L I [ (N /N 2 )] 2 I

Problems 9 49 P 9.74 [a] Z ab = V ab I = V + V 2 I V N = V 2 N 2, V 2 = N 2 N V N I = N 2 I 2, I 2 = N N 2 I ( V 2 =(I + I 2 )Z L = I + N ) Z L N 2 V + V 2 = ( ) ( N + V 2 = + N ) 2 Z L I N 2 N 2.. Z ab = ( + N /N 2 ) 2 Z L I I ( Z ab = + N ) 2 Z L Q.E.D. N 2 [b] Assume dot on N 2 is moved to the lower terminal, then V = V 2, V = N V 2 N N 2 N 2 N I = N 2 I 2, I 2 = N N 2 I As in part [a] V 2 =(I 2 + I )Z L and Z ab = V + V 2 I Z ab = ( N /N 2 )V 2 I = ( N /N 2 )( N /N 2 )Z L I I Z ab =[ (N /N 2 )] 2 Z L Q.E.D.

9 50 CHAPTER 9. Sinusoidal Steady State Analysis P 9.75 [a] I = 240 24 + 240 j32 = (0 j7.5) A V s = 240/0 +(0.+j0.8)(0 j7.5) = 247 + j7.25 = 247./.68 V [b] Use the capacitor to eliminate the j component of I, therefore I c = j7.5 A, Z c = 240 j7.5 = j32 Ω V s =240+(0.+j0.8)0 = 24 + j8 = 24.3/.90 V [c] Let I c denote the magnitude of the current in the capacitor branch. Then I = (0 j7.5+ji c )=0+j(I c 7.5) A V s = 240/α =240+(0.+j0.8)[0 + j(i c 7.5)] = (247 0.8I c )+j(7.25+0.i c ) It follows that 240 cos α = (247 0.8I c ) and 240 sin α =(7.25+0.I c ) Now square each term and then add to generate the quadratic equation I 2 c 605.77I c + 5325.48=0; I c = 302.88 ± 293.96 Therefore I c =8.92 A (smallest value) and Z c = 240/j8.92 = j26.90 Ω. P 9.76 The phasor domain equivalent circuit is V o = V m/0 2 IR x ; I = V m/0 R x jx C As R x varies from 0 to, the amplitude of v o remains constant and its phase angle decreases from 0 to 80, as shown in the following phasor diagram:

Problems 9 5 P 9.77 [a] [b] I l = 20 7.5 + 20 =6 j0 A j2 V l =(0.5 + j6)(6 j0)=62.4+j94.5 = 3.24/56.56 V V s = 20/0 + V l = 205.43/27.39 V [c] I l = 20 2.5 + 20 =48 j30 A j4 V l =(0.5 + j6)(48 j30) = 339.73/56.56 V V s = 20 + V l = 48.02/42.7 V The amplitude of V s must be increased from 205.43 Vto48.02 V (more than doubled) to maintain the load voltage at 20 V.

9 52 CHAPTER 9. Sinusoidal Steady State Analysis [d] I l = 20 2.5 + 20 j4 + 20 j2 =48+j30 A V l =(0.5 + j6)(48 + j30) = 339.73/20.57 V V s = 20 + V l = 297.23/00.23 V The amplitude of V s must be increased from 205.43 Vto297.23 V to maintain the load voltage at 20 V. P 9.78 V g =4/0 V; = j20 kω jωc Let V a = voltage across the capacitor, positive at upper terminal Then: V a 4/0 20,000 + V a j20,000 + V a 20,000 =0;.. Va =(.6 j0.8) V 0 V a 20,000 + 0 V o 0,000 =0; V o = V a 2.. V o = 0.8+j0.4 =0.89/53.43 V v o =0.89 cos(200t + 53.43 ) V P 9.79 [a] V a 4/0 20,000 V a = + jωc o V a + V a 20,000 =0 4 2+j20,000ωC o V o = V a 2 (see solution to Prob. 9.78)

Problems 9 53 V o = 2 2+j4 0 6 C o =.. denominator angle =45 2/80 2+j4 0 6 C o so 4 0 6 C o =2.. Co =0.5 µf [b] V o = 2/80 2+j2 =0.707/35 V v o =0.707 cos(200t + 35 ) V P 9.80 jωc = j0 kω jωc 2 = j00 kω V a 2 5000 + V a j0,000 + V a 20,000 + V a V o 00,000 =0 20V a 40 + j0v a +5V a + V a V o =0.. (26 + j0)v a V o =40 0 V a 20,000 + 0 V o j00,000 =0 j5v a V o =0 Solving, V o =.43 + j7.42=7.55/79. V v o (t) =7.55 cos(0 6 t +79. ) V

9 54 CHAPTER 9. Sinusoidal Steady State Analysis P 9.8 [a] V g = 25/0 V V p = 20 00 V g =5/0 ; V n = V p =5/0 V 5 80,000 + 5 V o =0 Z p Z p = j80,000 40,000=32,000 j6,000 Ω V o = 5Z p 80,000 +5=7 j =7.07/ 8.3 V v o =7.07 cos(50,000t 8.3 ) V [b] V p =0.2V m /0 ; V n = V p =0.2V m /0 P 9.82 [a] 0.2V m 80,000 + 0.2V m V o 32,000 j6,000 =0.. V o =0.2V m +.. 0.2V m (.4 j0.2) 0.. V m 35.36 V jωc = j20 Ω V n 20 + V n V o =0 j20 V o j20 = V n 20 + V n j20 V o = jv n + V n =( j)v n V p = V g(/jωc o ) 5+(/jωC o ) = V g =6/0 V V p = 6/0 +j5 0 5 C o = V n 32,000 j6,000 V m (0.2)=0.2V m (.4 j0.2) 80,000 V g +j(5)(0 5 )C o.. V o = V o = ( j)6/0 +j5 0 5 C o 2(6) +25 0 0 C 2 o =6 Solving, C o =2µF

Problems 9 55 [b] V o = 6( j) +j = j6 V v o = 6 cos(0 5 t 90 ) V P 9.83 [a] Because the op-amps are ideal I in = I o, thus Z ab = V ab I in V o = V ab ; V o = V o2 = KV ab = V ab ; I o = V ab V o I o Z V o2 =.. I o = V ab ( KV ab ) Z.. Z ab = ( R2 V ab ( + K)V ab Z = [b] Z = jωc ; Z ab = R ) V o = KV o = KV ab = ( + K)V ab Z Z ( + K) jωc( + K) ;.. Cab = C( + K) P 9.84 [a] I = 20 24 + 240 8.4+j6.3 =23.29 j3.7=27.02/ 30.5 A I 2 = 20 2 20 24 =5/0 A I 3 = 20 2 + 240 8.4+j6 =28.29 j3.7=3.44/ 25.87 A I 4 = 20 24 =5/0 A; I 5 = 20 2 = 0/0 A I 6 = 240 8.4+j6.3 =8.29 j3.7=22.86/ 36.87 A

9 56 CHAPTER 9. Sinusoidal Steady State Analysis [b] I =0 I 3 =5A I 5 =0A I 2 =0+5=5A I 4 = 5 A I 6 =5A [c] The clock and television set were fed from the uninterrupted side of the circuit, that is, the 2 Ω load includes the clock and the TV set. [d] No, the motor current drops to 5 A, well below its normal running value of 22.86 A. [e] After fuse A opens, the current in fuse B is only 5 A. P 9.85 [a] The circuit is redrawn, with mesh currents identified: The mesh current equations are: 20/0 =23I a 2I b 20I c 20/0 = 2I a +43I b 40I c 0= 20I a 40I b +70I c Solving, I a = 24/0 A I b =2.96/0 A I c =9.40/0 A The branch currents are: I = I a = 24/0 A I 2 = I a I b =2.04/0 A I 3 = I b =2.96/0 A I 4 = I c =9.40/0 A I 5 = I a I c =4.6/0 A I 6 = I b I c =2.55/0 A

Problems 9 57 [b] Let N be the number of turns on the primary winding; because the secondary winding is center-tapped, let 2N 2 be the total turns on the secondary. From Fig. 9.58, 3,200 = 240 N 2 or = N 2N 2 N 0 The ampere turn balance requires N I p = N 2 I + N 2 I 3 Therefore, I p = N 2 (I + I 3 )= N 0 (24+2.96)=0.42/0 A Check voltages V 4 = 0I 4 = 94/0 V V 5 = 20I 5 = 92/0 V V 6 = 40I 6 = 02/0 V All of these voltages are low for a reasonable distribution circuit. P 9.86 [a] The three mesh current equations are 20/0 =23I a 2I b 20I c 20/0 = 2I a +23I b 20I c 0= 20I a 20I b +50I c Solving, I a = 24/0 A; I b = 24/0 A; I c =9.2/0 A.. I 2 = I a I b =0A [b] I p = N 2 N (I + I 3 )= N 2 N (I a + I b = 0 (24 + 24) = 0.436/0 A

9 58 CHAPTER 9. Sinusoidal Steady State Analysis [c] Check voltages V 4 = 0I 4 = 0I c = 92/0 V V 5 = 20I 5 = 20(I a I c ) = 96/0 V V 6 = 40I 6 = 20(I b I c ) = 96/0 V Where the two loads are equal, the current in the neutral conductor (I 2 ) is zero, and the voltages V 5 and V 6 are equal. The voltages V 4, V 5, and V 6 are too low for a reasonable dirtribution circuit. P 9.87 [a] 25=(R +0.05 + j0.05)i (0.03 + j0.03)i 2 RI 3 25 = (0.03 + j0.03)i +(R +0.05 + j0.05)i 2 RI 3 Subtracting the above two equations gives 0=(R +0.08 + j0.08)i (R +0.08 + j0.08)i 2.. I = I 2 so I n = I I 2 =0A [b] V = R(I I 3 ); V 2 = R(I 2 I 3 ) [c] Since I = I 2 (from part [a]) V = V 2

Problems 9 59 250 = (660.04 + j0.04)i a 660I b 0= 660I a + 670I b Solving, I a =25.28/ 0.23 =25.28 j0.0 A I b =24.90/ 0.23 =24.90 j0.0 A I = I a I b =0.377 j0.0053 A V =60I =22.63 j0.095 = 22.64/ 0.23 V V 2 = 600I = 226.3 j0.95 = 226.4/ 0.23 V [d] 25 = (60.05 + j0.05)i (0.03 + j0.03)i 2 60I 3 25 = (0.03 + j0.03)i + (600.05 + j0.05)i 2 600I 3 0= 60I 600I 2 + 670I 3 Solving, I =26.97/ 0.24 =26.97 j0.3 A I 2 =25.0/ 0.24 =25, 0 j0.04 A I 3 =24.90/ 0.24 =24.90 j0.04 A V = 60(I I 3 ) = 24.4/ 0.27 V V 2 = 600(I 2 I 3 ) = 24.6/ 0.20 V [e] Because an open neutral can result in severely unbalanced voltages across the 25 V loads.

9 60 CHAPTER 9. Sinusoidal Steady State Analysis P 9.88 [a] Let N = primary winding turns and 2N 2 = secondary winding turns. Then 4,000 = 250 ; N 2.. = N 2N 2 N 2 = a In part c), I p =2aI a.. I p = 2N 2I a N = 56 I a = (25.28 j0.0) 56 I p = 45.4 j.8 ma = 45.4/ 0.23 ma In part d), I p N = I N 2 + I 2 N 2.. I p = N 2 N (I + I 2 ) = (26.97 j0.+25.0 j0.0) 2 = (52.07 j0.22) 2 I p = 464.9 j.9 ma = 464.9/ 0.24 ma [b] Yes, because the neutral conductor carries non-zero current whenever the load is not balanced.