Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Similar documents
Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Note 6 Frequency Response

Response of LTI Systems to Complex Exponentials

Fourier Series: main points

Chapter 3 Linear Equations of Higher Order (Page # 144)

3.2. Derivation of Laplace Transforms of Simple Functions

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

15. Numerical Methods

Continous system: differential equations

Fourier Techniques Chapters 2 & 3, Part I

1973 AP Calculus BC: Section I

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Transfer function and the Laplace transformation

ECE351: Signals and Systems I. Thinh Nguyen

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

( A) ( B) ( C) ( D) ( E)

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter4 Time Domain Analysis of Control System

UNIT I FOURIER SERIES T

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Poisson Arrival Process

Final Exam : Solutions

Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Poisson Arrival Process

Chapter 11 INTEGRAL EQUATIONS

EEE 303: Signals and Linear Systems

Overview. Review Elliptic and Parabolic. Review General and Hyperbolic. Review Multidimensional II. Review Multidimensional

1.7 Vector Calculus 2 - Integration

Signal & Linear System Analysis

Physics 160 Lecture 3. R. Johnson April 6, 2015

Chapter 12 Introduction To The Laplace Transform

Trigonometric Formula

Lecture 2: Current in RC circuit D.K.Pandey

Boyce/DiPrima 9 th ed, Ch 7.9: Nonhomogeneous Linear Systems

From Fourier Series towards Fourier Transform

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

) and furthermore all X. The definition of the term stationary requires that the distribution fulfills the condition:

BMM3553 Mechanical Vibrations

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

1a.- Solution: 1a.- (5 points) Plot ONLY three full periods of the square wave MUST include the principal region.

Electrical Engineering Department Network Lab.

CSE 245: Computer Aided Circuit Simulation and Verification

15/03/1439. Lectures on Signals & systems Engineering

Chapter 7 INTEGRAL EQUATIONS

Chapter 13 Laplace Transform Analysis

Ma/CS 6a Class 15: Flows and Bipartite Graphs

EE Control Systems LECTURE 11

Linear Systems Analysis in the Time Domain

Control Systems. Transient and Steady State Response.

Discrete Fourier Transform (DFT)

S n. = n. Sum of first n terms of an A. P is

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

LaPlace Transform in Circuit Analysis

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

Consider serial transmission. In Proakis notation, we receive

82A Engineering Mathematics

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

Charging of capacitor through inductor and resistor

UNIT VIII INVERSE LAPLACE TRANSFORMS. is called as the inverse Laplace transform of f and is written as ). Here

Green's Functions at Zero Temperature

Infinite Continued Fraction (CF) representations. of the exponential integral function, Bessel functions and Lommel polynomials

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

PWM-Scheme and Current ripple of Switching Power Amplifiers

TIME RESPONSE Introduction

(1) Then we could wave our hands over this and it would become:

EE415/515 Fundamentals of Semiconductor Devices Fall 2012

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

The Eigen Function of Linear Systems

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Poisson process Markov process

2. The Laplace Transform

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Integral Transforms. Chapter 6 Integral Transforms. Overview. Introduction. Inverse Transform. Physics Department Yarmouk University

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Chapter Taylor Theorem Revisited

THE LAPLACE TRANSFORM

Analyticity and Operation Transform on Generalized Fractional Hartley Transform


Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

, then the old equilibrium biomass was greater than the new B e. and we want to determine how long it takes for B(t) to reach the value B e.

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA MODULE 1

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

ELG3150 Assignment 3

Revisiting what you have learned in Advanced Mathematical Analysis

Chap.3 Laplace Transform

Chapter 7 - Sampling and the DFT

Lecture 4: Laplace Transforms

ISSN: [Bellale* et al., 6(1): January, 2017] Impact Factor: 4.116

Digital Modulation Schemes

Section 8 Convolution and Deconvolution

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Transcription:

Aalyi o No-Siuoidal Wavorm Par Laplac raorm I h arlir cio, w lar ha h Fourir Sri may b wri i complx orm a ( ) C jω whr h Fourir coici C i giv by o o jωo C ( ) d o I h ymmrical orm, h Fourir ri i wri wih o /. h Fourir ri i wri or a priodic ucio wih priod, ad dicr rqucy compo ar obaid or h wavorm. W aw ha h udamal rqucy ω o i rlad o h priod by h xprio ω o π/. Now coidr h ollowig wavorm. () (a) () (b) () (c) Figur Priod o rpiio gradually icrad I igur (a), h priod o rpiio i qui mall ad i (b) omwha largr. Wavorm (c) could b coidrd a o whr h priod o rpiio ha b icrad up o iiiy. hu ay o-rpiiv wavorm may b coidrd a o which ha a priod, ad π h corrpodig udamal rqucy ω o ω. I i alo ha h Fourir coici C i h ymmrical xpoial ri C ( ) j ω o d C hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

h rquci ivolvd ar o logr dicr bu coiuou, o ha h gral rqucy ω o corrpod o Σ ω dω ω. hu or o-rpiiv ucio, h ollowig ca b wri. ω o dω C dc ω o ω ω d ω o π π hu h xprio or h complx Fourir Coici C bcom dc dω jω ( ).. d π dividig boh id by dω, hi may b wri a dc F( ω ) Diiio o h Fourir raorm jω ( ).. d dω π h origial ucio () i ow giv a jωo jω ( ) C dc. rom h diiio, dc F(ω).dω, o ha j ω ω ) F( ).. dω ( Fourir Ivr raorm h Fourir raorm xprio ad h Fourir Ivr raorm xprio oghr ar kow a h Fourir raorm Pair. I w muliply h Fourir raorm by a coa ad divid h Ivr raorm alo by h am coa, w would agai g a modiid raorm pair. I w xami h wo raorm xprio, w ha hy look vry imilar xcp ha hr i a dirc o a gaiv ig i h xpo ad a muliplyig acor o π. hu w could di a ymmrical raorm pair by uig a acor o I hi ca h Symmric Fourir raorm i did a dc jω F ( ω ) π ( ).. d dω π ad h corrpodig Symmric Ivr raorm i did a j ω ω ( ) F ( ).. dω π π. h Fourir raorm i uul i aalyig rai i lcrical circui, pcially whr h lm ar rqucy dpda. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

Fourir Coiraorm A Fourir Coi raorm F (ω) may b did wh h o-rpiiv wavorm i v. () (-) o ha F ( ω ) ( ). coω d, ad π ( ) F ( ω). coω dω Fourir Siraorm A Fourir Si raorm F (ω) may b did wh h o-rpiiv wavorm i odd. () (-) o ha F ( ω ) ( ). iω d, ad π ( ) F ( ω). iω dω h Fourir raorm i omim xprd i rm o h um o a i ad coi ri, iad o h xpoial ri. whr [ A( ω).coω B( ω).iω ] ( ) dω A( ω) ( ). coω d, ad π B( ω) ( ). iω d π Wih ucio which ar o-rpiiv, ad do o dcay ill iii im (uch a h i wavorm or h coi wavorm), h Fourir Igral raorm may o b obaid. o avoid hi problm, wavorm which do o dcay may b ariicially dcayd by a xpoial acor o allow h igraio. h igrad rul i h xpoially magiid o corrc or h iiial dcay iroducd. Howvr, uch xpoial magiicaio ca alo magiy umrical rror. h Laplac raorm i did bad o hi ariicial dcay. Laplac raorm I obaiig h Laplac raorm, ay ucio () i iiially dcayd ariicially by a xpoial acor -σ, o ha h w ucio alway bcom igrabl. Howvr, h dcay would corrpod o a xpoial ri (rahr ha a dcay) wih gaiv im. h Laplac raorm i hu did oly or caual ucio (ucio ha ar caud ad hc ar o zro valu bor im zro). h Laplac raorm o a im ucio () i hu did a / [()] F() ( ) d whr σ j ω i h Laplac opraor hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 3

h Laplac opraor i alo coidrd a a complx rqucy. I w compar wih h Fourir raorm pair wih a muliplir o π, h h Laplac Ivr raorm ak h orm () π j σ j σ j F( ) d I i ha h orm o h raorm ha impliid rom ha o h Fourir raorm. Howvr, i i vry rarly ha h Ivr raorm i calculad i hi mar. I i grally obaid rom a kowldg o h raorm o commo ucio, grally oud i abulad orm. h Laplac raorm i vry uul i circui rai aalyi a i ca covr dirial quaio o liar algbraic quaio. po o a liar Paiv Bilaral Nwork Coidr a liar paiv bilaral wo-por work o which a xciaio () i giv a o por ad which cau om rpo r() a h ohr por. () Liar Paiv bilaral Nwork r() Figur rar Fucio I gral, h rpo r() would b rlad o h ipu () by a ordiary liar dirial quaio. r() F(p). () whr p d/d dirial opraor Coidr a xpoial xciaio ucio. i.. () r() F(p).. F() hu or a xpoial xciaio, h ym ha a rar ucio r()/() qual o F(). A ad arlir, ay o-rpiiv (or v rpiiv) ucio may b brok up io a ri o xpoial. h coici o h xpoial ar giv by h Laplac raorm. hu or ay ohr xciaio (), i h Laplac raorm () i coidrd, i will b rlad o h Laplac raorm () o h rpo r() by h rar ucio F(). hu or ay caual xciaio (), () F(). () O o h advaag o h Laplac raorm i ha i covr ordiary dirial quaio i o algbraic quaio, o ha h oluio i airly impl. h ivr raorm i h obaid o g h im rpo. L u ow coidr h Laplac raorm o om pcial caual ucio. Laplac raorm o Spcial Caual Fucio (a) Ui impul ucio δ() δ() h ui impul ha a valu a all valu o ohr ha a whr i ha a iii magiud. Alo h igral o h ui impul ucio ovr im i qual o. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 4

/ [δ()] δ ( ) d I h ui impul occur a i, rahr ha a, h h ucio i δ ( i ). / [δ( i )] δ ( - i ) d (b) Ui p ucio H() h ui p ha a valu or valu o < ad a valu o or >. / [H()] H ( ) d d I h ui p occur a i, rahr ha a, h h ucio i H( i ). / [H( i )] i H ( - i ) d (c) Caual xpoial ucio a. H() / [ a.h()] a. H ( ) d (d) Caual Siuoidal ucio i(ω φ).h() / [i(ωφ).h()] F() i( ω φ ). i( ω φ ). i d d ( a) i( ω φ ). H ( ) d F( ) d ω co( ω φ) d i a iφ ω ω co( ω φ) i( ω φ) d iφ ω ω coφ F( ) ( ω ). F(). i φ ω. co φ δ(- i ) i H() H(- i ) i a.h().iφ ω.coφ F ( ) wih φ o ad 9 o h ollowig ar obaid. ω ω ω / [i ω.h()], / [co ω.h()] ω hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 5

d ( ) () Laplac raorm o h caual drivaiv d d ( ) d / d d ( ) d d ( ) ( ).( ).. ( ) d () ( - ). d ( ) d /. F( ) ( ) ( ).. d I i worh oig ha ulik i h ca o h ordiary drivaiv, h raorm o h drivaiv alo kp iormaio abou h iiial codiio [i.. ( - )] () A xpoial muliplicaio o a i h im domai A xpoial muliplicaio o a i h im domai corrpod o a hi o a i h -domai. /[ a. ()] a ( a) ( ).. d ( ) ( ).. d F(-a) (g) A hi i h im domai A hi i a h im domai ( a).h( a), corrpod o a xpoial dcay i h -domai. /[(-a).h(-a)] ( a). H ( a).. d a ( a) ( a). H ( a).. d( a) a a a ( τ ). τ. dτ a ( τ ). τ. dτ -a. F() (h) For a priodic wavorm () wih priod ic (τ) or τ <. /[()] ( ).. d ( ).. d ( ).. d ( ).. d uig a chag o variabl, hi may b r-wri a ollow 3 /[()] ). (. d ( ).. d ( ).. d hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 6

Sic h ucio i priodic, () () ().. /[()] ( ).. d ( ).. d ( ).. d [ - - -3 ] ( ).. d /[()] ( ).. d h raorm o ohr caual ucio may b imilarly obaid, ad h abl giv h Laplac raorm or h commo ucio. δ() ui impul H() ui p ramp -a xpoial dcay a a - -a ( a) ( a). -a -a - -b doubl xpoial b a ( a)( b) i ω i wav ω hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 7

ω coφ iφ i (ω φ) ω co ω coi wav ω rcagular pul h! ordr ramp ( > ) a ih a hyprbolic i a coh a hyprbolic coi a a. () b. () addiio a.f () b.f () d ( ) d ir drivaiv F() ( - ) d ( ) d h drivaiv F() j j j d d ( ) ( ) d dii igral F( ).() (-).() d F( ) d d F( ) d -α.() xpoial muliplir F(α) (-τ) hi -τ.f() priodic ucio (priod ) ( ( ).. ) d hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 8

rai Aalyi o Circui uig h Laplac raorm lcrical Circui ar uually govrd by liar dirial quaio. Sic drivaiv ad igral g covrd o muliplicaio ad diviio i h -domai, h oluio o circui quaio ca b covrd o h oluio o algbraic quaio. L u ir coidr h rpraio o h hr baic circui compo i Laplac raorm aalyi. (a) iiv lm i() I() I() v() V() V() v(). i() V(). I() i ( ) v( ) I ( ) V ( ) hu h rior may b rprd by a impdac o valu v i h -domai. (b) Iduciv lm L i() L I() L L. i( - ) V() I() L v() d i( ) v() L. d V() V() L. I() L.i( - ) i( ) i ( ) v( ). d i( ) I ( ). V ( ) L L hu h iducor may b rprd by a impdac o valu L ad ihr a ri volag ourc or a paralll curr ourc. h ourc rpr h iiial rgy ord i h iducor a im. I i o b od ha h iiial curr i( - ) appar i boh orm o h quaio ad ha o orm ca b obaid algbraically rom h ohr, wihou rorig o ay addiioal iormaio. (c) Capaciiv lm L v ( ) V() i() C I() C I() C i( v() v ( ) i( ). d v( C d v( ) i() C. d ) V() v( ) V ( ). I( ) C C. v( - ) I() C. I() C.v( - ) hu h capacior may b rprd by a impdac o valu ad ihr a ri C volag ourc or a paralll curr ourc. A wih h iducor h ourc rpr h iiial rgy ord i h capacior a im. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 9

I addiio o Ohm Law ad Kircho law, Suprpoiio, hvi ad Noro horm may alo b applid o h raormd circui i h -domai. Uig h circui, ad h raorm o ourc volag ad/or curr, h ym rai could b obaid. You would by ow hav ralid ha hi mhod i much l diou ha h oluio o h dirial quaio o id h rai oluio ad h ubiuig h iiial ad ial codiio applicabl. xampl Fid h Laplac raorm o h ollowig wavorm. (a) (b) () () / Soluio (a) uig ir pricipl / [()] ( ).. d... d ( ).. d () i ω or < < / () lwhr...... d...( ) ( ). ( )..( ) ( ) [ ].[ ] 3 uig propri rom abl (hi i o alway poibl) () () h par o h ramp rom o ca b coidrd a h addiio o a poiiv ramp a, a gaiv ramp a ad a gaiv p o magiud a im. h rmaiig par o h wavorm ca b coidrd o b mad up o a gaiv p wavorm o magiud a, ad a poiiv p alo o magiud a. Suprpoiio o h wavorm will giv h rula wavorm. h will hav Laplac raorm which will add up a ollow. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

/ [()]...... [ ].[ ] 3 which i h idical rul ha wa obaid rom h ormal mhod. (b) () () / / W may alo work hi problm uig abl. h giv wavorm ca alo b coidrd a b buil up o a caual i wav arig a, ad a gaiv o ha wavorm arig a /. hu h raorm o h wavorm i giv by / [()] ω ω. ω xampl Drmi h rai volag apparig acro h capacior wh h wich i clod a A i ω im. Capacior C i iiially uchargd. Soluio h raormd circui i how. h capacior ha o b aociad wih a ourc a hr i o iiial charg (or volag) o h capacior. A. ω Uig poial dividr acio ω V ( ) ou C A. ω C C ω A ω A. α ω V ou ( ).., whr α C ω α ω C hi ca b pli up a ollow. A. ω. α α V ou ( ) ω α α ω Uig h abl, h ivr raorm i h giv a A. ω. α α α vou ( ) coω iω ω α ω C C v ou V ou () hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

xampl 3 I a ri LC circui, iiially h capacior i chargd o a volag o V o ad h iducor do o carry ay curr. A im, a p volag o magiud i applid o h ri combiaio. Drmi h rai volag acro L. Soluio V i() C I() C V.H() v() V() L L h circui i ir raormd o h Laplac domai. h volag ourc orm i lcd or h capaciac bcau h circui i a ri circui ad ha orm mak calculaio air. Sic hr i o iiial curr i h iducor, o ourc ha b aociad wih h iducor. I ( ) L ω LC V L C V() L.I() v( ) ( V ) co xampl 4 V L L C, V ( ) ( V ) LC V LC LC ω o ( V ) LC Figur how a circui which ha rachd ady a wih wich clod. I h wich S i opd a im, obai a xprio or h uig curr hrough h iducor. Ω S C µf L mh V Ω Soluio From poial dividr acio, udr ady a codiio, hal h upply volag will drop acro ad hal h volag acro. hror h volag acro h capacior iiially will b / 5 V, ad h iducor curr will b / 5 A. hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr

raorm h circui o h Laplac domai. I() S 5 6.. 5 No h dircio o h wo ourc. h corrpod o h dircio o h iiial volag acro h capacior ad h iiial curr hrough h iducor. No alo ha ic wich S i ow opd a, oly h ohr wo brach will bcom par o h circui. 5.5 5.5 hu I() 5 5.. 5 5 5 5 5( 5).86 3.5 I() ( 5) 3.5 ( 5) 3.5 ( 5) 3.5 Fidig h ivr raorm rom h adard xprio, i() 5 co3.5.86 i 3.5 A 5 5 7 hory o lcriciy Aalyi o No-iuoidal Wavorm - Par J Luca Novmbr 3