Literature Report 3. Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A. Date :

Similar documents
Construction of Chiral Tetrahydro-β-Carbolines: Asymmetric Pictet Spengler Reaction of Indolyl Dihydropyridines

Total Synthesis of (+/-)-Goniomitine via a Formal Nitrile/Donor-Acceptor Cyclopropane [3 + 2] Cyclization

Catalytic Asymmetric [4+1] Annulation of Sulfur Ylides with Copper Allenylidene Intermediates. Reporter: Jie Wang Checker: Shubo Hu Date: 2016/08/02

Recent Total Syntheses! Published in Nature!

Rhodium-Catalyzed Enantioselective

Additions to Metal-Alkene and -Alkyne Complexes

Functionalization of C(sp 3 ) H Bonds Using a Transient Directing Group

Literature Report 2. Divergent Asymmetric Total Synthesis of Mulinane Diterpenoids. Date :

Short Access to (+)-Lupinine and (+)-Epiquinamide via Double Hydroformylation

Literature Report. A 11-Steps Total Synthesis of Magellanine through a Gold(І)-Catalyzed Dehydro Diels-Alder Reaction

Literature Report I. Total Synthesis of (+)-Piperarborenine B. Reporter: Zheng Gu. Date:

Problem session (3) Daiki Kuwana. Please fill in the blank and explain reaction mechanisms and stereoselectivities.

Copper-Catalyzed Diastereoselective Arylation of Tryptophan Derivatives: Total Synthesis of (+)-

Literature Report III

Total Syntheses of Minfiensine

Total Synthesis of (-)-Mersicarpine

Total Synthesis of Oxazolomycin A

Stereoselective reactions of enolates

Nine-Step Enantioselective Total Synthesis of (+)-Minfiensine

Direct Organocatalytic Enantioselective Mannich Reactions of Ketimines: An Approach to Optically Active Quaternary α-amino Acid Derivatives

Asymmetric Nucleophilic Catalysis

Homogeneous Catalysis - B. List

JOC: 1985 Year in Review

Highlights of Schmidt Reaction in the Last Ten Years

Direct Oxidative Heck Cyclizations: Intramolecular Fujiwara-Moritani Arylations for the Synthesis of Functionalized Benzofurans and Dihydrobenzofurans

Welwitindolinones. Unusual Alkaloids From Blue-Green Algae. Eric Phillips December 4, R D N Me N H

Short Literature Presentation 10/4/2010 Erika A. Crane

CEM 852 Final Exam. May 6, 2010

Total Synthesis of (±)-Cephanolides B and C via a Palladium-Catalyzed Cascade Cyclization and Late-Stage sp 3 C H Bond Oxidation

Enantioselective 1,1-Arylborylation of. Transfer with Pd Catalysis

Total Synthesis towards Maoecrystal V

A Concise Synthesis of ( )- Aplyviolene Facilitated by a Stragetegic Ter<ary Radical Conjugate Addi<on

Strategies for Stereocontrolled Synthesis

A Review of Total Synthesis of Spirotryprostatin A and B. Jinglong Chen Supergroup meeting Princeton University June

Enantioselective Protonations

Application of Two Direct C(sp 3 )-H Functionalizations for the Total Synthesis of (+)-Lactacystin

Palladium-Catalyzed Asymmetric Benzylic Alkylation Reactions

Chem 316/422 Beauchamp 1 Match the step number in the synthesis with the letter of the reagents listed just below.

Domino Reactions in Total Synthesis! Reporter: Tianhe Yang! Supervisors: Prof. Yang! Prof. Chen! Prof. Tang!

Palladium-Catalyzed Oxygenation of Unactivated sp 3 C-H Bonds

Synthetic Developments Towards the Preparation of Erythromycin and Erythronolide Derivatives

Literature Report 2. Stereocontrolled Synthesis of Kalihinol C. Reiher, C. A.; Shenvi, R. A. J. Am. Chem. Soc. 2017, 139,

Concise, Asymmetric, Stereocontrolled Total Synthesis of Stephacidins A, B and Notoamide B

Synthesis of Amphidinolide X and an Exploration of Key Reactions

Literature Report IX. Cho, S. H. et al. Org. Lett. 2016, 18, Cho, S. H. et al. Angew. Chem. Int. Ed. 2017, 56,

4.MeOTf,DCM,76% 5.1-B,MeCN,50 C,89% 6.Oxone,MeCN/H 2 O,0 C,67% 7.PIFA,DCM,rt; TFA/H 2 O(3/1),55 C,26%

Synthesis of Atisine-type Alkaloids

Stereodivergent Catalysis. Aragorn Laverny SED Group Meeting July

Total Synthesis of the Sesquiterpenoid Periconianone A Based on a Postulated Biogenesis

The Career of Tristan H. Lambert

Dr. P. Wipf Page 1 of 5 10/7/2009. Cl Ru. Kingsbury, J. S.; Harrity, J. P. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121, 791.

Branched-Regioselective Hydroformylation with Catalytic Amounts of a Reversibly Bound Directing Group

Reporter: Yue Ji. Date: 2016/12/26

Catalytic alkylation of remote C H bonds enabled by proton-coupled electron transfer

Literature Report. Catalytic Enantioselective Synthesis of Isoindolinones through a Biomimetic Approach. : Zhong Yan : Ji Zhou :

Convergent Route to ent-kaurane Diterpenoids: Total Synthesis of Lungshengenin D and 1α6α- Diacetoxy-ent-kaura-9(11),16-dien- 12,15-dione

Enan$oselec$ve Total Synthesis of Amphidinolide F

Comparative Synthesis of Ingenol. Tyler W. Wilson SED Group Meeting

R or S? oxidation #: hybridization:

Copper-Catalyzed Synthesis of Esters from Ketones. Alkyl Group as a Leaving Group.

CH 3 TMG, DMF N H 3 CO 2 S. (PPh 3 ) 2 Pd 0

{ReBr(CO) 3 (THF)} 2 (2.5 mol%) 4-Å molecular sieves toluene, 115 o C, 24 h

ASYMMETRIC PALLADIUM-CATALYZED ALKENE CARBOAMINATION REACTIONS FOR THE SYNTHESIS OF CYCLIC SULFAMIDES

TMSCl imidazole DMF. Ph Ph OTMS. Michael reaction. Michael reaction Ph R 3. epoxidation O R

Towards Maoecrystal V: A Comparison of Recent Strategies

Literature Report 2. Total Synthesis of Longeracinphyllin A and (-)-Calyciphylline N. Date :

Huang, C.; Gevorgyan, V. J. Am. Chem. Soc. 2009, 131, Daniel Tzvi Cohen Short Literature Feb. 23, MeO HO OH. COOH ( )-Plicatic Acid OH OH

Literature Report 3. Total Synthesis of (+)-Pleuromutilin. Date :

Practical Synthesis of PC190723, an Inhibitor of the Bacterial Cell Division Protein FtsZ!

A Stereoselective Synthesis of (+)-Gonyautoxin 3

Larock Indole synthesis

Literature Report. Atroposelective Synthesis of Axially Chiral Arylpyrroles and Styrenes. : Zhong Yan : Ji Zhou :

Literature Report 5. Total Synthesis of Ileabethoxazole, Pseudopteroxazole, and seco-pseudopteroxazole

A Divergent Approach to The Synthesis of The Yohimbinoid Alkaloids Venenatine and Alstovenine

JACS ASAP Article: Published 3/12/08. Lei Jiao, Changxia Yuan and Zhi-Xiang Yu. Current Literature: 3/29/08. David Arnold

Synthetic Methodology. Using Tertiary Phosphines. as Nucleophilic Catalysts

Ladderanes: Uses and Synthesis. Nicholas Anderson Denmark Group Meeting October 28, 2008

Molybdenum-Catalyzed Asymmetric Allylic Alkylation

Syntheses of Leucascandrolide A. Supergroup Meeting August 4 th, 2004 Yu Yuan

Carbonyl Ylide Cycloadditions

Copper-Catalyzed Reaction of Alkyl Halides with Cyclopentadienylmagnesium Reagent

Stereoselective reactions of enolates: auxiliaries

"-Amino Acids: Function and Synthesis

Chiral Proton Catalysis in Organic Synthesis. Samantha M. Frawley Organic Seminar September 14 th, 2005

Studies on Heck and Suzuki Reactions Catalyzed by Palladium(0) and Wacker- Type Oxidative Cyclization Catalyzed by Palladium(II)

The aldol reaction with metal enolates proceeds by a chair-like, pericyclic process: favored. disfavored. favored. disfavored

Chiral Brønsted Acid Catalysis

Recent applications of chiral binaphtholderived phosphoric acid in catalytic asymmetric reactions

Chem 253 Problem Set 7 Due: Friday, December 3, 2004

Suggested solutions for Chapter 40

CHO. OMe. endo. xylene, 140 o C, 2 h 70% 1. CH 2 (OMe) 2, MeOH TsOH, rt 2. Bu 2 O, 1,2-dichloroethane 140 o C, 2 h 3. 6 M HCl, THF, rt 44%

Renaud Group Exercise Set

Asymmetric Catalysis by Lewis Acids and Amines

Synthesis of the Stenine Ring System from Pyrrole

H CH 2 -OH (4) H b. H H (5) (6) a. b.

Non-Enzymatic Enantioselective Polyene Cyclizations. Adam Hill Chem 535 May, 2 nd 2013

Organic Cumulative Exam October 13, 2016

Mechanism Problem. 1. NaH allyl bromide, THF N H

Total synthesis of Spongistatin

Stable gold(iii) catalysts by oxidative addition of a carboncarbon

Transcription:

Literature Report 3 Rapid Syntheses of (+)-Limaspermidine and (+)-Kopsihainanine A Reporter : Xiao-Yong Zhai Checker : Shubo u Date : 2017-10-30 Pritchett, B. P.; Donckele, E. J.; Stoltz, B. M. Angew. Chem. Int. Ed. 2017, 56, 12624.

CV of Brian M. Stoltz Education: 1989 1993 B.S., Indiana University of Pennsylvania 1993 1996 M.S., Yale University (John L. Wood) 1996 1997 Ph.D., Yale University (John L. Wood) 1998 2000 I Postdoctoral Fellow, arvard University (Elias J. Corey) Brian M. Stoltz 2000 2006 Assistant professor, California Institute of Technology 2006 2017 Professor, California Institute of Technology Research: Developing new methodology for synthetic chemistry, such as oxidative kinetic resolution, enantioselective allylic alkylation and aerobic oxidative annulation etc; Designing new strategies for the preparation of complex molecules, such as Cyanthiwigin F and Aspewentins A, B, C etc. 2

Contents 1 2 3 4 5 Introduction Total Synthesis of (+)-Limaspermidine Total Synthesis of (+)-Kopsihainanine A Total Synthesis of (-)-Aspidospermidine Summary 3

Introduction (+)-Kopsihainanine A Kopsia hainanensis ( 海南蕊木 ) Isolated from the Kopsia hainanensis in 2011; Possessing 6/5/6/6/6 pentacyclic ring; Exhibiting inhibitory activity against acetylcholine esterase (AChE) (IC 50 38.5 μm). Gao, K. et al. rg. Biomol. Chem. 2011, 9, 5334. 4

Introduction Selected Aspidosperma and Kopsia alkaloids E D A B C C 2 Me (+)-Limaspermidine Cylindrocarine C 2 Me Minovincine E D E D C 2 Me Vincadifformine A B C (-)-Aspidospermidine A B C (+)-Kopsihainanine A Shao, Z-. et al. Angew. Chem. Int. Ed. 2013, 52, 4117. 5

Retrosynthetic analysis A B E C D (-)-Aspidospermidine A PG E D C PG A B C (+)-Kopsihainanine A B ydrolysis of the nitrile group Selective reduction ighly cis-selective cyclization C Enantioselective decarboxylative allylic alkylation C E PG D PG Shao, Z-. et al. Angew. Chem. Int. Ed. 2013, 52, 4117. 6

Total synthesis of (-)-Aspidospermidine Cl LDA, TF, -78 o C C t-buk TF/t-Bu (10:1) (83% ) (78% ) 1 2 [Pd2(dba)3] (2.5 mol %) L2 (6.25 mol %) C C toluene, 70 o C Asymmetric decarboxylative allylation 3 4 PPh 2 L2 t-bu 7

Asymmetric decarboxylative allylation C C C [Pd2(dba)3] (2.5 mol %) ligand (6.25 mol %) solvent, temperature 3 4 4' + Entry L Solvent T/ o C 4:4 Yield/% ee of 4 1 L1 toluene 70 0:100 0-2 L2 toluene 70 19:1 93 92 3 L3 toluene 70 6:1 75-74 PPh 2 Ph 2 P L1 4 L4 toluene 70 6:1 80-40 5 L5 toluene 70 3:1 66 22 PPh 2 PPh 2 6 L2 TF 70 1.6:1 51 89 L2 t-bu L3 Ph 7 L2 m-xylene 70 3.4:1 64 93 8 L2 benzene 70 4.6:1 74 76 9 L2 toluene 55 1.7:1 57 88 PPh 2 PPh 2 PPh 2 PPh 2 10 L2 toluene 80 2.7:1 67 91 L4 L5 8

Total synthesis of (-)-Aspidospermidine C C 2 LiAl 4, TF, -20 o C C 2, RT then Cl (2 M) (93% ) (94% ) Chemoselective reduction Diastereoselective cyclization ee = 92% ee = 91% 4 5 6 K 2 s 4 2 2, M TF/ 2 (1:1) then ai 4 (95% ) 1,2-ethanedithiol BF 3 Et 2, DCM (94% ) S S Raney nickel, 2 Et, 60 o C (91% ) 7 8 LiAl 4, Et 2, reflux a/ 3, TF, -78 o C (89% ) (95% ) 9 10 11 9

Diastereoselective cyclization C 2 LiAl 4, TF, -20 o C then Cl (2 M) C 2 2 2 She, X. et al. Chem. Eur. J. 2012, 18, 6729. 10

Total synthesis of (-)-Aspidospermidine C C 2 LiAl 4, TF, -20 o C C 2, RT then Cl (2 M) (93% ) (94% ) Chemoselective reduction Diastereoselective cyclization ee = 92% ee = 91% 4 5 6 K 2 s 4 2 2, M TF/ 2 (1:1) then ai 4 (95% ) 1,2-ethanedithiol BF 3 Et 2, DCM (94% ) S S Raney nickel, 2 Et, 60 o C (91% ) 7 8 LiAl 4, Et 2, reflux a/ 3, TF, -78 o C (89% ) (95% ) 9 10 11 11

Total synthesis of (-)-Aspidospermidine 2-chloroacetyl chloride Et 3, DCM, 2 h (69% ) Cl ai, acetone, reflux then EtAc (72% ) 11 12 13 LiAl 4, TF rt to reflux (62% ) (-)-Aspidospermidine (14) 12

Total synthesis of (+)-Kopsihainanine A B 3 TF, -20 o C then ab 3, RT MsCl, Et 3, DCM, 0 o C then a, DMF, 0 o C to RT (33% ) (50% ) 6 15 LDA, a 2 S 3 2, 0 o C to RT AlCl 3, toluene Cl Cl Cl Al (58% ) 16 17 saturated aqueous solution of Rochelle salt RT, overnight (71% ) (+)-Kopsihainanine A (18) 13

Retrosynthetic analysis of (+)-Kopsihainanine A Palladium Catalysis and Regiodivergent Cyclizations (2016) Et Pd-Catalyzed Allylic Alkylation 59-83% yield 87-96% ee Et Et Et Et Aspidospermidine Goniomitine Qubrachamine Stoltz, B. M. et al. Angew. Chem. Int. Ed. 2016, 55, 13529. 14

Retrosynthetic analysis of (+)-Kopsihainanine A R hydride addition is stereodefining C trans-fused (+)-Kopsihainanine A X B R C-C bond formation - 2 A R + - 2 X D R C-C bond formation is stereodefining (+)-Limaspermidine E cis-fused Stoltz, B. M. et al. Angew. Chem. Int. Ed. 2017, 56, 12624. R 15

Total synthesis of (+)-Limaspermidine (1) LMDS, allyl cyanoformate TF, -78 o C to 0 o C (2) C 2 C 2 I, K 2 C 3 (80% over 2 steps) L1 (12.5 mol %) Pd(pmdba)3 (5 mol %) TBME, 60 o C (82% yield, 94% ee) 1 2 Cp2Zr()Cl 2 S 3 TF Pictet-Spengler cyclization LiAl 4, Ac, 2 TF, 0 o C to 23 o C 2 3 4 5 K 2 C 3, BrC 2 C 2 (62% over 3 steps) PAr 2 6 Ar = 4-CF 3 -C 6 4 t-bu (S)-(CF3)3-t-BuPX (L1) 16

Pictet Spengler cyclization LiAl 4, Ac, 2 TF, 0 o C to 23 o C 2 LiAl 4 2-17

Total synthesis of (+)-Limaspermidine (1) LMDS, allyl cyanoformate TF, -78 o C to 0 o C (2) C 2 C 2 I, K 2 C 3 (80% over 2 steps) L1 (12.5 mol %) Pd(pmdba)3 (5 mol %) TBME, 60 o C (82% yield, 94% ee) 1 2 Cp2Zr()Cl 2 S 3 TF Pictet-Spengler cyclization LiAl 4, Ac, 2 TF, 0 o C to 23 o C 2 3 4 5 K 2 C 3, BrC 2 C 2 (62% over 3 steps) PAr 2 6 Ar = 4-CF 3 -C 6 4 t-bu (S)-(CF3)3-t-BuPX (L1) 18

Total synthesis of (+)-Limaspermidine MsCl, DIPEA, DCM, -20 o C ab 4 Kt-Bu, TF, 0 o C to 23 o C 6 7 Et, 0 o C (72% over 2 steps) BF 3 Et 2 EtS, 0 o C to 23 o C (84% yield) 8 (+)-Limaspermidine (9) 19

Total synthesis of (+)-Kopsihainanine A (1) LMDS, allyl cyanoformate TF, -78 o C to 0 o C (2) DBU, methyl acrylate (92% over 2 steps) 1 10 C 2 Me L1 (12.5 mol %) Pd(pmdba)3 (5 mol %) MTBE, 60 o C (90% yield, 92% ee) Rh-catalyzed hydroboration RhCl(PPh3)3 (5 mol %) catecholborane ab 3 4 2 (87% yield) 11 Me 2 C 12 Me 2 C (1) MsCl, Et 3, DCM, 0 o C (2) a 3, DMF, 60 o C (88% over 2 steps) 13 Me 2 C Staudinger reduction PPh 3 (polymer -bound) TF/ 2 (5:1), 65 o C 3 (81% yield) 14 C 2 Me PAr 2 Ar = 4-CF 3 -C 6 4 t-bu (S)-(CF3)3-t-BuPX (L1) 20

Rh-catalyzed hydroboration RhCl(PPh3)3 (5 mol %) catecholborane ab 3 4 2 Me 2 C Me 2 C R ab 3 4 2 B R [RhClL3] -L B [RhClL2] R B L Rh L Cl B L Rh L Cl -L R R B Rh L Cl oth,. et al. Angew. Chem. Int. Ed. 1985, 24, 878. 21

Total synthesis of (+)-Kopsihainanine A (1) LMDS, allyl cyanoformate TF, -78 o C to 0 o C (2) DBU, methyl acrylate MeC, 23 o C (92% over 2 steps) 1 10 C 2 Me L1 (12.5 mol %) Pd(pmdba)3 (5 mol %) MTBE, 60 o C (90% yield, 92% ee) Rh-catalyzed hydroboration RhCl(PPh3)3 (5 mol %) catecholbormate, TF, 23 o C ab 3 4 2 TF/ 2, 85 o C (87% yield) 11 Me 2 C 12 Me 2 C (1) MsCl, Et 3, DCM, 0 o C (2) a 3, DMF, 60 o C (88% over 2 steps) 13 Me 2 C Staudinger reduction PPh 3 (polymer -bound) TF/ 2 (5:1), 65 o C 3 (81% yield) 14 C 2 Me PAr 2 Ar = 4-CF 3 -C 6 4 t-bu (S)-(CF3)3-t-BuPX (L1) 22

Staudinger reduction PPh 3 (polymer -bound) TF/ 2 (5:1), 65 o C Me 2 C 3 (81% yield) C 2 Me R 1 R 1 R 1 + PPh 3 PPh 3 R 2 R 2 R 2 PPh 3 R 1 R 2 PPh 3 R 1 R 2 PPh 3 R 1 2 + PPh 3 R 2 23

Total synthesis of (+)-Kopsihainanine A 14 Bischler-apieralski Cyclization 2-Cl-pyr, Tf 2, DCM, -20 o C to 23 o C C 2 Me ab 4, Me, -20 o C (84% yield) 15 C 2 Me TBD toluene/tf (5:1), 80 o C (65% yield) 16 LDMA, MPA, (TMS)2 TF, -78 o C to 0 o C (91% yield) (+)-Kopsihainanine A (17) 24

Bischler-apieralski cyclization 2-Cl-pyr, Tf 2 DCM, -20 o C to 23 o C C 2 Me ab 4 C 2 Me Tf Tf -Tf Tf -Tf Tf Tf - ab 4 25

Total synthesis of (+)-Kopsihainanine A Bischler-apieralski cyclization 2-Cl-pyr, Tf 2, DCM, -20 o C to 23 o C TBD 14 C 2 Me ab 4 (84% yield) 15 C 2 Me toluene/tf (5:1), 80 o C (65% yield) 16 LDMA, MPA, (TMS)2 TF, -78 o C to 0 o C (91% yield) (+)-Kopsihainanine A (17) 26

Summary (-)-Aspidospermidine (-)-Aspidospermidine: 13 Steps, 11.1% overall yield; (+)-Kopsihainanine A: 9 Steps, 3.6% overall yield; The first catalytic enantioselective total synthesis of (+)-Kopsihainanine A; The first Pd-catalyzed enantioselective decarboxylative allylic alkylation of carbazolone enolates. Shao, Z-. et al. Angew. Chem. Int. Ed. 2013, 52, 4117. (+)-Limaspermidine (+)-Kopsihainanine A (+)-Limaspermidine: 8 Steps, 25.0% overall yield; (+)-Kopsihainanine A: 10 Steps, 16.0% overall yield; Enantioselective Pd-catalyzed allylic alkylations of DPI; ne-pot hydroamination/reduction/pictet Spengler sequence; Bischler apieralski cyclization. Stoltz, B. M. et al. Angew. Chem. Int. Ed. 2017, 56, 12624. 27

The first paragraph Monoterpene indole alkaloids from the structurally related Aspidosperma and Kopsia families have been studied for more than half a century owing to their intricate polycyclic structures and broad biological activities. ne significant structural difference between these families is the ring-fusion geometry of the octa- or decahydroquinoline moiety contained within the polycyclic core. Aspidosperma alkaloids typically possess a cis-fused azadecalin motif. Conversely, members of the Kopsia family often contain a trans-fused azadecalin substructure. 28

The last paragraph In conclusion, the combination of enantioselective Pd-catalyzed allylic alkylations of dihydropyrido[1,2-a]indolone (DPI) substrates with stereodivergent indole iminium cyclization strategies is a powerful tool for the synthesis of monoterpene indole alkaloids. The Aspidosperma family of alkaloids can be accessed through stereodefining C-C bond formation, as highlighted herein by our synthesis of (+)-limaspermidine in eight linear steps and in 25% overall yield from tricyclic DPI. Critically, a highly productive one-pot hydroamination/reduction/pictet Spengler sequence enabled the synthesis of the cis-fused decahydroquinoline moiety present in (+)-Limaspermidine. 29

The last paragraph Furthermore, the Kopsia family of alkaloids can be accessed using a Bischler apieralski cyclization, followed by stereodefining hydride addition to furnish the opposite diastereomeric series. This capability was demonstrated through a nine-step synthesis (28% overall yield) of strained lactam 29, thereby completing a formal synthesis of (+)- kopsihainanine A. Efforts to further exploit the synthetic utility conferred by the DPI substrate class, particularly in the synthesis of more highly caged Kopsia alkaloids, will be reported in due course. 30

Acknowledgement 31

The formation of DPI + Et 3, DMAP quant. C 2 (CCl)2, DMF, then AlCl 3, 50 o C 91% ab 4 TF, 0 o C to 23 o C TFA, Et 3 Si DCM, 0 o C to 23 o C 32

Formal anti-markovnikov hydroamination Cp2Zr()Cl 2 S 3, TF, 23 o C Cp2Zr()Cl 2 2 S 3 Cp2ZrCl Cp2ZrCl 33