Lect. 13: Oblique Incidence at Dielectric Interface

Similar documents
Lect. 12: Oblique Incidence at Dielectric Interface

Scattering at an Interface: Oblique Incidence

II. Light is a Ray (Geometrical Optics)

Lecture 5. Plane Wave Reflection and Transmission

ECE 107: Electromagnetism

Reflection and Refraction

Anisotropy and oblique total transmission at a planar negative-index interface

Incident ray Reflected ray θ i. θ r

16 Reflection and transmission, TE mode

Lecture 3. Interaction of radiation with surfaces. Upcoming classes

Notes on the stability of dynamic systems and the use of Eigen Values.

Let s treat the problem of the response of a system to an applied external force. Again,

Solution in semi infinite diffusion couples (error function analysis)

Rotations.

10.7 Power and the Poynting Vector Electromagnetic Wave Propagation Power and the Poynting Vector

Triple Integrals. y x

Bag for Sophia by Leonie Bateman and Deirdre Bond-Abel

The Elastic Wave Equation. The elastic wave equation

T h e C S E T I P r o j e c t

Fresnel Equations cont.


2. Light & Electromagne3c Spectrum

MATH 2300 review problems for Exam 3 ANSWERS

In order to take a closer look at what I m talking about, grab a sheet of graph paper and graph: y = x 2 We ll come back to that graph in a minute.

Chapter 4 Reflection and Transmission of Waves

TSS = SST + SSE An orthogonal partition of the total SS

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

T. Tokieda Lyon, August An invitation to simple modeling of complex phenomena

Physics/Astronomy 226, Problem set 2, Due 1/27 Solutions

QUADRATIC GRAPHS ALGEBRA 2. Dr Adrian Jannetta MIMA CMath FRAS INU0114/514 (MATHS 1) Quadratic Graphs 1/ 16 Adrian Jannetta

An Introduc+on to X-ray Reflec+vity

Lesson 2 Transmission Lines Fundamentals

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

Real-time electron dynamics in solids under strong electromagnetic fields

Engineering Mathematics I

b g b g b g Chapter 2 Wave Motion 2.1 One Dimensional Waves A wave : A self-sustaining disturbance of the medium Hecht;8/30/2010; 2-1

Math-2. Lesson:1-2 Properties of Exponents

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

Boundaries, Near-field Optics

ENV 6015 Solution to Mixing Problem Set

Elliptically Contoured Distributions

Unit 12 Study Notes 1 Systems of Equations

Light- Ma*er Interac0ons CHEM 314

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

1.2 Functions and Their Properties PreCalculus

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Infinitesimal Rotations

Physics 201, Lecture 5

Components Model. Remember that we said that it was useful to think about the components representation

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

σ = F/A. (1.2) σ xy σ yy σ zy , (1.3) σ xz σ yz σ zz The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

First Order Equations

Midterm Exam. Thursday, April hour, 15 minutes

Electromagnetic optics!

Mechanics Physics 151

Section 8.5 Parametric Equations

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

Bound states in a box

A L A BA M A L A W R E V IE W

Mechanics Physics 151

A. Inventory model. Why are we interested in it? What do we really study in such cases.

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

Chapter 6: Inverse Trig Functions

P a g e 5 1 of R e p o r t P B 4 / 0 9

Math 222 Spring 2013 Exam 3 Review Problem Answers

Peculiarities of THz-electromagnetic wave transmission through the GaN films under conditions of cyclotron and optical phonon transit-time resonances


Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions

or just I if the set A is clear. Hence we have for all x in A the identity function I ( )

CONSERVATION OF ANGULAR MOMENTUM FOR A CONTINUUM

Reading. 4. Affine transformations. Required: Watt, Section 1.1. Further reading:

KEY. Math 334 Midterm I Fall 2008 sections 001 and 003 Instructor: Scott Glasgow

1 HOMOGENEOUS TRANSFORMATIONS

LESSON 4.3 GRAPHING INEQUALITIES

Part I- Wave Reflection and Transmission at Normal Incident. Part II- Wave Reflection and Transmission at Oblique Incident

Advanced Machine Learning & Perception

Math 208 Surface integrals and the differentials for flux integrals. n and separately. But the proof on page 889 of the formula dσ = r r du dv on page

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is.

CHAPTER 10: LINEAR DISCRIMINATION

CS 378: Computer Game Technology

Diffraction by dielectric wedges: high frequency and time domain solutions

Static Equilibrium, Gravitation, Periodic Motion

Unit Circle: The unit circle has radius 1 unit and is centred at the origin on the Cartesian plane. POA

Fixed-end point problems

( A) ( B) ( C) ( D) ( E)

R = { } Fill-in-the-Table with the missing vocabulary terms: 1) 2) Fill-in-the-blanks: Function

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Wave Phenomena Physics 15c

FUNCTIONS OF ONE VARIABLE FUNCTION DEFINITIONS

72 Calculus and Structures

Theory of Optical Waveguide

Pre-Calculus Notes Section 12.2 Evaluating Limits DAY ONE: Lets look at finding the following limits using the calculator and algebraically.

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

Transcription:

E r Lec. 3: Oblque Incdence a Delecrc Inerface H r ε,μ ε,μ θ r θ E E H (Cheng 8-0) E E ep( j)ep( j) Er E ep( jr)ep( jr) E E ep( j)ep( j) E H ( cos sn ) ep( j)ep( j) E Hr ( cosr sn r) ep( jr)ep( jr) E H ( cos sn ) ep( j)ep( j) H Perpendcular Polaraon Unknowns:,,, r E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface E r H r ε,μ ε,μ θ r θ E H E H E E ep( j)ep( j) Er E ep( jr)ep( jr) E E ep( j)ep( j) B.C.'s a 0 ) E connuous (E Er E ) an ep( j ) ep( j ) ep( j ) r ( a) and (b) r From : r sn sn Wh and n r n sn n sn r : an all dencal sn sn Snell's Law E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface Snell's Law: n sn n sn Refracon E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface E r H r ε,μ θ r ε,μ θ E H B.C.'s a 0 ) H connuous an cos cos cos E H E&M (6/) E H ( cos sn ) ep( j)ep( j) E Hr ( cos sn ) ep( j)ep( j) E H ( cos sn ) ep( j)ep( j) Wh, /cos /cos /cos /cos /cos /cos /cos W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface H r E r ε,μ ε,μ E /cos /cos /cos /cos θ r θ H /cos /cos /cos E H Remember for normal ncden η η η η, τ η η η For oblque ncdence of perpendcular polaraon, effecvel, cos cos E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface θ 0, 0 E r H r θ r E H 4 0, 0 For 0 sn sn(0 ) 9.85 E -0.354, = 0.6458 H Incden and Transmed Waves E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface Hr Er 0, 0 E θr θ H 4 0, 0 9.85-0.354, = 0.6458 E H For 0 Refleced and Transmed Waves E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface Hr Er 0, 0 θr θ H 4 0, 0-0.354, = 0.6458 E H 9.85 For 0 E Toal and Transmed Waves E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface Parallel Polaraon H H ep( j)ep( j) H r ε,μ ε,μ E H r H r ep( j r)ep( j r ) E r H H H ep( j )ep( j ) θ r θ E ( cos sn ) H ep( j)ep( j ) E Er ( cosr sn r ) H r ep( j r)ep( j r) H E ( cos sn ) H ep( j )ep( j ) E E r H r H H H E E E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface E r Parallel Polaraon H r ε,μ ε,μ E H E H r H H H E θ r θ H H ep( j)ep( j ) E H H r ( ) H ep( j r )ep( j r ) H H ep( j )ep( j ) E ( cos sn ) H ep( j)ep( j ) Er ( cosr sn r ) H ( ) ep( j r )ep( j r ) E ( cos sn ) H ep( j )ep( j ) E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface H r E B.C.'s a 0 E r E θ r ε,μ ε,μ θ H ) H counuous ( H H H ) an r ep( j ) ep( jr) ep( j) () a r (b) H From : all dencal r an H H ep( j)ep( j) H r ( ) H ep( j r)ep( j r ) ep( )ep( ) H H j j sn sn and sn sn r Wh and n r n sn n sn : Snell's Law E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface H r E B.C.'s a 0 E r ε,μ ε,μ H ) E connuous an θ r θ cos cos cos E H ll cos cos cos cos Wh,, cos ll cos cos E ( cos sn ) H ep( j)ep( j) Er ( cosr sn r ) H ( )ep( j r)ep( j r) E ( cos sn ) H ep( j )ep( j ) E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface E r H r ε,μ ε,μ E H ll cos cos cos cos, cos ll cos cos E H θ r θ Remember for normal ncden η η η η, τ η η η For oblque ncdence of parallel polaraon, effecvel cos, cos E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface 4, and 0 4, and 0 4 and -, 3 3 0 Perpendcular 4, and Polaraon 4, Parallel and Polaraon 0 9.85, 0.354, 0.646 9.85, 0.3, 0.656 E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface, and :from 0 o 90 Perpendcular Do ou see an dfference? Parallel E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface, and :from 0 o 90 Refleced and Transmed Waves onl Perpendcular Do ou see an dfference? Parallel E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface ε,μ ε,μ θ r θ For a ceran ncden angle, here s no reflecon for parallel polaraon Brewser angle E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface For /cos /cos 0 /cos /cos cos 0 cos n cos n cos, Bu n sn n sn No ess. (Snell's law) E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface For ll cos cos 0 cos cos cos cos 0 n cos n cos and n sn n sn n n n n n n sn and cos an n n For he prevous demo, an 54.7 For delecrc maerals, Brewser angle ess onl for parallel polaraon (Assumng ) E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface - Incden sun lgh has boh perpendcular and parallel polaraon - A Brewser angle, onl lgh wh perpendcular polaraon ges refleced - A polarer can block lgh wh ceran polaraon - Then, reflecon of sun lgh can be enrel blocked E&M (6/) W.-Y. Cho

Lec. 3: Oblque Incdence a Delecrc Inerface E&M (6/) W.-Y. Cho