Chemical reactions: Chemical reactions change substances into other substances.

Similar documents
Quantitative Chemistry

C2.6 Quantitative Chemistry Foundation

C2.6 Quantitative Chemistry Foundation

2. Relative molecular mass, M r - The relative molecular mass of a molecule is the average mass of the one molecule when compared with

Stoichiometry. Introduction. Rx between Hydrogen and Oxygen can be described as: Balanced equation: Or Avogadros Number: (number of Molecules)

5072 CHEMISTRY (NEW PAPERS WITH SPA) BASIC TECHNIQUES 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) BASIC TECHNIQUES

Chemical Bonds In elements and compounds, the atoms are held together by chemical bonds.

IGCSE (9-1) Edexcel - Chemistry

Bullers Wood School. Chemistry Department. Transition to A Level Chemistry Workbook. June 2018

THE ST. MICHAEL SCHOOL THIRD FORM CHEMISTRY MANUAL 3 SYMBOLS AND FORMULAE, CHEMICAL BONDING AND CHEMICAL EQUATIONS

Formulae and Equations

Summer Preparatory Tasks for A Level Chemistry 2017.

Year 12 Chemistry Transition Work - QPHS

Chemical Formulas and Equations

How many hydrogen atoms are there in the empirical formula of propene, C 3 H 6? How many neutrons are there in one atom of 24 Mg?

Chapter 5 Chemical Calculations

TOPIC 4: THE MOLE CONCEPTS

Trilogy Quantitative chemistry

Chemistry Section Review 7.3

TOPIC: Chemical Bonds

Symbols. Table 1 A set of common elements, their symbols and physical state

SCIENCE JSUNIL TUTORIAL CLASS 9. Activity 1

Quantitative Chemistry. AQA Chemistry topic 3

Chapter 3 The Mole and Stoichiometry

Unit 4. Multiple Choice Identify the choice that best completes the statement or answers the question.

Formulae of simple compounds

Chapter 6: Chemical Bonding

1 Chemical Reactions and Equations

(DO NOT WRITE ON THIS TEST)

1.21. Formulae, equations and amounts of substance

NCERT Solutions for Atoms and Molecules

Stoichiometry Part 1

SIXTH FORM AES CHEMISTRY TRANSITION UNIT. Name: Secondary School

Representing Chemical Change

Germanium 32. Nickel Uranium 92. Sulfur THE MOLE Worksheets

1.21. Formulae, equations and amounts of substance

Formulas and Models 1

Particle Relative Mass Charge

Chem!stry. Question 1: Which other chemical elements are diatomic? Write their names and formulae below:

THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY AT Myton School

Chem A Ch. 9 Practice Test

Contents. Content Guidance. Questions & Answers. Getting the most from this book... 4 About this book... 5

A-LEVEL TRANSITION COURSE SUMMER 2018 PART 2: USING CHEMICAL EQUATIONS

Year 10 Science Chemistry Examination November 2011 Part A Multiple Choice

St Robert of Newminster Catholic School and Sixth Form College

P & L. Johnson

Chapter 1 Chemical Reactions & Equations

The Masses of chemicals

REVIEW of Grade 11 Chemistry

Class IX Chapter 3 Atoms and Molecules Science

Questions Booklet. UNIT 1: Principles & Applications of Science I CHEMISTRY SECTION. Level 3 Applied Science. Name:.. Teacher:..

Unit 6: Mole Assignment Packet Period:

THE BRIDGING COURSE TO SIXTH FORM CHEMISTRY Birchwood High School

3. Which postulate of Dalton s atomic theory is the result of the law of conservation of mass?

Chapter 3. Mass Relationships in Chemical Reactions

End of chapter exercises

CHAPTER 11. The Mole. Mole. One mole of = 6.02 x 10 = 6.02 x 10 CaCl = 6.02 x x 10. Representative Particle. molecules, or formula units

Introduction to Chemical Reactions. Making new substances

Writing Formulas and Names of Compounds

Note Taking Guide: Episode 701. Lab results: 1 doz grains of rice = g (Use this fact as a conversion factor.) Avogadro s Number - the = the number

What is this booklet for: This is simply designed to be a bridging Chemistry booklet. It has work to prepare you for the A level you are starting in

Balancing CHEMICAL EQUATIONS

London Examinations IGCSE

A Level Chemistry. Ribston Hall High School. Pre Course Holiday Task. Name: School: ii) Maths:

Balancing Equations Notes

Chemistry Chapter 7 Test

Balancing Equations Notes

c. Methane and oxygen react to form carbon dioxide and water

CHEMICAL REACTIONS. Discuss breaking/forming bonds 10/29/2012. Products Reactants

Types of Chemical Reactions

Funsheet 3.0 [WRITING & BALANCING EQUATIONS] Gu/R. 2017

Balancing Equations Notes

Chapter 3. Molecules, Compounds, and Chemical Equations. Chemical Bonds

UNIT 1 Chemical Reactions Part II Workbook. Name:

CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS

Wales High School Science Department Chemistry. Name:

Metal + water -> metal hydroxide + hydrogen Metal + acid -> metal salt + hydrogen

Balancing Equations Notes

Name Honors Chemistry / / Chemical Equations Reactions

The following worked examples will show you how to do each of these. Percentage composition and empirical formula

SNC2D Chemistry Unit Test Practice

From Writing Formulas to Balancing Equations A Tutorial

Unit 5. Chemical Composition

CHEMICAL EQUATIONS WHAT BALANCING AN EQUATION MEANS

Chemical Reactions and Equations

Stoichiometry. Chapter 3

15.2 Oxidation-Reduction (Redox) Reactions

Chemical Reactions and Equations

Science Class 9 th ATOMS AND MOLECULES. Symbols of Atoms of Different Elements. Atomic Mass. Molecules. Ions. Mole Concept. Finish Line & Beyond

1. What is a dot diagram? 2. Drawing dot diagrams. Name:

Unit (2) Quantitative Chemistry

NATIONAL 5 CHEMISTRY

Unit 4 Conservation of Mass and Stoichiometry

Types of Chemical Reactions

Part 01 - Notes: Reactions & Classification

CHAPTER 8 CHEMICAL REACTIONS AND EQUATIONS

GraspIT AQA GCSE Quantitative changes

IB Topics 5 & 15 Multiple Choice Practice

Ch. 8 Chemical Reactions

Unit 8 Chemical Reactions- Funsheets

Transcription:

Chemical reactions: Chemical reactions change substances into other substances. A chemical equation is used to represent a reaction. This has the form: reactants à products Word equations use the names of the reactants and products. e.g. hydrogen + oxygen! water Balanced symbol equations use the formulae of the reactants and products. e.g. 2 H 2 + O 2! 2 H 2 O

Balancing Equations No atoms are lost or gained during a chemical reaction all the atoms in the reactants are there in the products. This is why equations have to be balanced. This means that mass does not change during a chemical reaction mass is conserved. We use numbers in front of the formula for each substance, to make sure that the total number of each atom on each side is the same. Don t change the formulae! - you d make it a different reaction. e.g. Si + H 2 SiH 4 Si + 2H 2 SiH 4 Not balanced! Balanced "

What happens in a chemical reactions: Chemical bonds in the reactants are broken The atoms are rearranged to make new substance(s) New bonds hold the atoms together in the products H H H H O O energy used to break bonds in the reactants H O H H H O atoms rearranged to make new substances H H O O H H bonds formed to hold atoms together

When does a reaction finish? When any ONE of the reactants is completely used up. Some of the other reactants will be left behind unreacted. The rusting reaction continues until all the iron has reacted there is an unlimited supply of oxygen in the air Whether there will be any metal left depends on whether the acid or the metal is in excess

Formulae of elements We use the symbol for the element, from the periodic table A few non-metals consist of pairs of atoms, covalently bonded together. ONLY these elements have a 2 after the element symbol. You can remember them from: H F Br O N I Cl E.g. Oxygen is O, and consists of pairs of atoms, so its formula is O 2. Sodium is Na and does not consist of pairs of atoms, so its formula is just Na. So for example in a balanced equation: 4 Na + O 2! 2 Na 2 O sodium + oxygen! sodium oxide

Formulae of compounds The chemical formula for a compound tells you What atoms are in it How many of each type of atom are present (the subscript number following the atom symbol) Formula How many of each atom NaCl 1 x Na 1 x Cl PCl 5 1 x P 5 x Cl H 2 SO 4 2 x H 1 x S 4 x O Ba(OH) 2 1 x Ba 2 x O 2 x H (NH 4 ) 2 SO 4 2 x N 8 x H 1 x S 4 x O

Working out the formula of ionic compounds: 1. Use the name to write the symbols for the ions present 2. Identify the valency/charge of each ion from its Group 3. Swap the valencies 4. Simplify if they will both divide by same number e.g. sodium sulphide calcium oxide Na S Ca O Valency: 1 2 Valency: 2 2 simplify! Formula: Na 2 S Formula: CaO not Ca 2 O 2! Work out formulae for aluminium fluoride, magnesium chloride, sodium bromide, magnesium oxide, potassium sulphide, calcium phosphide, indium oxide

Ions not in Group 1,2,3,5,6 or 7 Just learn these: Silver ion Ag + Copper ion Cu 2+ Zinc ion Zn 2+ Lead ion Pb 2+ Some transition metals can form more than one different ion: a number in roman numerals tells us its charge (which is the same as its valency): Iron(II) Fe 2+ Iron(III) Fe 3+ Work out formulae for copper oxide, iron(iii) chloride, zinc sulphide, silver oxide, lead iodide, iron(ii) oxide

Working out the formula of covalent compounds: 1) Use the name to identify the atoms present 2) Write the valency for each 3) Swap the valencies 4) Simplify if they will both divide by same number e.g. carbon dioxide C O Valencies: 4 2 Simplify! Formula: CO 2 not C 2 O 4! Work out formulae for a molecule made from i) hydrogen and carbon ii) hydrogen and nitrogen iii) sulphur and oxygen iv) carbon and sulphur

Types of formula The molecular formula tells you how many of each type of atom there are in a molecule e.g. NH 3 has 1 x N and 3 x H atoms = H = C = N = O What is the molecular formula of this substance?

Types of formula The Empirical formula is used when we can t count the atoms/ions in a substance s structure. It is the simplest whole-number ratio of the atoms or ions present. = Na = Cl What is the empirical formula of this substance?

Empirical and Molecular formulae can be the same as the molecular formula, but often is different we can turn a molecular formula into an empirical formula by dividing by the largest number all the numbers in the formula will divide by e.g. Name Molecular formula Empirical formula water H 2 O ethane C 2 H 6 glucose C 6 H 12 O 6 benzene C 6 H 6 hydrazine N 2 H 4 H 2 O CH 3 CH 2 O CH NH 2

Relative Formula Mass Relative Formula Mass (M r ) This is the sum of the Relative Atomic Masses of all the atoms in the substance s formula. It has units of g/mol (we ll learn about mol later ) e.g. The formula for water is H 2 O. What is its M r? Find the Relative Atomic Masses of the atoms involved: O=16 H=1 Add them together according to the formula: H 2 O = 1 + 1 + 16 = 18

Show that the Relative Formula Mass of each substance below is as given: Hydrochloric acid HCl Methane CH 4 Carbon disulphide CS 2 Copper sulphate CuSO 4 Magnesium hydroxide Mg(OH) 2 36.5 16 76 160 58

Experiment to find out the empirical formula of a substance When an element combines with oxygen its mass changes. This can be used to work out the empirical formula of the oxide. e.g. Magnesium ribbon burns in air to form white magnesium oxide. Method: weigh a crucible and lid place magnesium ribbon in crucible with lid, and reweigh calculate the mass of magnesium used heat crucible until magnesium burns lift the lid occasionally until there is no further reaction allow the crucible and lid to cool, and reweigh calculate the mass of magnesium oxide formed

Results Mass of magnesium before burning: = 1.20g Mass of magnesium oxide after burning: = 2.00g Mass of oxygen that reacted = 2.00 1.20 = 0.80g Calculation Mg O mass (g) 1.20 0.80 A r 24 16 = Ratio: 0.05 : 0.05 Whole-number ratio: 1 : 1 (divide all by smallest) The empirical formula of magnesium oxide is MgO

Another experiment to find out the empirical formula of a substance When the oxygen is removed from copper oxide, its mass changes. This can be used to work out the empirical formula of copper oxide. Hydrogen reacts with the oxygen in copper oxide to form water, leaving the copper behind. Method: weigh the black copper oxide placed in the tube flow hydrogen gas over the copper oxide heat the black copper oxide until it turns to pink-brown copper weigh the copper that has been formed heat and re-weigh until the mass does not decrease any more record the final mass of copper formed

Results Mass of copper oxide before reacting: = 7.95g Mass of copper after reaction: = 6.35g Mass of oxygen removed = 8.00 6.35 = 1.60g Calculation Cu O mass (g) 6.35 1.60 A r 63.5 16 = Ratio: 0.10 : 0.10 Whole-number ratio: 1 : 1 The empirical formula of copper oxide is CuO

Calculating empirical formula from composition data: Sometimes we may simply be given the results of experiments to determine the composition of a compound; we should be able to work out the empirical formula. A substance contains 4.0g calcium, 1.2g carbon and 4.8g oxygen. What is its empirical formula? Ca C O mass 4.0 1.2 4.8 A r 40 12 16 = ratio 0.1 0.1 0.3 1 : 1 : 3 Formula is CaCO 3

We also get questions where we are given percentage of each element rather than mass. The method is the same: e.g. A hydrocarbon contains 25% of hydrogen and 75% of carbon. What is its empirical formula? H C mass 25% 75% A r 1 12 Ratio 25 6.25 now smallest 4 1 Formula is CH 4 A compound of phosphorus and fluorine only, contains 24.6% phosphorus. What is its empirical formula? P F mass 24.6 (100 24.6) = 75.4 A r 31 19 ratio 0.793548 3.96842 now smallest 1 5 Formula is PF 5

Sometimes the whole numbers don t come out as perfect integers usually because of rounding errors e.g. in the masses used. If an answer is NEARLY a whole number e.g. 2.997 or 3.0017 then you should round it to a whole number. If an answer is in-between whole numbers, it may be a fraction (e.g. ½): Al O Ratio 0.010 0.015 divide by smallest 1 : 1.5 deal with this by multiplying everything up x 2 2 : 3 Formula is Al 2 O 3

From empirical to molecular formula If you know the relative formula mass, M r, of a substance, you can convert the empirical to a molecular formula. Add up the masses of the atoms in the empirical formula Divide the relative formula mass by this number Multiply the empirical formula by the resulting factor e.g. A compound with empirical formula NO 2 is found to have a relative formula mass of 92. Work out its molecular formula. NO 2 = 14 + 16 + 16 = 46 M r = 92 92/46 = 2 So molecular formula = 2 x NO 2 = N 2 O 4 Practice: empirical formula HO empirical formula CH 2 M r = 34 M r = 56 empirical formula CH M r = 78

Water of crystallisation Crystals of ionic substances can contain fixed numbers of water molecules as part of the giant ionic lattice. e.g. the formula of copper(ii) sulphate crystals shown here is CuSO 4 5H 2 O This means there are 5 water molecules in the lattice for every one Cu 2+ and SO 4 2- ion.

The mass of these water molecules must be included in M r : CuSO 4.5H 2 O = 63.5 + 32 + (4x16) + 5x(1+1+16) Without the water of crystallisation, the substance is said to be anhydrous: Show that these relative formula masses are correct: alabaster CaSO 4.2H 2 O iron(ii) sulphate FeSO 4.7H 2 O cobalt(ii) chloride CoCl 2.6H 2 O 172 g/mol 278 g/mol 238 g/mol alum KAl(SO 4 ) 2.12H 2 O 474 g/mol

Experiment to calculate number of waters of crystallisation When hydrated crystals are heated to drive off the water of crystallisation, the decrease in mass can be used to work out how many waters of crystallisation the crystals contain. e.g. blue hydrated copper(ii) sulphate crystals have the formula: CuSO 4.nH 2 0 where n = integer To find n : Weigh the hydrated crystals Heat to remove the water of crystallisation (turns white) Allow to cool and weigh anhydrous copper sulphate Repeat heating and re-weighing until the mass does not decrease any more

Results Mass of hydrated crystals (before heating): 4.99g Mass of anhydrous crystals (after heating): 3.19g Mass of water given off = 4.99 3.19 = 1.80g Calculation M r of CuSO 4 = 63.5 + 32 + (4 x 16) = 159.5 g/mol M r of water = 1 + 1 + 16 = 18 g/mol CuSO 4 H 2 O mass (g) 3.19 1.80 M r (g/mol) 159.5 18 = Ratio 0.02 : 0.10 (divide all by smallest) 1 : 5 CuSO 4 5H 2 0