Chapter 2 Solutions. Chapter 2 Solutions 1. 4( z t) ( z t) z t

Similar documents
Chapter 2 Solutions. ψ 1 ψ. 16 t. ( z υt ), where υ is in the negative z direction. = 2 A. Chapter 2 Solutions = 32

THE PHYSICS OF WAVES CHAPTER 1. Problem 1.1 Show that Ψ(x, t) = (x vt) 2. is a traveling wave.

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear.

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x)

Traveling Waves: Energy Transport

Traveling Harmonic Waves

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Chapter 15. Mechanical Waves

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

Vectors. Introduction. Prof Dr Ahmet ATAÇ

Vectors for Physics. AP Physics C

MET 4301 LECTURE SEP17

Differential equations. Background mathematics review

Vectors. Introduction

α(t) = ω 2 θ (t) κ I ω = g L L g T = 2π mgh rot com I rot

Quantum Mechanics for Scientists and Engineers. David Miller

The Dirac δ-function

Waves Solutions to the Wave Equation Sine Waves Transverse Speed and Acceleration

Faculty of Computers and Information Fayoum University 2017/ 2018 Physics 2 (Waves)

Waves, the Wave Equation, and Phase Velocity

Quantum Physics Lecture 8

Chapter 15 Mechanical Waves

Periodic functions: simple harmonic oscillator

David A. Stephens Department of Mathematics and Statistics McGill University. October 28, 2006

is a What you Hear The Pressure Wave sets the Ear Drum into Vibration.

Coupled differential equations

2. Waves and the Wave Equation

1+t 2 (l) y = 2xy 3 (m) x = 2tx + 1 (n) x = 2tx + t (o) y = 1 + y (p) y = ty (q) y =

A = (a + 1) 2 = a 2 + 2a + 1

Apr 29, 2013 PHYSICS I Lecture 22

Lecture 3 (Scalar and Vector Multiplication & 1D Motion) Physics Spring 2017 Douglas Fields

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

Course Updates. 2) This week: Electromagnetic Waves +

BSP1153 Mechanics & Thermodynamics. Vector

Understand the basic principles of spectroscopy using selection rules and the energy levels. Derive Hund s Rule from the symmetrization postulate.

5.3. Polynomials and Polynomial Functions

3 What You Should Know About Complex Numbers

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Second-Order Linear ODEs

Differential Equations Review

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

APPENDIX : PARTIAL FRACTIONS

Introduction to Marine Hydrodynamics

Figure 1: Surface waves

Class 15 : Electromagnetic Waves

df(x) dx = h(x) Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

Linear second-order differential equations with constant coefficients and nonzero right-hand side

A-Level Maths Induction Summer Work

MATH 425, FINAL EXAM SOLUTIONS

Coordinate systems and vectors in three spatial dimensions

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

MATH 23 Exam 2 Review Solutions

Foundations of quantum mechanics

ENGI Gradient, Divergence, Curl Page 5.01

Lesson 3: Linear differential equations of the first order Solve each of the following differential equations by two methods.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Math review. Math review

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

Quantum Theory. Thornton and Rex, Ch. 6

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Solution of Additional Exercises for Chapter 4

3. Maxwell's Equations and Light Waves

1.47 Hz. T. (c) A sinusoidal wave travels one wavelength in one period: 1.40m 2.06m s. T

Review session Midterm 1

ELEG 3124 SYSTEMS AND SIGNALS Ch. 5 Fourier Transform

C3 A Booster Course. Workbook. 1. a) Sketch, on the same set of axis the graphs of y = x and y = 2x 3. (3) b) Hence, or otherwise, solve the equation

1 (2n)! (-1)n (θ) 2n

Quantum Theory. Thornton and Rex, Ch. 6

Second-Order Linear ODEs

Concepts from linear theory Extra Lecture

24. x 2 y xy y sec(ln x); 1 e x y 1 cos(ln x), y 2 sin(ln x) 25. y y tan x 26. y 4y sec 2x 28.

MAC 2311 Calculus I Spring 2004

2D and 3D Motion. with constant (uniform) acceleration

Differential equation of wave motion

2011 Form B Solution. Jim Rahn

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

2t t dt.. So the distance is (t2 +6) 3/2

ENGI Duffing s Equation Page 4.65

4. Fourier transform of unit step 2. The volume of the parallelepiped function : is : (A) (B) (D)

Chapter 16 Solutions

Introduction to Seismology Spring 2008

The Schroedinger equation

Electrodynamics HW Problems 06 EM Waves

Complex Numbers and the Complex Exponential

CHAPTER 17 HINT FOR EXERCISE 4

Chapter 29: Maxwell s Equation and EM Waves. Slide 29-1

Waves Part 3A: Standing Waves

MTH4101 CALCULUS II REVISION NOTES. 1. COMPLEX NUMBERS (Thomas Appendix 7 + lecture notes) ax 2 + bx + c = 0. x = b ± b 2 4ac 2a. i = 1.

4r 2 12r + 9 = 0. r = 24 ± y = e 3x. y = xe 3x. r 2 6r + 25 = 0. y(0) = c 1 = 3 y (0) = 3c 1 + 4c 2 = c 2 = 1

1 Distributions (due January 22, 2009)

Mathematics of Physics and Engineering II: Homework answers You are encouraged to disagree with everything that follows. P R and i j k 2 1 1

x 1. x n i + x 2 j (x 1, x 2, x 3 ) = x 1 j + x 3

Waves Primer II Basic wave form. Waves are: 1. Important 2. Easy 3. Neat

n=0 ( 1)n /(n + 1) converges, but not

Chapter 8 Integration Techniques and Improper Integrals

Chapter 33: ELECTROMAGNETIC WAVES 559

Quantum Physics Lecture 8

Review Problems for Test 2

Ma 221 Final Exam Solutions 5/14/13

Chapter 16 Waves in One Dimension

Transcription:

Chapter Solutions 1 Chapter Solutions.1. 1 z t ( z t) z z ( z t) t t It s a twice differentiable function of ( z t ), where is in the negative z direction. 1 y t ( y, t) ( y4 t) ( y 4 t) y y 8( y 4 t) t 3 t Thus, 4, 16, and, 1 y 16 t The velocity is 4 in the positive y direction..3 Starting with: A (, z t) ( zt) 1 1 z t ( ) z t A z [( zt ) 1] ( zt) 1 A 3 z [( zt) 1] [( zt) 1] 4( zt) ( zt) 1 A 3 3 [( zt) 1] [( zt) 1] 3( zt) 1 A [( z 3 t) 1]

Chapter Solutions ( zt) A t [( zt) 1] ( zt) A t t [( z t ) 1] 4 ( zt) A ( zt) 3 [( z t) 1] [( z t) 1] [( zt) 1] 4 ( zt) A 3 [( zt) 1] [( zt) 1] 3( zt) 1 A 3 [( zt) 1] Thus since 1 z t The wave moves with velocity in the positive z direction..4 c 8 c 3 10 m/ s 5.83110 7 5.145 10 m.5 Starting with: ( y, t) Aexp[ a( byct) ] ( y, t) Aexp[ a( byct) ] Aexp[ a( byct) ] Aa c c y texp[ a( byct) ] t b b b 4Aa c c y t exp[ a( byct) ] 4 t b b b Aa c y texp[ a( byct) ] y b b 4Aa c y t exp[ a( byct) ] 4 y b b 14 Hz Thus ( y, t) Aexp[ a( byct ) ] is a solution of the wave equation with cb / in the + y direction..6 number of waves 131, c, 9 (0.003) (.54 10 /580 10 ) 8 10 c / 310 /10, 3cm. Waves extend 3.9 m. 8 14 7.7 c / 3 10 /5 10 6 10 m 0.6 m. 8 6 3 310 /60 510 m 5 10 km. 7 8.8 5 10 6 10 300 m/s.

Chapter Solutions 3.9 The time between the crests is the period, so 1/s; hence 1/.0 Hz. As for the speed Lt / 4.5 m/1.5 s 3.0 m/s. We now know,, and and must determine. Thus, / 3.0 m/s/.0 Hz 1.5 m..10 = = 3.5 10 3 m/s = (4.3 m); = 0.81 khz..11 = = 1498 m/s = (440 HZ) ; = 3.40 m..1 = (10 m)/.0 s) = 5.0 m/s; = / = (5.0 m/s)/(0.50 m) = 10 Hz..13 (/ ) and so ( /)..14 q / /4 0 /4 / 3/4 sin q 1 / 0 / 1 / cos q 0 / 1 / 0 / sin(q /4) / 1 / 0 / 1 sin(q /) 0 / 1 / 0 / sin(q 3 /4) / 0 / -1 / 0 sin(q /) 0 / 1 / 0 / q 5/4 3/ 7/4 sin q 0 / 1 / 0 cos q 1 / 0 / 1 sin(q /4) / 0 / 1 / sin(q /) 1 0 / 1 sin(q 3 /4) / 1 / 0 / sin(q /) 1 / 0 / 1 sin q leads sin(q p/)..15.16 x / / 4 0 /4 / 3/4 kx x / 0 / 3/ cos( kx /4) / / / / cos( kx 3 /4) / / / / / / / t / /4 0 /4 / 3 /4 t ( / ) t / 0 / 3/ sin( t /4) / / / / / sin( /4 t) / / / / / / /

4 Chapter Solutions.17 Comparing y with Eq. (.13) tells us that A 0.0 m. Moreover, / 157 m 1 and so /(157m l ) 0.0400 m. The relationship between frequency and wavelength is, and so = / = (1. m/s)/0.0400 m 30 Hz. The period is the inverse of the frequency, and therefore l/ 0.033 s..18 (a) (4.0 0.0) m 4.0 m (b),so 0 m/s 5.0 Hz 4.0 m (c) ( xt, ) Asin( kxt ) From the figure, A = 0.00 m 1 k 0.5 m ; (5.0 Hz) 10 rad/ s 4.0 m ( xt, ) 0.00 msin x10t 0.00 cos x10t.19 (a) (30.0 0.0) cm 30.0 cm. (c), so / (100 cm/s)/(30.0 cm) 3.33 Hz.0 (a) (0.0 0.00) s 0.0 s. (b) 1/ 1/(0.0 s) 5.00 Hz. (c), so / (40.0 cm/s)/(5.00 s 1 ) 8.00 cm..1 A sin (k x t), 1 4sin(0.x 3t). (a) 3, (b) 1/0., (c) 1/3, (d) A 4, (e) 15, (f) positive x A sin(kx t), (1/.5) sin(7x 3.5t). (a) 3.5/, (b) / 7, (c) /3.5, (d) A 1/.5, (e) 1/, (f) negative x. From of Eq. (.6) (x, t) A sin(kx t) (a), so / (0.0 rad/s)/, (b) k /, so /k /(6.8 rad/m) 1.00 m, (c) 1/, so 1/ 1/(10.0/ Hz) 0.10s, (d) From the form of, A 30.0 cm, (e) /k (0.0 rad/s)/(6.8 rad/m) 3.18 m/s, (f) Negative sign indicates motion in x direction..3 (a) 10, (b) 5.0 10 14 8 c 3.0 10 7 Hz, (c) 6.0 10 m, 14 5.0 10 1 15 (e).0 10 s, (f) y direction (d) 3.0 10 8 m/s,.4 / x k and / t k. Therefore x t k k / (1/ ) / ( ) 0..5 / x k ; / t ; / ( v) / ( / ) k ; therefore, / x (1/ ) / t ( k k ) 0..6 (x, t) A cos(kx t (/)) A{cos(kx t) cos(/) sin(kx t) sin(/)} A sin(kx t).7 y A cos(kx t ), a y y. Simple harmonic motion since a y y.

Chapter Solutions 5.8. 10 15 s; therefore 1/ 4.5 10 14 Hz;, / 6.7 10 7 m and k / 9.4 10 6 m 1. (x, t) (10 3 V/m) cos[9.4 10 6 m 1 (x 3 10 8 (m/s)t)]. It s cosine because cos 0 1..9 y(x, t) C/[ (x t) ]..30 (0, t) A cos(kt ) A cos(kt) A cos(t), then (0, /) A cos(/) A cos () A, (0, 3/4) A cos(3/4) A cos(3/) 0..31 Since (y, t) (y t) A is only a function of (y t), it does satisfy the conditions set down for a wave. Since / y / t 0, this function is a solution of the wave equation. However, (y, 0) Ay is unbounded, so cannot represent a localized wave profile..3 k 3 10 6 m 1, 9 10 14 Hz, /k 3 10 8 m/s..33 / (.0 m/s)(1/4 s) 0.5 m z t ( zt, ) (0.00 m)sin 0.50 m 1/4 s 1.5 m. s ( zt, ) (0.00 m)sin 0.50 m 1/4 s (z, t) (0.00 m) sin (3.0 8.8) (z, t) (0.00 m) sin (11.8) (z, t) (0.00 m) sin 3.6 (z, t) (0.00 m) (0.9511) (z, t) 0.019 m.34 d / dt ( / x)( dx/ dt) ( / y)( dy/ dt ) and let y t whereupon d / dt / x( ) / t 0 and the desired result follows immediately..35 d / dt ( / x)( dx/ dt) / t 0 k( dx/ dt) k and this is zero provided dx/dt, as it should be. For the particular wave of d Problem.3, / y( ) / t 310 6 ( ) 910 14 0 dt and the speed is 3 10 8 m/s..36 a(bx + ct) ab (x + ct/b) g(x + t) and so c/b and the wave travels in the negative x-direction. Using Eq. (.34) / t / / x x t [ A( a)( bx ct) c exp[ a( bx ct) ]]/[ A( a)( bx ct) bexp[ a( bx ct) ]] c/ b; the minus sign tells us that the motion is in the negative x-direction..37 (z, 0) A sin(kz ); ( /1, 0) A sin( /6 ) 0.866; (/6, 0) A sin(/3 ) 1/; (/4, 0) A sin (/ ) 0. A sin (/ ) A(sin / cos cos / sin ) A cos 0, /. A sin(/3 /) A sin(5/6) 1/; therefore A 1, hence (z, 0) sin (kz /)..38 Both (a) and (b) are waves since they are twice differentiable functions of z t and x t, respectively. Thus for (a) a (z bt /a) and the velocity is b/a in the positive z-direction. For (b) a (x bt/a c/a) and the velocity is b/a in the negative x-direction.

6 Chapter Solutions.39 (a) (y, t) exp[ (ay bt) ], a traveling wave in the y direction, with speed /k b/a. (b) not a traveling wave. (c) traveling wave in the x direction, a/b, (d) traveling wave in the x direction, 1..40 (x, t) 5.0 exp[ ax ( bat / ) ], the propagation direction is negative x; ba / 0.6 m/s. (x, 0) 5.0 exp(5x )..41 / 0.300 m; 10.0 cm is a fraction of a wavelength viz. (0.100 m)/(0.300 m) 1/3; hence /3.09 rad. 8 1 310.4 30 corresponds to /1 or 4nm. 14 1 610.43 (x, t) A sin (x/ ± t/), 60 sin (x/400 10 9 t/1.33 10 15 ), 400 nm, 400 10 9 /1.33 10 15 3 10 8 m/s. (1/1.33) 10 15 Hz, 1.33 10 15 s..44 exp[ i]exp[ i] (cos isin )(cos i sin ) (cos cos sin sin ) i(sin cos cossin ) cos( ) isin( ) exp[ i ( )] * A exp[it] A exp[ it] A * ; A. In terms of Euler s formula * A (cost i sin t)(cos t i sin t) A (cos t sin t) A..45 If z x iy, then z * x iy and z z * yi..46 z 1 x1 iy1 z x iy z1 z x1 x iy1 iy Re( z1 z) x1 x Re( z ) Re( z ) x x 1 1.47 z 1 x1 iy1 z x iy Re( z1) Re( z) x1x Re( z z ) Re( x x ix y ix y y y ) x x y y Re( z ) Re( z ) Re( z z ). 1 1 1 1 1 1 1 Thus 1 1.48 A exp i(k x x k y y k z z), k x k, k y k, k z k, 1/ 1/ k [( k) ( k) ( k) ] k( )..49 Consider Eq. (.64), with / x f, / y f, /, /. z f t f Then t f whenever (1/ ) / ( 1) 0 1. *************************<<INSERT MATTER OF.50 IS MISSING>>***********************

Chapter Solutions 7.51 Consider the function: (z, t) Aexp[(a z b t abzt)]. Where A, a, and b are all constants. First factor the exponent: (a z b t abzt) (az bt) 1 b z t. a a 1 b Thus, (,) z t Aexp z t a a. This is a twice differentiable function of (z t), where ba /, and travels in the z direction..5 (h/m) 6.6 10 34 /6(1) 1.1 10 34 m..53 k can be constructed by forming a unit vector in the proper direction and multiplying it by k. The unit vector is ˆ [(40) iˆ(0) ˆj(10) k]/ 4 1 (4iˆ ˆj kˆ)/ 1 and ˆ ˆ ˆ k k(4i j k) / 1. r xiˆyj ˆzkˆ, hence ( x, y, z, t) Asin[(4 k / 1) x( k/ 1) y( k/ 1) z t]..54 ˆ ˆ ˆ k (1i 0 j 0 k), r xˆi yˆj zkˆ, so, Asin( kr t) Asin( kxt) where k / (could use cos instead of sin)..55 ( r1, t) [ r ( r r1), t] ( kr1, t) [ kr k( r r1), t] ( kr, t) ( r, t) since k( r r1) 0.56 Aexp[ i( kr t)] Aexp[ i( kxxkyykzzt)] The wave equation is: 1 v t where, x y z ( kx ky kz ) Aexp[ i( kxxkyykzzt)] Aexp ikx x ky y kz z t t where k k k k x y z k kx ky kz then, k Aexp[ i( kxxkyykzzt )] This means that is a solution of the wave equation if / k /. k

8 Chapter Solutions.57.58 θ / /4 0 /4 / 3 /4 5 / 4 3/ 7/4 sin θ 1 1/ 0 1/ 1 1/ 0 1/ 1 1/ 0 sin θ 0 0 0 3 sin θ 3 3/ 0 3/ 3 3/ 0 3/ 3 3/ 0 / /4 0 /4 / 3/4 5 / 4 3/ 7/4 sin 1 1/ 0 1/ 1 1/ 0 1/ 1 1/ 0 sin( /) 0 1/ 1 1/ 0 1/ 1 1/ 0 1/ 1 sin sin( /) 1 1 0 1 1 0 1 1.59 Note that the amplitude of {sin() sin( /)} is greater than 1, while the amplitude of {sin() sin( 3/4) is less than 1. The phase difference is /8..60 x / /4 0 /4 / 3/4 kx / 0 / 3/ cos kx 1 0 1 0 1 0 1 cos (kx ) 1 0 1 0 1 0 1 cos kx cos (kx ) 0 0 0 0 0 0 0