Comparison between LETKF and EnVAR with observation localization

Similar documents
Data assimilation for local rainfall near Tokyo on 18 July 2013 using EnVAR with observation space localization

Physics 201 Lecture 2

Parameter estimation method using an extended Kalman Filter

Decompression diagram sampler_src (source files and makefiles) bin (binary files) --- sh (sample shells) --- input (sample input files)

4.8 Improper Integrals

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Multivariate Time Series Analysis

FINANCIAL ECONOMETRICS

A Kalman filtering simulation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

September 20 Homework Solutions

PHYS 1443 Section 001 Lecture #4

Lump Solutions to a Jimbo-Miwa Like Equations

Principle Component Analysis

Lecture VI Regression

e t dt e t dt = lim e t dt T (1 e T ) = 1

Lecture 6: Learning for Control (Generalised Linear Regression)

Background and Motivation: Importance of Pressure Measurements

Unscented Transformation Unscented Kalman Filter

1.B Appendix to Chapter 1

Chapter 2 Linear Mo on

ORDINARY DIFFERENTIAL EQUATIONS

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

Average & instantaneous velocity and acceleration Motion with constant acceleration

T-Match: Matching Techniques For Driving Yagi-Uda Antennas: T-Match. 2a s. Z in. (Sections 9.5 & 9.7 of Balanis)

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Advanced Electromechanical Systems (ELE 847)

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

Notes on the stability of dynamic systems and the use of Eigen Values.

CHAPTER 10: LINEAR DISCRIMINATION

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

ANOTHER CATEGORY OF THE STOCHASTIC DEPENDENCE FOR ECONOMETRIC MODELING OF TIME SERIES DATA

EEM 486: Computer Architecture

4. Runge-Kutta Formula For Differential Equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

Sequential methods for ocean data assimilation. From theory to practical implementations (I)

Relative controllability of nonlinear systems with delays in control

Hidden Markov Model. a ij. Observation : O1,O2,... States in time : q1, q2,... All states : s1, s2,..., sn

Jordan Journal of Physics

BLOWUPS IN GAUGE AND CONSTRAINT MODES. Bernd Reimann, AEI in collaboration with M. Alcubierre, ICN (Mexico)

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

Interval Estimation. Consider a random variable X with a mean of X. Let X be distributed as X X

DEEP UNFOLDING FOR MULTICHANNEL SOURCE SEPARATION SUPPLEMENTARY MATERIAL

Minimum Squared Error

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Minimum Squared Error

Contraction Mapping Principle Approach to Differential Equations

Scattering at an Interface: Oblique Incidence

S Radio transmission and network access Exercise 1-2

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

Simplified Variance Estimation for Three-Stage Random Sampling

Use 10 m/s 2 for the acceleration due to gravity.

MODELLING AND EXPERIMENTAL ANALYSIS OF MOTORCYCLE DYNAMICS USING MATLAB

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Chapters 2 Kinematics. Position, Distance, Displacement

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Software Reliability Growth Models Incorporating Fault Dependency with Various Debugging Time Lags

Reinforcement Learning for a New Piano Mover s Problem

Electromagnetic Transient Simulation of Large Power Transformer Internal Fault

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

INVESTIGATION OF HABITABILITY INDICES OF YTU GULET SERIES IN VARIOUS SEA STATES

Introduction to Numerical Integration Part II

HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

EFFECT OF DISTANCES, SPACING AND NUMBER OF DOWELS IN A ROW ON THE LOAD CARRYING CAPACITY OF CONNECTIONS WITH DOWELS FAILING BY SPLITTING

Privacy-Preserving Bayesian Network Parameter Learning

Department of Economics University of Toronto

Robustness Experiments with Two Variance Components

Response of MDOF systems

Solution in semi infinite diffusion couples (error function analysis)

12d Model. Civil and Surveying Software. Drainage Analysis Module Detention/Retention Basins. Owen Thornton BE (Mech), 12d Model Programmer

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014

II. Light is a Ray (Geometrical Optics)

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

CS286.2 Lecture 14: Quantum de Finetti Theorems II

Chapter Direct Method of Interpolation

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand

Power Series Solutions for Nonlinear Systems. of Partial Differential Equations

Variants of Pegasos. December 11, 2009

5.1-The Initial-Value Problems For Ordinary Differential Equations

RL for Large State Spaces: Policy Gradient. Alan Fern

Normal Random Variable and its discriminant functions

Chapter 6: AC Circuits

Computing Relevance, Similarity: The Vector Space Model

Isotropic Non-Heisenberg Magnet for Spin S=1

Definition of Tracking

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Displacement, Velocity, and Acceleration. (WHERE and WHEN?)

Origin Destination Transportation Models: Methods

5.2 Volumes: Disks and Washers

principles, scales and applications

Density Matrix Description of NMR BCMB/CHEM 8190

Math 128b Project. Jude Yuen

Mechanics Physics 151

5.7 Improper Integrals

Density Matrix Description of NMR BCMB/CHEM 8190

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

Transcription:

Comprson beeen LETKF nd EnVAR h observon loclzon * Sho Yoo Msru Kun Kzums Aonsh Se Orguch Le Duc Tuy Kb 3 Tdsh Tsuyu Meeorologcl Reserch Insue JAMSTEC 3 Meeorologcl College 6..7 D Assmlon Semnr n RIKEN/AICS

Bcground covrnce o o solve o o clcule 3DVAR4DVAR Ssc Implcly Wh don o M nd EnKF Ensemble-bsed Eplcly Ensemble ppromon ybrd-4dvar Ensemble-bsed Implcly Wh don o M nd EnVAR Ensemble-bsed Implcly Ensemble ppromon Ensemble-bsed vronl d ssmlon Inroducon T T M M J y R y B T M M J J y R B Cos Funcon Byesn ssmlon provdes Anlyss rom Frs guess nd Observon y. es mmum lelhood vlue hen cos uncon J s mnmum ( J=). Severl mehods re clssed usng ho o solve J=. Bcground erm Observon erm Grden EnVAR provdes nlyss mplcly hou don models /33

Inroducon Why s J= solved mplcly? 3/33 Cos Funcon J Bcground erm T B M Observon erm T y R M y J b J o Qudrc uncon o - Qudrc uncon o (M ( )) (M ( ))-y Gussn ppromon Observon (M ( )) erm s srcly s ppromed reed o qudrc uncon o by ssumng lner (M ( )) J E Im Implc mehod s beer becuse observon operor re srcly reed J= s chnged cn be solved by solvng eplcly J= e.g. mplcly EnKF

Inroducon Prevous sudes bou EnVAR 4/33 Zupns (5) Zupns e l. (8) EnVAR mehod s suggesed Lu e l. (8 9) Buehner (3) 4D-EnVAR s compred o oher mehods Gussn ppromon Splly loclzed bcground covrnce un e l. (4) 4D-EnKF s suggesed Any me nlyss n ssmlon ndo s provded Assmlon ndo Lu e l. (8) 3D-EnKFEnVAR 4D-EnKFEnVAR n- me n n- me In hs sudy 4D-EnVAR s compred o 4D-EnKF (LETKF) n

Conens 5/33. Inroducon. Formulon o EnVAR h observon loclzon 3. Comprson beeen LETKF nd EnVAR. Sngle-observon ssmlon. OSSEs h SPEEDY model 3. Rel observon d ssmlon h JMANM

OSSE Observon sysem smulon epermens h SPEEDY model Number o members: Assmlon ndo: 6 hours Loclzon rdus: σ =(m) σ V =.(sgm) Observons: U V T R Ps Inlon: Mulplcve (=.) Anlyss me: Cener o he ndo (=3h) Observon me: =h 3h 5h Posons o observons 6/33 Bs o specc humdy 6-hour orecs (g/g) o nure run RMSE o specc humdy 6-hour orecs (g/g) o nure run Number o orecs-nlyss cycles (every 6 hour) Bs nd RMSE o EnVAR re smller hn hose o LETKF

Formulon 7/33 EnVAR ormulon Mulplcve nlon Bcground Anlyss error covrnce B T L M : nlyss pons : observon pons : me slos : ensemble members Anlyss vluble s rnsormed rom o J Grden o J Then M Loclzon Perurbon o L R y Observon error vrnce - Observon loclzon - Derved rom Bcground loclzon - Globlly dened J Observon operor (non-lner) Smlr o LETKF Deren rom LETKF

EnVAR hou loclzon Formulon Weghed summon o ensemble perurbons s dded o rs guess ) ( y R M J C: Zupns e l. (8) T T J y R y B y R J B y R M J M B 8/33 Cos uncon: Componens ormulon: Appromon o B usng ensemble ere Solve or nd gn : grd pons(-n) : obs. pons(-k) : me slos(-t) : members(-m)

EnVAR h observon loclzon Formulon M B l l l L / ~ L M B l l l L L L / / l l y R M J ~ ~ ~ ~ ~ l l l y R M J l: grd pons(-n) : obs. pons(-k) : me slos(-t) : members(-m) The number o ensemble members s usully oo smll o me nlyss h lrge degree o reedom. Loclzon requred or ncresng degree o reedom o Then cos uncon: Grden o cos uncon: Loclzon cor (I grd s r rom grd s smll or.) o s hs clculed? 9/33 Mulplcve nlon prmeer

EnVAR h observon loclzon Formulon ~ ~ ~ l l l y R M J N N N l N N l l N N l l l L L L / / /.............................. ~ ~ /33 l: grd pons(-n) : obs. pons(-k) : me slos(-t) : members(-m) ere Usng ollong equon l l l L / ~ I nd re compleely on he sme pon s sme s. (Then depends only on he vluble on he grd.) / L l

Formulon o o solve J= /33 ~ J ~ l J M ~ l R y / l Ll L l / l L / l ~ J ~ J M l ~ No ndependen or nlyss pons l M L R Independenly clculed or every nlyss pons R L y y Usng ollong equon / / L L l L l l L / l ~ l l Observon loclzon Appromed ne cos uncon s dened l: grd pons(-n) : obs. pons(-k) : me slos(-t) : members(-m)

Formulon Summry o EnVAR ormulon /33 Anlyss J J T M M L y R Observon error vrnce L y R Anlyss perurbon J M T M δ / U Loclzon cer U L R Observon operor U Egenvlue decomposon o essn mr o J Mnmzon o globlly dened J h observon loclzon U : nlyss pons : observon pons : me slos : ensemble members

Formulon [] (Locl or Globl) LETKF Derence beeen LETKF nd EnVAR EnVAR EnVAR clcules drecly I s lner nd nlyss pon s sme s observon pon EnVAR=LETKF LETKF EnVAR Clculed h nlyss pon Independenly or ech nlyss [] Grden o (round Frs guess or Anlyss) δ n EnVAR s round nlyss I s lner EnVAR=LETKF 3/33 Clculed h observon pon or ll nlyss Observon pon Anlyss pon : nlyss pons : observon pons : me slos : ensemble members

4/33 Sngle-observon ssmlon Comprson o LETKF (Lner cse) Number o members: Loclzon rdus: σ=(m) σv=.(sgm) Observons: U=5m/s @N8E σ=.835 Frs guess o relve humdy nd horzonl nd U=-9.8 m s- Anlyss-Frs guess (LETKF) U=-.9 m s- Anlyss-Frs guess (EnVAR) U=-.9 m s- Incremen o EnVAR s sme s LETKF observon pon bu smller r rom observon pon ( severer loclzon)

Sngle-observon ssmlon Why s EnVAR loclzon severer hn LETKF? 5/33 Observon loclzon o hs EnVAR s derved rom bcground loclzon bu h o LETKF s no. e.g. In o nlyss pons nd one observon K y nd Bcground loclzon K K Then B B R LB B R K (Greybush e l. ) K K Observon loclzon o LETKF K K B B B R B R B LB B R / L LB R B B B R B R Bloclzon Rloclzon K Thereore bcground L loclzon s severer

6/33 Sngle-observon ssmlon Comprson o LETKF (Non-lner cse) Number o members: Loclzon rdus: σ=(m) σv=.(sgm) Observons: R=3% @N8E σ=.835 Frs guess o relve humdy nd horzonl nd R=53. % Anlyss-Frs guess (LETKF) R=44. % Anlyss-Frs guess (EnVAR) R=39.6 % EnVAR nlyss s closer o observon hn LETKF

OSSE Observon sysem smulon epermens h SPEEDY model Number o members: Assmlon ndo: 6 hours Loclzon rdus: σ =(m) σ V =.(sgm) Observons: U V T R Ps Inlon: Mulplcve (=.) Anlyss me: cener o he ndo Observon me: =h 3h 5h Posons o observons 7/33 Bs o specc humdy 6-hour orecs (g/g) o nure run RMSE o specc humdy 6-hour orecs (g/g) o nure run Number o orecs-nlyss cycles (every 6 hour) EnVAR s beer cused by derence o ho o clcule nd δ

OSSE O-F sgrm Observon-Forecs (O-F) hsogrm n ll EnVAR nlyss 8/33 Specc humdy ssmlon: Lner bu non-gussn probbly dsrbuon

OSSE Specc humdy ssmlon 9/33 LETKF EnVAR Bs o specc humdy 6-hour orecs (g/g) o nure run Thc: relve humdy ssmlon (CTL) Thn: specc humdy ssmlon RMSE o specc humdy 6-hour orecs (g/g) o nure run EnVAR s beer hn LETKF nd relve humdy ssmlon s beer hn specc humdy ssmlon

OSSE EnVAR h loclly dened cos uncon Locl J s mnmzed mplcly Bs o specc humdy 6-hour orecs (g/g) o nure run Clclon me (sec) /33 > 6 RMSE o specc humdy 6-hour orecs (g/g) o nure run Blc: LETKF Red: EnVAR h Globl J Blue: EnVAR h Locl J Globlly dened clculed h observon pon Loclly dened clculed h nlyss pon Smlr o LETKF Globl J hs good mpc

OSSE EnVAR h he specc number o eron /33 Bs o specc humdy 6-hour orecs (g/g) o nure run -3 RMSE o specc humdy 6-hour orecs (g/g) o nure run Blc: LETKF Red: EnVAR (CTL) Green: EnVAR (sop er 5 erons) Blue: EnVAR (sop er erons) EnVAR h 5 erons s beer hn LETKF (clculon me s -3 mes s long s LETKF)

Summry o OSSEs /33 We developed EnVAR h observon loclzon nd compred o LETKF EnVAR nlyss s closer o rue vlue hn LETKF becuse globlly dened cos uncon s mnmzed Severl mes longer clculon me hn LETKF Non-lner observon operor s srcly reed n EnVAR (Gussn ppromon should no be used) Observon loclzon o hs EnVAR s sme s bcground loclzon ( severer hn loclzon o LETKF) Is EnVAR lso beer hn LETKF n rel obs. d ssmlon?

Rel d ssmlon 3/33 Locl Rnll on 8 July 3 5 6JST 6 7JST 7 8JST 8 9JST 9 JST JST Anlyzed precpon MSM (nl: 5JST) - To precpon sysems ere genered. - Accure orecs s dcul. (even hough he nl condon ncluded rnll) MSM (nl: 8JST) Dense observons re epeced o mprove orecss

Rel d ssmlon Assmled Dense Observons 4/33 Observon Elemens Frequency Surce (JMA Surce observon nd AMeDAS) U V T every mnues GNSS PWV every mnues Rdr Rdl nd every mnues Ksh ned Nr Rdosonde U V T R every 3 hours Tsuub Ur Yoosu Ryou Mru Seng orzonl loclzon: m Vercl loclzon:. lnp (PWV s no loclzed verclly) Mulplcve nlon prmeer:. Observon error: U V: m/s T: K R: % PWV: 5 g/m Rdl nd: 3 m/s Surce nd (m/s) 7/8 8JST GNSS PWV (g/m ) 7/8 8JST :Rdr :Sonde

Rel d ssmlon Flo o Assmlon Epermens 5/33 Boundry condon: JMA GSM Forecs + Weely Ensemble Perurbon 376 9JST- 378 3JST 378 6JST 378 9JST 378 JST 378 5JST 378 8JST Ouer Grd nervl: m Grd number: 36895 Ensemble sze: 5 Anlyss ndo: 3 hour (Operonl Observons used n JMA Meso-DA every 3 mnues) Donsclng 9JST- 5 Members Boundry Condon every 3 mnues Inner Grd nervl: m Grd number: 6 Ensemble sze: 5 Anlyss ndo: hour 5JST 6JST 7JST 8JST Eended Forecs : Ensemble Forecss : Anlyss (LETKF or EnVAR) Domn Trge: Locl rn ner Toyo n 378 7-JST

Rel d ssmlon 9JST Comprson o -h Rnll n 8-9 JST 8JST 9JST 6/33 EnVAR EnVAR-NPWV (/o PWV d) EnVAR-NSONDE (/o Sonde d) LETKF NDA (/o ny d) Anlyzed precpon Good mpcs o PWV nd Sonde d ssmlon Domn o clcule he score Trge o sensvy

Rel d ssmlon Are Frcons Sll Scores mproved? 7/33 FSS O F O F 9JST- 5JST 6JST 7JST 8JST O F : number densy o observed rnll n -h rcon : number densy o orecs rnll n -h rcon All our orecss rom EnVAR nlyses re beer hn NDA srong rn ghresoluon rn poson

Rel d ssmlon Impc o Dense Observons 8/33 Rnll n 8-9 JST EnVAR EnVAR-NPWV (/o PWV d) EnVAR-NSONDE (/o Sonde d) [EnVAR] [NDA] [EnVAR] [EnVAR-NPWV] - PWV d grely mproved rnll orecss. - Rdosonde d lso mproved e rn orecss. [EnVAR] [EnVAR-NSONDE] Boh PWV nd rdosonde d could mprove rnll orecss

Rel d ssmlon EnVAR v.s. LETKF Rnll n 8-9 JST EnVAR LETKF [EnVAR] [NDA] 9/33 - Derence beeen EnVAR nd LETKF s smll Tme seres o RMS o (O A) nd (O F) o PWV n he orecs-nlyss cycles [EnVAR] [LETKF] In EnVAR srong rnll (> 5 mm/hr) orecss re slghly beer hn h o LETKF

Rel d ssmlon Correlon beeen Rnll nd Inl Ses Correlon beeen J nd n CORR( ) m J m m J m( ) m( ) J J ( ) ( ) m m m m 3/33 m er vpor nd nds o EnVAR nlyss : grd number m: ensemble member Lrge grden J m m : -h rnll (8 9JST) verged n hs re ( ) : vrbles n m hegh 8JST I nds pon o he drecon o vecors n hs gure rnll becomes sronger Lo-level convergence s correled o rnll nensy Convergence Posve correlon o er vpor Correlon beeen rnll nd m er vpor nd nds clculed by 5-member EnVAR

Rel d ssmlon 3/33 Derence o Lo-level vrbles [EnVAR] [EnVAR-NSONDE] [EnVAR] [EnVAR-NPWV] m er vpor nd nds o EnVAR nlyss Convergence Posve ncremen o er vpor [EnVAR] [LETKF] Locl ron? Derence o m er vpor nd nds Convergence Convergence Incremen o lo-level er vpor nd convergence mes rnll sronger Posve correlon o er vpor Correlon beeen rnll nd m er vpor nd nds clculed by 5-member EnVAR

Summry o Rel D Assmlon 3/33 We ssmled dense obs. or he locl rnll ner Toyo Impc o dense PWV nd Rdosonde obs. PWV mproved rnll orecs hrough correcng lo-level er vpor Sonde obs. mproved rnll orecs hrough correcng lo-level nds Comprson beeen LETKF nd EnVAR EnVAR cn me he nlyss hch s closer o obs. hn LETKF Improvemen o rnll orecs by usng EnVAR s smll Correlon o rnll bsed on ensemble orecss Lo-level er vpor nd convergence mde locl rnll sronger Are hese mpcs generl? Vercon n longer perod requres

Summry (EnVAR v.s. LETKF) Formulon Non-lner observon operor s more srcly reed n EnVAR Observon loclzon o EnVAR s sme s bcground loclzon ( severer hn loclzon o LETKF) OSSEs Anlyss o hs EnVAR lzon re more ccure hn LETKF becuse globlly dened cos uncon s mnmzed Rel observon d ssmlon PWV ssmlon n boh EnVAR nd LETKF mproved rnll orecs EnVAR nlyss s closer o obs. hn LETKF Improvemen o rnll orecs by usng EnVAR s smll n hs cse 33/33 Our reserch s suppored n pr by Sregc Progrm or Innovve Reserch (SPIRE) Feld 3 (proposl number: hp4 nd hp54) nd Toyo Meropoln Are Convecon Sudy or Ereme Weher Reslen Ces (TOMACS). SPEEDY-LETKF (hps://code.google.com/p/myosh/) nd he source code developed by Numercl Predcon Dvson n JMA re used n hs sudy. GNSS d ere provded rom he nd Lborory Meeorologcl Selle nd Observon Sysem Reserch Deprmen n MRI. Rdosonde observons ere conduced s pr o TOMACS progrm. The oher observon d ere rom JMA.