Introduction to Structural Bioinformatics

Similar documents
STRUCTURAL BIOINFORMATICS I. Fall 2015

Chemistry 565 / 665 BIOPHYSICAL CHEMISTRY. - Spring

Outline. Introduction, program and reference textbooks A few definition and facts Modeling of biological systems:

STRUCTURAL BIOINFORMATICS II. Spring 2018

UNDERSTANDING BIOINFORMATICS PDF

CONCEPT Year Schedule Master Biomolecular Sciences Specialization Molecular Cell Biology

Updated: 10/11/2018 Page 1 of 5

Modelação e Simulação de Sistemas para Micro/Nano Tecnologias

Lassen Community College Course Outline

Engineering Physics 3W4 "Acquisition and Analysis of Experimental Information" Part II: Fourier Transforms

ELEMENTARY ENGINEERING MECHANICS

Complete version from 1 October 2015

California Subject Examinations for Teachers

The following pages outline the major elements of the course and when you can expect each to be covered. Assessment

Big Idea 1: Does the process of evolution drive the diversity and unit of life?

Core Books in Advanced Mathematics. Vectors

STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK. COURSE OUTLINE BIOL 310 The Human Genome. Prepared By: Ron Tavernier

Essential Thermodynamics: An Undergraduate Textbook For Chemical Engineers By Athanassios Z. Panagiotopoulos READ ONLINE

Programme Specification (Undergraduate) For 2017/18 entry Date amended: 25/06/18

Key Methods in Geography / Nicholas Clifford, Shaun French, Gill Valentine

BIOLOGY IB DIPLOMA PROGRAM PARENTS ORIENTATION DAY

Biology: Life On Earth By Gerald Audesirk, Teresa Audesirk

PH 610/710-2A: Advanced Classical Mechanics I. Fall Semester 2007

Concepts In Biology By Eldon Enger, Frederick Ross

A Natural Introduction to Probability Theory

Lamar University College of Arts and Sciences. Hayes Building Phone: Office Hours: T 2:15-4:00 R 2:15-4:00

SIMCON - Computer Simulation of Condensed Matter

BOOK REVIEW Sampling: Design and Analysis. Sharon L. Lohr. 2nd Edition, International Publication,

Sciences Learning Outcomes

AS and A Level Biology

BIOLOGY I: COURSE OVERVIEW

PHYSICS CLUSTER MINUTES Tuesday, August, 21, :45 AM-12:00 PM Lake Worth Campus Room NS 124

Atmospheric Microphysics Texts

TO WHAT EXTENT IS THE ESTABLISHED CONCEPTUAL FRAMEWORK OF ANIMAL BEHAVIOUR USED IN TEXTBOOKS AND THE PRIMARY LITERATURE?

Mathematics with Maple

Course Syllabus. offered by Department of Chemistry with effect from Semester B 2017/18

The Theory of Quantum Information

Thermal Physics. Energy and Entropy

Prerequisite: one year of high school chemistry and MATH 1314

chemistry literature biochemistry literature chemistry books chemistry journals list of important publications in chemistry

Elementary Particle Physics Fall Term 2016 v2. Course Information

Pre-Instructional Assessment of the Basic Chemical and Molecular Literacy of Biochemistry Students

Multivariable Calculus

in this web service Cambridge University Press

Physical Chemistry, 3rd Edition; By FARRINGTON & ROBERT A. ALBERTY DANIELS READ ONLINE

COURSE UNIT DESCRIPTION - MOLECULAR CELL BIOLOGY

DOWNLOAD OR READ : CHEMISTRY ATOMS FIRST PART 1 PDF EBOOK EPUB MOBI

Molecular Biophysics For The Life Sciences

DOWNLOAD OR READ : TEXTBOOK OF STRUCTURAL BIOLOGY SERIES IN STRUCTURAL BIOLOGY PDF EBOOK EPUB MOBI

A FIRST COURSE IN INTEGRAL EQUATIONS

Student Solutions Manual For Thermodynamics Statistical Thermodynamics Kinetics Thomas Engel

Procedure for Setting Goals for an Introductory Physics Class

Notes de lecture 357 PROCESS PHYSICS: FROM INFORMATION THEORY TO QUANTUM SPACE AND MATTER

ENG ME 542 Advanced Fluid Mechanics

STUDENT SOLUTIONS MANUAL FOR

Biophysical Chemistry CHEM348 and CHEM348L

How Does Earth Work? Physical Geology And The Process Of Science (2nd Edition) By Smith, Gary Published By Prentice Hall 2nd (second) Edition (2009)

Modesto Junior College Course Outline of Record BIO 101

MOLECULAR BIOLOGY BIOL 021 SEMESTER 2 (2015) COURSE OUTLINE

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE

Structural Bioinformatics

Advanced Cell Biology. Lecture 1

A Correlation of. to the. Georgia Standards of Excellence Biology

City University of Hong Kong. Course Syllabus. offered by Department of Chemistry with effect from Semester B 2017/18

Lecture 1: Introduction. Keywords: Mathematics as a language, Need of learning mathematics, Applications of mathematics in BIology

Advanced Calculus of a Single Variable

City University of Hong Kong. Course Syllabus. offered by Department of Physics with effect from Semester B 2017/18

PHY 6500 Thermal and Statistical Physics - Fall 2017

Introduction to Inorganic Chemistry CHMB31H3 F

City University of Hong Kong. Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2016/17

This page intentionally left blank

Undergraduate Curriculum in Biology

Understanding Bioinformatics [Print Replica] [Kindle Edition] By Marketa Zvelebil;Jeremy O. Baum

SOUTHERN UNIVERSITY and A&M COLLEGE DEPARTMENT OF MATHEMATICS MATH 395 CALCULUS III AND DIFFERENTIAL EQUATIONS FOR JUNIOR ENGINEERING MAJORS

City University of Hong Kong Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2016 / 17

Physical Science Curriculum Guide Scranton School District Scranton, PA

City University of Hong Kong Course Syllabus. offered by College/School/Department of Electronic Engineering with effect from Semester B in 2017/2018

10/4/ :31 PM Approved (Changed Course) BIO 10 Course Outline as of Summer 2017

Numerical Linear Algebra with Applications: Using MATLAB - William Ford

EIE/ENE 104 Electric Circuit Theory

Module 5 : Linear and Quadratic Approximations, Error Estimates, Taylor's Theorem, Newton and Picard Methods

Georgia Standards of Excellence Biology

240EQ232 - Polymer Experimental Methods

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010

FORMAT FOR CORRELATION TO THE GEORGIA PERFORMANCE STANDARDS. Subject Area: Science State-Funded Course: Biology

Course Syllabus. offered by Department of Physics and Materials Science with effect from Semester A 2015/16. Introduction to Solid State Physics

Essential Biology 5th Edition Campbell

Graduate Texts in Mathematics 51

CAROL DAVILA UNIVERSITY OF MEDICINE AND PHARMACY Bucharest DISCIPLINE GRID Evaluation. 2 Laboratory 3 Lecture

Principles Of Geotechnical Engineering Braja M Solution

BIOINFORMATICS: METHODS AND APPLICATIONS: (Genomics, Proteomics and Drug Discovery)

When equal masses don t balance

Campbell Biology In Focus Ap Edition

Trigonometric Fourier Series and Their Conjugates

City University of Hong Kong. Course Syllabus. offered by Department of Chemistry with effect from Semester B 2017/18

Grade Level: AP Biology may be taken in grades 11 or 12.

Advanced Structural Analysis. Code: ECTS Credits: 6. Degree Type Year Semester

Contra Costa College Course Outline

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package

Conceptual Physics 11th Edition Answers Ch 7

Transcription:

arxiv:1801.09442v1 [q-bio.bm] 29 Jan 2018 Introduction to Structural Bioinformatics K. Anton Feenstra Sanne Abeln Centre for Integrative Bioinformatics (IBIVU), and Department of Computer Science, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, Netherlands January 30, 2018

2 Abstract While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Introduction to Structural Bioinformatics c Feenstra & Abeln, 2014-2018

Contents Contents 3 0 Preface to Introduction to Structural Bioinformatics 4

Chapter 0 Preface to Introduction to Structural Bioinformatics K. Anton Feenstra Sanne Abeln Centre for Integrative Bioinformatics (IBIVU) and Department of Computer Science, Vrije Universiteit, De Boelelaan 1081A, 1081 HV Amsterdam, Netherlands

5 Why did we write this book? Firstly, because all the authors involved are very enthousiastic about protein structures and scientific computation, and secondly because we have been setting up a successful MSc level Bioinformatics in Structural Bioinformatics course that is in immediate need for a good text book. While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. This book will provide you an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points, as illustrated in Figure 1: I) Protein structure quantification; II) Protein structure prediction; and III) Protein simulation & dynamics. Part I Structure Quantification deals with comparing one protein structure to another. This can either be in a general sense: a protein structure is compared to a large set of reference structures to validate the experimental reliability of the structure. Or the comparison may be to one or more specific protein structures, with the question how similar the protein folds are. Part II Structure prediction deals with the question, how to predict the structure given a protein sequence. We start with a graceful introduction to protein structure basics [Abeln et al., 2017a]. We will see that there is a wide range of methods available, and that the reliability of such method varies strongly. It is important to understand how and when structure prediction will give you trustworthy outcomes [Abeln et al., 2017b]. Then we reach perhaps the most salient question: from an available structure, what can we say about the possible function this protein could perform. Part III Simulation & dynamics considers the dynamics or the ensemble of possible structures a protein may take up. Generally speaking however, it is not yet possibly to allow proteins to fold within a simulation, nevertheless simulations are vital to understand functional mechanisms of structural ensembles of proteins, specifically in context of small metabolites, the cell membrane or other proteins. Herein, we introduce relevant concepts such as structure basics, structure prediction, homology modeling, statistical thermodynamics, simulation. From here, the reader may be able to acquire further information through self study and further references. In particular, we will treat the protein not as a rigid structural entity, but as dynamic ensembles of structures which c Feenstra & Abeln, 2014-2018 Introduction to Structural Bioinformatics

6 Chapter 0. Preface to Introduction to Structural Bioinformatics Figure 1: Within the field of Structural Bioinformatics three dimensional protein structures are investigated through computational analysis. Important problems that may be addressed computationally are shown in the form of cartoons. Firstly, how does the genomic sequence of a gene translate into the folded, functional protein structure? Secondly, when considering two proteins, how similar are their structures? And, last but not least, since we know proteins are not static entities, how do flexibility and dynamics play a role in the function of the protein? Introduction to Structural Bioinformatics c Feenstra & Abeln, 2014-2018

7 make the protein able to perform its function or functions. Hence this book aims to provide a framework for all important concepts within the field of Structural Bioinformatics. However, we do not aim to give extensive reviews of all the methods available in each of these subjects; for these we will refer, where appropriate, to other books. The primary audience of this book are master students in the area of bioinformatics, or a related discipline like biotechnology. Basic background knowledge is assumed on protein structure, bioinformatics, sequence analysis, dynamic programming algorithms, calculus and basic chemistry. A few good books we would like to mention here, upfront, as they may be important reference material for readers of this book, depending on their background: Protein Structure Branden and Tooze [1998] Understanding Bioinformatics Zvelebil and Baum [2008] Essential Bioinformatics Xiong [2006] (very basic) An introduction to Thermal Physics Schroeder [1999] Introduction to Python Lutz [2013] And some more advanced books, that go further on particular topics than this book: Structural Bioinformatics Gu and Bourne [2009] Sequence Analysis Durbin [1998] Molecular Simulation Frenkel and Smit [2002] Molecular Modelling Leach [2001] We hope to provide the reader with knowledge about the type of problems that are scientifically feasible to solve. For example, predicting a protein structure through homology modeling will generally give high quality and reliable results. In contrast, we also would like to point out which problems are still unlikely to yield good results, such as predicting protein-protein interactions, and which are still out of scope altogether for existing methods, such as correct prediction of protein folding from sequence information alone. Most importantly, we will introduce the fundamental concepts on which the method are based, and what assumptions there are for using such methods. Therefore it should become apparent which inherent limitations the techniques have and what the techniques can successfully be used for. The setup of this books follows the same guiding principle that we apply throughout our masters programme. We introduce a focus on open and challenging research problems to solve, and the technical skills to solve them; a balance between basic skills, such as biology, mathematics (modelling) and computational tools (programming); then, building on this focus and balance, translate between different adjoining disciplines, and between tools and methods on the one hand, and application and problems on the other. This is summarized in Figure 2. Lastly, we would like to thank all our students who have followed the MSc course Structural Bioinformatics at the VU University in Amsterdam c Feenstra & Abeln, 2014-2018 Introduction to Structural Bioinformatics

8 Chapter 0. Preface to Introduction to Structural Bioinformatics Figure 2: Conceptual organisation of our bioinformatics education programme along three key elements: Translate, Balance, and Focus. for their enthusiasm in pointing out mistakes in our lectures and asking important additional questions; without this vital input it would have been absolutely impossible to write this book. In particular, we thank Nicola Bonzanni, Kamil K. Belau, Ashley Gallagher, Jochem Bijlard, and Reza Haydarlou for insightful discussions and critical proofreading of early versions. Introduction to Structural Bioinformatics c Feenstra & Abeln, 2014-2018

Bibliography Sanne Abeln, Jaap Heringa, and K. Anton Feenstra. Introduction to Protein Structure Prediction. arxiv, 1712.00407, dec 2017a. URL http://arxiv.org/abs/1712.00407. Sanne Abeln, Jaap Heringa, and K. Anton Feenstra. Strategies for protein structure model generation. arxiv, 1712.00425, dec 2017b. URL http://arxiv.org/abs/1712.00425. C Branden and J Tooze. Introduction to protein structure. garland publishing, New York, 1998. ISBN 9780815323044. Richard Durbin. Biological sequence analysis : probabilistic models of proteins and nucleic acids. 1998. ISBN 9780521629713. Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From Algorithms to Applications, volume 1 of Computational Science Series. Academic Pr, San Diego, second edition, 2002. ISBN 0122673514. Jenny. Gu and Philip E. Bourne. Structural bioinformatics. Wiley-Blackwell, 2009. ISBN 0470181052. Andrew Leach. Molecular Modelling: Principles and Applications. Pearson, 2001. ISBN 9780582382107. Mark Lutz. Learning Python. O Reilly, 2013. ISBN 1449355730. Daniel V. Schroeder. An Introduction to Thermal Physics. Addison-Wesley Publishing Company, San Francisco, CA, 1999. ISBN 0201380277. Jin Xiong. Essential Bioinformatics. Cambridge University Press, 2006. ISBN 9780511806087. doi: 10.1017/CBO9780511806087. M. Zvelebil and J.O. Baum. Understanding Bioinformatics. Garland Science, Taylor & Francis Group, New York London, nov 2008. ISBN 9780815340249.