Appendix Appendix A:

Similar documents
Bamboo - A Fiber Resource with Great Potential. Robert W. Hurter, P.Eng., MBA, President, HurterConsult Incorporated February 2002.

INTRODUCTION ABOUT BAMBOOS

Appendix. Classification of Bamboo Genus Species Origin. Acidosasa chienouensis Acidosasa edulis Acidosasa notate

$3.00 AMERICAN BAMBOO SOCIETY. Bamboo Species Source List No. 25 Spring 2005

BAMBOO - A FUNCTIONALLY GRADED COMPOSITE MATERIAL

Bamboos at the Arnold Arboretum-A Midwinter Performance Evaluation

Variation in Microstructure and Mechanical Properties of Tre Gai bamboo (Bambusa stenostachya) with Position in the Culm

Bamboo in Green Construction in Ghana: the Studies of Selected Anatomical Properties.

INFORMATION ON BAMBOO RESOURCES FURNISHED BY NORTH-EASTERN STATES OF INDIA (As on March, 2007)

Physio-Chemical Properties of Bamboo Genetic Resources at Various Age Gradations

HAN-QI YANG 1,2, HONG WANG 1,3 and DE-ZHU LI 1 *

A note on the bamboo diversity and utilization from Manipur in N.E. India

Height. AMS Ampelocalamus scandens C 25' 0.75" 20 F $20 $40

BIOTECHNOLOGICAL APPROACHES FOR PROPAGATION, CONSERVATION AND IMPROVEMENT OF IMPORTANT BAMBOOS

LST the title of this paper be misunderstood, it must be explained at the start

MULTILINGUAL MULTISCRIPT PLANT NAME DATABASE

Phylogeny and taxonomy of the genus Arundinaria (Poaceae: Bambusoideae) Iowa State University

Bamboo Diversity, Distribution Pattern and its uses in Sikkim (India) Himalaya

Developmental Changes in Cell Wall Structure of Phloem Fibres of the Bamboo Dendrocalamus asper

CHAPTER 1 INTRODUCTION

Static Bending Moment Capacity of T-Type Gusset-Plate Joints in Oriented Strandboard

Old Herbarium Hall (Monocot Section)

Section Downloads. Section Downloads. Handouts & Slides can be printed. Course binders are available for purchase. Download & Print. Version 2.

CropCast Weekly Rice Report Don Keeney Wednesday, May 31, 2017

SIMULATION BASED MODELING OF THE ELASTIC PROPERTIES OF STRUCTURAL COMPOSITE LUMBER Laszlo Bejo. Elemer M. Lang. and. abstract

4 Results Density and specific gravity

Citation Holzforschung (2010), 64(4): Right Walter de Gruyter GmbH

Experimental Investigation on Characteristics of Mechanics of Box-Section Beam Made Of Sliced-Laminated Dendrocalamus Asper under Torsion

Nondestructive Testing and Performance Prediction of Soybean Stalk Board

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS

Gráinne Ní Chonghaile and Trevor R. Hodkinson Botany Building, School of Natural Sciences, Trinity College Dublin, D2, Ireland

PRO LIGNO Vol. 11 N pp

ASPECTS OF BAMBOO AGRONOMY

PRO LIGNO Vol. 14 N pp. 3-8

Effect of board density on bending properties and dimensional stabilities of MDF-reinforced corrugated particleboard

Angiosperms: Dicotyledons

COMPARISON BETWEEN TENSILE AND COMPRESSIVE YOUNG S MODULUS OF STRUCTURAL SIZE LUMBER

Vegetative phenology of three bamboo species in subtropical humid climate of Assam

Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites

Exploring key cellular processes and candidate genes regulating the primary thickening growth of Moso underground shoots

SIGNIFICANCE OF RESINOUS TRACHEIDS

Chapter 3. Load and Stress Analysis

Limit State Design of Steel Pin Connections for Bamboo Truss Structures

Wood Anatomy Lab What is wood? The lateral meristems Cell types Vessels Tracheids

An introduction to the possibilities of Materials Selection.

RELATIONSHIP BETWEEN RADIAL COMPRESSIVE MODULUS OF ELASTICITY AND SHEAR MODULUS OF WOOD Jen Y. Liu Research Engineer

GENETIC VARIABILITY AND RELATIONSHIP STUDY OF SIX BAMBOO SPECIES USING ISOZYME MARKERS

STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLAS-FIR

A morphological investigation of some Himalayan bamboos with an enumeration of taxa in Nepal and Bhutan. C. M. A. Stapleton. BSc For (Hons) Aberdeen

Do Policy-Related Shocks Affect Real Exchange Rates? An Empirical Analysis Using Sign Restrictions and a Penalty-Function Approach

Beam Design - Shed Roof Back Wall Beam-S

(Photo Atlas: Figures , )

Evangelos J. BiblisJ-

L u m b e r M e l a m i n e H a r d w o o d P l y w o o d A r c h i t e c t u r a l P a n e l s C o l o r e d C a u l k P a r t i c l e B o a r d E

Keywords: Bamboo; FTIR; Thermogravimetric analysis (TGA); Scanning electron microscopy (SEM); Transmission electron microscopy (SEM)

DEVELOPMENT OF AN INTERACTIVE COMPUTER SIMULATION MODEL FOR DESIGNING LAMINATED COMPOSITE PANELS. Qinglin Wu. Professor

Secondary growth in stems

Evaluation of Modulus of Elasticity of Laminated Strand Lumber by Non-Destructive Evaluation Technique

ESTABLISHMENT OF A BAMBOOSETUM

Biogenic volatile organic compound emissions from bamboo species in Japan

Growing Bamboo in Georgia

Kweilingia Rust of Bamboo in Hawai i. Scot Nelson 1 and Matthew Goo 2. Department of Plant and Environmental Protection Sciences 2

Lecture 6, Wood notes, 3.054

TORSIONAL RIGIDITY OF WOOD COMPOSITE I-JOISTS Daniel Hindman. Harvey B. Manbeck. John J. Janowiak

Species independent strength modeling of structural timber for machine grading

NDE of wood-based composites with longitudinal stress waves

WHY BAMBOOS WAIT SO LONG TO FLOWER

Beam Design - Trotin Project

Evaluation of the Mechanical Properties of Douglas-fir Lumber and It s Structural Glulam by Non-destructive Techniques

Chapter 29: Plant Tissues

Bond formation by wood surface reactions: Part Ill - Parameters affecting the band strength of solid wood panels

Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

RELIABILITY ANALYSIS OF WOOD-PLASTIC PLANKS BASED ON PREDICTED MODULUS OF RUPTURE

The first NDS (1944) was based on allowable stress design (ASD). Copyright American Wood Council. All rights reserved.

Novel Isocyanate-Reactive Adhesives for Structural Wood Based Composites (LVL) ITP Forest Products Peer Review April 5-6, 2006

THERMAL CONDUCTIVITY OF WOOD-BASE FIBER AND PARTICLE PANEL MATERIALS

CHAPTER 6 ANATOMY OF FLOWERING PLANTS MULTIPLE CHOICE QUESTIONS

EFFECT OF MYCORRHIZA AND SOIL MOUNDING ON COMMON BAMBOO RAISED FROM CULM CUTTINGS IN RAINFED UPLAND

1998 J. Amer. Bamboo Soc. Vol.12 No Chris Stapleton*: Form and Function in the Bamboo Rhizome. [Received November 28, 1994]

ABS SoCal Activities / Events planned: ( Monthly meetings are usually on the third Saturday of month.) ( Changes will be noted below.

EFFECT OF ELLIPTIC OR CIRCULAR HOLES ON THE STRESS DISTRIBUTION IN PLATES

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

Section Downloads. Design Process. Design Principles Outline. Basic Design Principles. Design Process. Section 06: Design Principles.

Alan Sliker. Ying Yu

Modeling the elastic properties of paper honeycomb panels using the finite element method

PLANT TISSUES 12 MARCH 2014

Topic 15. The Shoot System

CORRELATING OFF-AXIS TENSION TESTS TO SHEAR MODULUS OF WOOD-BASED PANELS

Introduction to Botany. Lecture 11

The Shoot System: Primary Stem Structure - 1

AN ABSTRACT OF THE DISSERTATION OF

Understanding Cambial Behaviour. The key to wood quality

RELATIONSHIP OF STRESS WAVE- AND STATIC BENDING-DETERMINED PROPERTIES OF FOUR NORTHEASTERN HARDWOODS. Stephen J. Smulski

Plant Anatomy Lab 7 - Stems II

L u m b e r M e l a m i n e H a r d w o o d P l y w o o d A r c h i t e c t u r a l P a n e l s C o l o r e d C a u l k P a r t i c l e B o a r d E

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

WSU and UI Master Gardeners March 1, 2016 Philip Shinn

MATERIAL ELASTIC ANISOTROPIC command

1. Impacts of Natural Disasters by Region, 2008

International Student Enrollment Fall 2018 By CIP Code, Country of Citizenship, and Education Level Harpur College of Arts and Sciences

Transcription:

Appendix A: Table 1A: Example of bamboo genera, species and adapted English names of bamboo. Table 2A: Physical properties of some bamboo species and Calcutta bamboo. Table 3A: Mechanical properties of several bamboo species. Table 4A: Mechanical properties of Calcutta bamboo from several growing sites. Table 5A: Description of vascular bundle types. Table 6A: Anatomical classification groups. Figure 1A: General structure of bamboo plant. Figure 2A: Anatomical structure of bamboo. Figure 3A: Basic vascular bundle types in bamboo. 186

Table 1A: Example of bamboo genera, species and adapted English names of bamboo [17,20,23,24,30,41]. Genus Species English Name Arundinaria Bambusa Cephalostachyum alpina, amabilis 1, anceps, angustifolia, auricoma 2, callosa, elegans, falcata, fastuosa 3, fortunei, gigantea, graminea, griffithiana, hindsii, hookeriana, humilis, intermedia, khasiana, mannii, prainii, racemosa, tecta 4, tessellata 5, vagans, viridistriata, wightiana arundinacea 1, balcooa, beecheyana, blumeana, burmanica, dissimulator 2, dolichomerithalla, edulis, glaucescens 3, khasiana, laxa, longispiculata, malingensis, multiplex, nutans, oldhami, pachinensis, pallia, pervariabilis, polymorpha, stenostachya, textilis, tulda, tuldoides 4, ventricosa 5, vulgaris 6, wrayi capitatum, pergracile, virgatum 1.Tonkin cane 2.Golden haired bamboo 3.Narihira bamboo 4.Switch cane 5.Mountain bamboo 1.Thorny bamboo 2.Durable thorny bamboo 3.Hedge or Chinese Goddess bamboo 4.Punting pole bamboo 5.Buddha s belly bamboo 6.Painted bamboo Chimonobambusa marmorea 1, quadrangularis 1.Marble bamboo Chusquea Dendrocalamus Dinochloa Gigantochloa Guadua Holttumochloa Indocalamus Kinabaluchloa Melocalamus culeou, coronalis, longipendula, pilgeri, ramosissima, simpliciflora asper, gigenteus, hamiltonii, hookerii, latiflorus, longispathus, membranaceus, merrillianus, pendulus, sikkimensis, sinuatus, strictus 1 Maclellandii, darvelana, obclavata, prunifera, robusta, scabrida, sipitangensis, sublaevigata, trichogona apus 1, albopilosa, albovestita, hasskarkiana, holttummiana, levis, ligulata, macrostachya, ridleyi, rostrata, scortechinii, thoii, wrayi verticillata, aculeata, amplexifolia, angustifolia, capitata, inermis, latifolia, paniculata, superba, tagoara, tomentosa, virgata, werbertauneri korbuensis, magica, pubescens latifolius, tesselatus wrayi Compactiflora 1.Male bamboo or Calcutta bamboo 1.Tabashir bamboo 187

Melocanna baccifera 1 1.Muli bamboo Ochlandra capitata, travancorica 1 1.Elephant grass Oxytenanthera abyssinica, albociliata, nigrociliata Phyllostachys angusta 1, arcana, aurea 2, aureosulcata 3, bambusoides 4, bissetii, congesta, decora 5, dulcis 6, elegans 7, flexuosa, glauca, hetrocycla, humilis, makinoi 8, meyeri 9, nidularia 10, nigra 11, nuda, propinqua, pubescens 12, purpurata, rubromarginata, viridiglaucescens, viridis, vivax 1.Stone bamboo 2.Pheonix, fish pole or golden bamboo 3.Yellowgrove bamboo 4.Giant timber bamboo 5.Beautiful bamboo 6.Sweetshoot bamboo 7.Elegant bamboo 8.Mikano bamboo 9.Meyer bamboo 10.Big node bamboo 11.Black bamboo 12.Moso bamboo Pleioblastus Pseudosasa Pseudostachyum Racemobambos argenteostriatus, chino, pumilus, fortunei, pygmaeus, simonii, viridistriatus japonica 1, disticha 2, pumila, pygmaea, tessellata, variegata 3, polymorphum setifera, gibbsiae, glabrahepburnii, hirsuta, pairinii, rigidifolia 1.Arrow bamboo 2.Dwaft fernleaf bamboo 3.Dwaft whitestripe bamboo Sasa kagamiana, kurilensis, palmata, tsuboiana, veitchii 1 1.Kumazasa bamboo Schizostachyum Semiarundinaria Shibataea hainanense, lima, lumampao, aciculare, brachucladum, gracile, grande, iraten, juculans, latifolium, lengguanii, zollingeri fastuosa, yashadake, kumasasa Sinarundinaria murielae, nitida 1 1.Fountain bamboo Teinostachyum dullooa Thamnocalamus falconeri, spathaceus 1, spathiflora 1.Umbrella bamboo Thyrsostachys Yushania Oliverii, siamensis tessellata 188

Figure 1A: General structure of bamboo plant. Bamboo culm Bamboo rhizome 189

Figure 2A: Anatomical structure of bamboo. Bamboo culm or stem with illustration of the node and internode(a), cross section of bamboo showing the thickness of the culm wall(b), section of bamboo is magnified (x10)(c) to illustrate the vascular bundle (Y) embedded in parenchyma cells (X), one vascular bundle is magnified (x80)(d) to illustrate the fiber strand (1), metaxylem vessel (2), sclerenchyma sheath (3), intercellular space (4), and phloem (5). X Y Internode Culm wall B C 3mm 1mm Node 3 2 1 4 1 5 3 A 2 3 D 190

Table 2A: Physical properties of some bamboo species and Calcutta bamboo. Common and botanical names Re * Condition and Relative Density Based of Shrinkage Value measurement (Moisture Content) Radial Shrinkage (%) Tangential Shrinkage (%) Longitudinal Shrinkage (%) Diameter Shrinkage (%) Giant Timber Bamboo Phyllostachys bambusoides 14 green Thorny Bamboo Bambusa arundinacea 39 green Mitenga Bambusa longispiculata 39 green Buloh Gading Bambusa vulgaris 39 green Giant Bamboo Dendrocalamus giganteus 39 green Buloh Duri Bambusa blumeana 40 green Bolo Gigantochloa levis 40 green Thorny Bamboo Bambusa arundinacea (India) 37 Calcutta bamboo Dendrocalamaus strictus 37 Calcutta bamboo Dendrocalamaus strictus 38 green * Reference Strength value from middle portion of bamboo. 0.48 0.690 0.790 0.650 0.910 0.580 0.790 0.620 0.730 0.537 0.539 0.661 0.757 Green to air (170.9% to 12.1%) Green to oven (70.0% to 0.0%) Green to oven (82.0% to 0.0%) Green to oven (94.0% to 0.0%) Green to oven (79.0% to 0.0%) Green to oven (114.0% to 0.0%) Green to oven (115.1% to 0.0%) Green to 12% Green to oven Green to 12% Green to oven Green to oven (58.0% to 0.0%) 18.21 9.25 0.02 17.76 3.76 18.77 6.64 22.45 4.94 7.87 2.98 13.30 6.2 11.30 6.5 13.39 16.41 11.46 14.83 9.88 13.40 11.87 15.98 8.80 0.1 6.70 191

Table 3A: Mechanical properties of several bamboo species. Common and botanical names of species (source) Re * Modulus of rupture (psi) Static bending Modulus of Elasticity (X 10 6 psi) Stress at proportional limit (psi) Condition Relative Density Compression parallel to grain (psi) Tension parallel to grain (psi) Shear parallel to grain (psi) Giant Timber Bamboo Phyllostachys bambusoides (Japan, widely planted in U.S) Thorny Bamboo Bambusa arundinacea (India) Terai Bamboo Melocanna beccifera (Pakistan, Burma, India) Thanawa Thyrsostachys oliverii (Thailand, Burma, India) Buloh Duri Bambusa blumeana (Malaysia, Indonesia, India, Philippines) Buloh Gading Bambusa vulgaris (Malaysia, Indonesia, Sudan, S. America, Thailand, Philippines, Bangladesh) Buloh Semantan Gigantochloa scortechinii (Malaysia) Moso Bamboo Phyllostachys pubescens (China, Japan, sucessfully planted in U.S) Balku Bans** Bambusa balcooa (India) Pichle** Bambusa nutans (India) Tulda Bambusa tulda (India, Pakistan, Burma, Thailand, S.America) Punting Pole Bamboo** Bambusa tuldoides (China, Malaysia, Brazil, El Salvador) Guadua** Guadua angustifolia (Ecuador, Columbia, Peru, Argentina to Panama) 14 green 36 green 36 green 36 green 7 green 7 green 7 green 21 green 21 green 21 green 21 green 21 green 21 green 0.48 0.583 0.649 0.751 0.817 0.733 0.758 0.700 0.666 0.785 0.631 0.693 0.640 0.830 0.820 10,084 14,894 10,656 13,834 7,549 8,173 8,783 12,770 16,088 8,833 8,620 14,118 9,237 8,840 12,330 17,438 21,950 20,546 1.04 1.55 1.34 1.76 1.62 1.84 1.38 1.72 0.60 1.01 0.72 1.15 1.06 1.39 1.76 1.83 2.30 2.50 6,584 8,925 4,682 6,158 4,725 7,180 4,192 5,890 5,965 6,953 4,739 6,981 10,528 11,976 11,961 4,452 6,126 4,895 9,251 5,080 9,918 6,655 8,230 3,928 4,086 14,580 17,413 4,176 6,016 6,612 6,428 10,201 9,223 1,745 698 657 656 1,632 192

Buloh Aur Bukit** Bambusa burmanica (Burma, Thailand, India, Malaysia) Phai Songkham** Bambusa pallida (India, Thailand) Buddha s Belly Bamboo** Bambusa ventricosa (China) Tinwa** Cephalostachyum pergracile (India, Burma, Thailand) Wabomyetsangye** Dendrocalamus hamiltomii (India, Burma, Thailand, Loas, Vietnam, Bangladesh) Savannah Bamboo** Oxytenanthera abyssinica (Ethiopia, Angola, Ghana) Thorny Bamboo** Bambusa arundinacea (Bangladesh, India) Mitenga** Bambusa longispiculata (Bangladesh, India, Thailand) Buloh Gading** Bambusa vulgaris (Malaysia, Indonesia, Sudan, S. America, Thailand, Philippines, Bangladesh) Giant Bamboo** Dendrocalamus giganteus (Burma, Bangladesh, India, Sri Langka, Thailand, Madagascar) Buloh Duri** Bambusa blumeana (Malaysia, Indonesia, India, Philippines) Bolo** Gigantochloa levis (Philippines, Malaysia) 37 green 37 green 37 green 37 green 37 green 37 green 39 green 39 green 39 green 39 green 40 green 0.570 0.672 0.731 0.626 0.601 0.640 0.515 0.688 0.690 0.790 0.650 0.910 0.580 0.790 0.620 0.730 0.537 8,471 14,898 7,832 4,838 7,463 10,117 5,676 11,862 11,380 13,196 5,874 7,180 9,010 10,968 2,171 7,350 4,119 1.56 2.53 1.83 0.48 1.58 2.73 0.35 2.12 1.93 2.53 1.15 1.46 1.62 1.70 0.21 1.39 40 green 0.539 2,843 1.51 Some common names have been translated and passed to English usage. Other common names used could be found in Anon (21), Wong (23) and Farrelly(30). * Reference ** Full size test (round bamboo) Strength value from middle portion of bamboo. 1.28 5,846 7,719 4,768 2,426 4,540 6,442 2,497 6,584 7,648 8,513 3,973 4,867 6,853 7,875 1,632 1,745 2,930 2.161 5,151 9,436 6,995 5,009 5,009 7,123 5,931 7,107 6,045 6,825 6,371 7,903 5,193 6,782 4,455 7,151 5,730 6,048 193

Table 4A: Mechanical properties of Calcutta bamboo from several growing site. Source Re * Condition Moisture Content (%) Relative Density Tension Parallel to grain (psi) Modulus of rupture (psi) Static bending Modulus of Elasticity (X 10 6 psi) Stress at proportional limit (psi) Compression parallel to grain (psi) Gorakhpur, India 36 green 92.1 9.9 0.540 0.63 0 10,684 13,352 0.92 1.24 6,030 9,436 4,881 8,925 Dehra Dun, India 36 green 154.0 7.9 0.430 0.500 6,073 7,364 0.62 0.65 3,065 4,555 3,718 7,776 Mananur, India 36 green 34.3 10.9 0.640 0.850 13,990 22,248 2.60 2.91 7,932 15,452 6,399 10,131 Bhadrachalam, India 36 green 28.9 8.5 0.710 0.800 9,209 18,134 1.73 2.41 5,122 13,238 4,867 10,626 Puerto Rico 21 green 10.1 0.570 12,061 1.16 6,343 5,988 Madhya Pradesh, India 25 green 12.0 0.720 13,300 2.20 8,122 7,890 New Forest, Dehra Dun, India** 38 green 58 12.0 0.661 0.757 13,600 18,600 2.22 2.56 6,000 8,850 Dehra Dun, India** 38 green 13.0 * Reference ** Full size test (round bamboo). D.strictus from Dehra Dun tested at different time. Strength value from middle portion of bamboo. 0.757 17,000 2.62 194

Figure 3A: Basic vascular bundle types in bamboo [22]. 195

Table 5A: Description of vascular bundle types[22]. Type I II III IV Characteristics Consisting of one part(central vascular bundle strand) with supporting tissues only as sclerenchyma sheaths, with intercellular space with tyloses Consisting of one part(central vascular bundle strand), supporting tissues only as sclerenchyma sheaths, with sheaths at the intercellular space (protoxylem) strikingly larger than the other ones and intercellular space without tyloses Consisting of two parts (central vascular strand and one fiber strand with fiber strand inside the central strand. Sheath at the intercellular space (Protoxylem) generally smaller than the other ones. Consisting of three parts (central vascular strand and two fiber strands), with fiber strands outside and inside the central strand. 196

Table 6A. Anatomical classification groups [22]. Group Vascular Bundle Type Genera A Genera having type I alone Arundinacea, Phyllostachys, Tetragonocalamus B1 Genera having type II alone Cephalostachyum B2 Genera having type II and III Melocanna, Schizostachyum, Teinostachyum C Genera having type III alone Oxytenanthera D Genera having type III and IV Bambusa, Dendrocalamus, Gigantochloa, Thyrsostachys 197

Figure 4A: Orthogonal direction of bamboo. Bamboo culm (A) and a section cut from bamboo culm (B). Longitudinal direction(l) Radial Direction (R) Tangential direction(t) L R T A B 198

Appendix B: Table 1B: Mechanical properties and relative density relationship for softwood and hardwood based on average values. Table 2B: Bending properties of some timber species that are used in composite products. Table 3B: Relative density and shrinkage of several timber species. Table 4B: Equilibrium moisture content (EMC) of typical wood products. Table 5B: ph and buffer capacity of several timber species. Table 6B: Contact angle of several species of timber. Figure 1B: Finite contact angle (θ) of a sissile drop resting on a solid surface. 199

Table 1B: Mechanical properties and relative density relationship for softwood and hardwood, based on average values [44]. Properties (psi) Bending MOR MOE (10 6 ) Compression Parallel Compression Perpendicular Shear parallel Tension Perpendicular Strength Prediction from Relative Density Green Wood 12% Moisture Content Softwood Hardwood Softwood Hardwood 15,890G 1.01 17,210G 1.16 24,760G 1.01 24,850G 0.13 2.33G 0.76 2.02G 0.72 2.97G 0.84 2.39G 0.7 7,210G 0.94 7,110G 1.11 13,590 0.97 11,030G 0.89 1,270G 1.53 2,680G 2.48 2,390G 1.57 3,130G 2.09 1,590G 0.73 2,580G 1.24 2,410G 0.85 3,170G 1.13 550G 0.78 1,520G 1.37 870G 1.11 1,460G 1.3 200

Table 2B: Bending properties of some timber species that are used in composite products [44]. Wood Species Moisture content Relative Density Liriodendron tulipifera Green 0.40 (yellow poplar) 12% 0.42 Populus tremuloides Green 0.35 (quaking aspen) 12% 0.38 Pinus resinosa Green 0.41 (red pine) 12% 0.46 Pinus monticola Green 0.35 (western white pine) 12% 0.38 Pinus strobus Green 0.34 (eastern white pine) 12% 0.35 Pseudotsuga menziesii Green 0.45 (douglas fircoast) 12% 0.48 Tsuga canadensis (eastern hemlock) Green 0.38 44.00 61.00 Static Bending σ ult E (N/mm 2 ) (N/mm 2 ) 41.00 8,400 70.00 10,900 35.00 5,900 58.00 8,100 40.00 8,800 76.00 11,200 32.00 8,200 67.00 10,100 34.00 6,800 59.00 8,500 53.00 10,800 85.00 13,400 7,400 8,300 201

Table 3B: Relative density and shrinkage of several timber species [44]. Wood Species Relative Density Shrinkage (%) from green to oven moisture content Volumetric Radial Tangential Liriodendron tulipifera Green 0.40 (yellow poplar) 12% 0.42 12.7 4.6 8.2 Populus tremuloides Green 0.35 (quaking aspen) 12% 0.38 11.5 3.5 6.7 Pinus resinosa (red pine) Green 0.41 12% 0.46 11.3 3.8 7.2 Pinus monticola Green 0.35 (western white pine) 12% 0.38 11.8 4.1 7.4 Pinus strobus (eastern white pine) Pseudotsuga menziesii (douglas fircoast) Tsuga canadensis (eastern hemlock) Shorea spp. (light red meranti) Green 0.34 12% 0.35 Green 0.45 12% 0.48 Green 0.38 12% 0.40 Green 0.34 12% 8.2 2.1 6.1 12.4 4.8 7.6 9.7 3.0 6.8 14.3 4.6 8.5 202

Table 4B: Equilibrium moisture content (EMC) of typical wood products evaluated at 70 o F(21 o C) [31]. Relative Humidity Moisture Content (%) (%) Wood Softwood Particleboard Plywood 30 6.0 6.0 6.6 42 8.0 7.0 7.5 65 12.0 11.0 9.3 80 16.1 15.0 11.6 90 20.6 19.0 16.6 203

Table 5B: ph and buffer capacity of several timber species [48, 68]. Wood Species ph Value Buffer Capacity (Miliequavalent) Populus spp. (aspen, cottonwood) 5.8 0.2300.308 Pinus resinosa (red pine) 6.0 Pinus sylvestris (scots pine) 5.1 Pinus strobus (eastern white pine) 4.9 Pseudotsuga menziesii (douglas fir) 3.3 0.030.09 Tsuga canadensis (eastern hemlock) 5.5 0.170.23 Shorea spp.(meranti or lauan) 4.7 Liriodendron tulipifera (Yellow poplar) 5.0 Quercus alba (White oak) 3.5 0.1 Quercus rubra (Red oak) 3.5 204

Figure 1B: Finite contact angle (θ) of a sissile drop resting on a solid surface. High degree of wetting (A), low degree of wetting (B). Air θ Liquid A Solid B 205

Table 6B: Contact angle of several species of timber [68]. Wood Species Relative Wettability Density (cosine θ) Populus tremulooides (aspen) 0.44 0.785 Liriodendron tulipifera (Yellow poplar) 0.46 0.624 Quercus alba (White oak) 0.62 0.640 Quercus rubra (Red oak) 0.62 0.643 Bombacopsis quinata (Cedro espino) 0.40 0.321 Juglans cinerea (Butternut) 0.42 0.616 Tabebuia donellsmithii (Primavera) 0.43 0.700 Ocotea schomburgkiana (Yekoro) 0.44 0.532 Ocotea rubra (Determa) 0.49 0.367 Magnolia sororim (Vaco) 0.56 0.654 Vitex gaumeri (Fiddlewood) 0.63 0.859 Bertholletia excelsa (Brazil nut) 0.65 0.389 Peltogyne renosa (Purpleheart) 0.78 0.648 Apuleia molaris (Muirajuba) 0.84 0.386 Enterolabium schomburgkii (Timbauba) 0.93 0.456 Ocotea rodiaei (Greenheart) 1.02 0.358 206

Appendix C: Table 1C: Classification of wood composite. Figure 1C: Manufacturing processes of parallel strand lumber. 207

Table 1C: Classification of Wood Composite [59]. I. Solid Wood II. Modified Wood a. Wood treated with preservatives b. Fire retardanttreated wood c. Resinimpregnated wood d. Chemically treated wood e. Irradiated wood III. Layered Composites a. Parallel laminated 1. Gluedlaminated timber 2. Laminated veneer lumber 3. Parallel strand lumber b. Cross laminates 1. Plywood 2. Veneeroverlayed oriented particleboard or oriented strand lumber c. Reinforced wood d. Sandwich panels 1. Blockboard 2. ComPly e. Mechanically connected laminates IV. Particle Composites a. Particleboard 1. Chipboard 2. Flakeboard 3. Waferboard 4. Cementboard b. Fiberboard 1. Insulation board 2. Mediumdensity board 3. Hardboard V. Fiber Composites a. Paper b. Fiberreinforced plastics VI. Flour Composites a. Molded wood flour 208

Figure 1C: Manufacturing Processes of Parallel Strand Lumber. Peeler Logs Debarker Cutoff saw Veneer ing Lathe Block conditioning Veneer cliping to form strand Glue spreading Layup as billet Cross cut Microwave heating press (continuous ) Prepress Conditioning Grading Stacking Packaging Etc. 209