Emmanuel Frénod. Laboratoire de Mathématiques de Bretagne Atlantique (UMR6205) - Université Bretagne-Sud - Vannes & See-d 1

Similar documents
Online Videos FERPA. Sign waiver or sit on the sides or in the back. Off camera question time before and after lecture. Questions?

B555 - Machine Learning - Homework 4. Enrique Areyan April 28, 2015

Hierarchical models for the rainfall forecast DATA MINING APPROACH

LOAD FORECASTING APPLICATIONS for THE ENERGY SECTOR

ECE 5424: Introduction to Machine Learning

#33 - Genomics 11/09/07

A Wavelet Neural Network Forecasting Model Based On ARIMA

Deep Feedforward Networks

Online Learning and Sequential Decision Making

hal , version 1-14 Oct 2013

ECE 5984: Introduction to Machine Learning

The Comparison Test & Limit Comparison Test

Structure-Activity Modeling - QSAR. Uwe Koch

Lab 5: 16 th April Exercises on Neural Networks

Long term behaviour of singularly perturbed parabolic degenerated equation

Forecast for next 10 values:

15-388/688 - Practical Data Science: Decision trees and interpretable models. J. Zico Kolter Carnegie Mellon University Spring 2018

Course 395: Machine Learning - Lectures

Random Subspace NMF for Unsupervised Transfer Learning

VBM683 Machine Learning

Generalization to a zero-data task: an empirical study

Deep Learning: a gentle introduction

OPERA: Online Prediction by ExpeRt Aggregation

FORECASTING USING R. Dynamic regression. Rob Hyndman Author, forecast

Some Applications of Machine Learning to Astronomy. Eduardo Bezerra 20/fev/2018

Homogeneous Equations with Constant Coefficients

Solar irradiance forecasting for Chulalongkorn University location using time series models

Quantum Recommendation Systems

From statistics to data science. BAE 815 (Fall 2017) Dr. Zifei Liu

Discovery Through Situational Awareness

Support Vector Machines (SVM) in bioinformatics. Day 1: Introduction to SVM

ECLT 5810 Classification Neural Networks. Reference: Data Mining: Concepts and Techniques By J. Hand, M. Kamber, and J. Pei, Morgan Kaufmann

A SARIMAX coupled modelling applied to individual load curves intraday forecasting

COMS 4771 Introduction to Machine Learning. Nakul Verma

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

Relevance Vector Machines

Simple Neural Nets For Pattern Classification

COMS 4771 Lecture Boosting 1 / 16

Deep Feedforward Networks. Sargur N. Srihari

6.034 Quiz November Ryan Alexander Ben Greenberg Neil Gurram. Eeway Hsu Brittney Johnson Veronica Lane

Security Analytics. Topic 6: Perceptron and Support Vector Machine

MATH 308 Differential Equations

Decision Trees: Overfitting

Time Series Forecasting on Solar Irradiation using Deep Learning

CSE 151 Machine Learning. Instructor: Kamalika Chaudhuri

TDT4173 Machine Learning

Time Series and Forecasting

arxiv: v3 [cs.lg] 14 Jan 2018

Final Examination CS 540-2: Introduction to Artificial Intelligence

Artificial Neural Networks

Neural networks and support vector machines

Learning Theory. Machine Learning CSE546 Carlos Guestrin University of Washington. November 25, Carlos Guestrin

Context-free languages in Algebraic Geometry and Number Theory

SVAN 2016 Mini Course: Stochastic Convex Optimization Methods in Machine Learning

Chapter 1: Introduction

A Wavelet Based Prediction Method for Time Series

Support Vector Machines

Dynamic Scheduling with Genetic Programming

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Statistical Machine Learning from Data

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Introduction to Neural Networks

Classification with Perceptrons. Reading:

Brief Introduction to Machine Learning

On the use of Long-Short Term Memory neural networks for time series prediction

Topic 3: Neural Networks

Chaotic motion. Phys 750 Lecture 9

Course in Data Science

Nonlinear Classification

Introduction to Systems Analysis and Decision Making Prepared by: Jakub Tomczak

Support Vector Machine. Industrial AI Lab.

A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships

STA141C: Big Data & High Performance Statistical Computing

Holdout and Cross-Validation Methods Overfitting Avoidance

Predictive analysis on Multivariate, Time Series datasets using Shapelets

Ad Placement Strategies

More about the Perceptron

Fast classification using sparsely active spiking networks. Hesham Mostafa Institute of neural computation, UCSD

Digital Architecture for Real-Time CNN-based Face Detection for Video Processing

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12

Machine Learning Lecture 2

Machine Learning Lecture 5

Source localization in an ocean waveguide using supervised machine learning

Rainfall Prediction using Back-Propagation Feed Forward Network

Lecture 11: Hidden Markov Models

Chart types and when to use them

Supervised Learning Part I

Approximation Theoretical Questions for SVMs

Decision Tree Fields

CS7267 MACHINE LEARNING

Machine Learning Lecture 7

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!!

Bayesian non-parametric model to longitudinally predict churn

Deep Reinforcement Learning. Scratching the surface

Final Project Descriptions Introduction to Mathematical Biology Professor: Paul J. Atzberger. Project I: Predator-Prey Equations

A Model Describing the Effect of P-gp Pumps on Drug Resistance in Solid Tumors

Transcription:

Math-Industry Day IHP - Paris November 23th, 2016 Towards new Machine Learning tools based on Ode and Pde models Emmanuel Frénod Laboratoire de Mathématiques de Bretagne Atlantique (UMR6205) - Université Bretagne-Sud - Vannes & See-d 1

2 DATA

Data Phase 1 2 3 Period 1 à 16 17 à 22 23 à 43 Lipid proportion 20% 17% 18% Protein proportion 40% 45% 48% Consumption 2785 2834 1983 2013 1675 1669 Weight gain 2078 2107 1430 1468 987 965 3 3

Data Phase 1 2 3 Period 1 à 16 17 à 22 23 à 43 Lipid proportion 20% 17% 18% Phase Protein proportion 40% 1 45% 2 48% 3 Period Consumption 2785 1 à 16 2834 1983 17 à 22 2013 1675 23 à 43 1669 Lipid proportion 23% 18% 20% Weight gain 2078 2107 1430 1468 987 965 Phase 1 2 Protein proportion 36% 47% 46% 3 Period Consumption 2786 1 à 16 2827 1890 17 à 22 1976 1665 23 à 43 1678 Lipid proportion Weight gain 2059 22% 2113 1434 16% 1468 978 19% 965 Protein proportion 36% 47% 46% 4 Consumption 2786 2827 1890 1976 1665 1678 Weight gain 2059 2113 1434 1468 978 965 4

Machine Learning Objective : Learn to forecast 5 5

Machine Learning Objective : Learn to forecast Input ML Tool Output 6 6

Machine Learning For our problem Information about Consumption Weight gain Input ML Tool Output Information about Phase Lipid proportion Protein proportion 7 7

Machine Learning Generic working Groups Correlations Forecasts Etc. Input ML Tool Output Learning base Characters for learning Characters for tests 8

Machine Learning Using Behavior Input ML Tool Output New character 9 9

Machine Learning How it works Random Forests Decision Tree Neuron network Deep learning Input ML Tool Output Classification SVM Ar Arma Arima Adjustment 10 10

Machine Learning How it works Random Forests Decision Tree Neuron network Deep learning Input ML Tool Output Classification SVM Ar Arma Arima Adjustment 11 11

Machine Learning How it works Random Forests Decision Tree Neuron network Deep learning Step 1 : Select potentially pertinent methods Input ML Tool Output Classification SVM Ar Arma Arima Adjustment 12 12

Machine Learning How it works Learning base Characters for learning Characters for tests Random Forests Decision Tree Neuron network Deep learning Step 2 : For each method, determine the best parameters Input ML Tool Output Classification SVM Ar Arma Arima Adjustment 13 13

Machine Learning How it works Learning base Characters for learning Characters for tests Random Forests Decision Tree Neuron network Deep learning Step 3 : determine the best method Input ML Tool Output Classification SVM Ar Arma Arima Adjustment 14 14

Machine Learning Using Behavior Input ML Tool Output New character 15 15

Machine Learning Using Behavior Input ML Tool Output New character 16 16 Uses: The best method With the right parameters

Machine Learning For our problem Random Forests Neuron network Information about Consumption Weight gain Input ML Tool Output Information about Phase Lipid proportion Protein proportion Adjustment 17 17

Using and update 18 18

Using and update Consumption Comprtement Weight gain Input ML Tool Output New feeding plan 19 19

Using and update New data : Phase 1 2 3 Période 1 à 16 17 à 22 23 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 1983 2013 1675 1369 Prise de poids 2078 2107 1631 1960 965 941 Input ML Tool Output Update of the forecast tool 20 20

Data heterogeneity 21 21

Data heterogeneity Pb : Phase 1 2 3 Période 1 à 16 17 à 24 25 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 2383 2130 1570 1890 Prise de poids 2078 2107 1430 1468 987 965 22 22

Data heterogeneity Solutions - 1: Information about Consumption Weight gain Input ML Tool Output Information about Phase Phase duration Lipid proportion Protein proportion For it works : Enough data in each Phase duration category In our problem : not the case 23 23

Data heterogeneity Solutions - 2: Phase 1 2 3 Période 1 à 16 17 à 24 25 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 1983 2013 1675 1369 Prise de poids 2078 2107 1631 1960 965 941 24 24

Data heterogeneity Solutions - 2: Phase 1 2 3 Période 1 à 16 17 à 24 25 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 1983 2013 1675 1369 Prise de poids 2078 2107 1631 1960 965 941 Phase 1 2 3 Période 1 à 16 17 à 22 23 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 2383 2130 1570 1890 Prise de poids 2078 2107 1430 1468 987 965 25 25

Data heterogeneity Solutions - 2: Phase 1 2 3 Période 1 à 16 17 à 24 25 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 1983 2013 1675 1369 Prise de poids 2078 2107 1631 1960 965 941 Phase 1 2 3 Période 1 à 16 17 à 22 23 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 2383 2130 1570 1890 Prise de poids 2078 2107 1430 1468 987 965 26 26

Data heterogeneity Solutions - 2: Input ML Tool Output Update of the forecast tool Phase 1 2 3 Période 1 à 16 17 à 22 23 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 2785 2834 2383 2130 1570 1890 Prise de poids 2078 2107 1430 1468 987 965 27 27

Data heterogeneity Limitations of implemented solution: Phase 1 2 3 Période 1 à 12 13 à 27 28 à 43 Proportion de lipides 20% 17% 18% Proportion de protéines 40% 45% 48% Consommation 1785 1834 2983 2730 1170 1490 Prise de poids 1078 1107 1930 2368 887 865 1. Strong distortion : Doubt about the solution accuracy 28 28

Data heterogeneity Limitations of implemented solution: Phase 1 2 3 4 Période 1 à 12 13 à 21 22 à 30 21 à 47 Proportion de lipides 20% 17% 18% 22% Proportion de protéines 40% 45% 48% 42% Consommation Prise de poids 2. different phase number : Solution non implementable 29 29

Data heterogeneity What to do? Use mathematical and/or statistical modeling Coupling model-data 30 30

31 MODEL

Equation for weight and consumption evolution dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) P(t) : Weight at time t C t : Full (since the beginning) food consumption at time t 32 32

Equation for weight and consumption evolution Speed of weight gain at time t dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) Protein proportion in the food Lipid proportion in the food Growth limiter Speed of full food increase at time t Food daily consumption 33 33

Equation for weight and consumption evolution dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) Parameters 34 34

It is an ODE system dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) 35 35

It is an ODE system dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) C t = 0 = 0 P t = 0 = Weight at beginning we can solve using R Matlab, Scilab, etc. For given α, β, η and γ 36 36

Examples of solutions for given values of α, β, η, γ 37 37

38 MODEL - DATA COUPLING

Interpretation of the data set according to the model 39 39

Interpretation of the data set according to the model L t, Q(t) 40 40

Interpretation of the data set according to the model L t, Q(t) dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) 41 41

Interpretation of the data set according to the model L t, Q(t) dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) 42 42

L t, Q(t) dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) 43 43

Adjust α, β, η and γ For each character (i) and each value set of α, β, η and γ Compute P(t) et C(t) Compute P(End of phase 1), C(End of phase 1), P(End of phase 2), etc. Compute (P(End of phase 1) - Real Weight Gain(End of phase 1)) 2 + (C(End of phase 1) - Real Consumption(End of phase 1)) 2 + (P(End of phase 2) - Real Weight Gain(End of phase 2)) 2 +. = D(i) Compute 566 785957:;9< = D(i) = Fitness(α, β, η, γ) 44 44

Adjust α, β, η and γ Using an optimization method: Find (α, β, η, γ) minimizing : Fitness(α, β, η, γ) = 566 785957:;9< = D(i) Gives: α>, β?, η, γ> 45 45

What do we have? dp dt t = α> Q t + β?l t ( η P(t) P(t) γ> ) L(t) γ> dc dt t = η P(t) L(t) C t = 0 = 0 P t = 0 = Weight at beginning Allows computation of the weight and the full consumption at each time 46 46

What do we have? Allows computation of the weight and the full consumption at each time 47 47

New predictive tool Information about Consumption Weight gain Input New predictive tool Output Information about Phase Lipid proportion Protein proportion dp dt t = α> Q t + β?l t ( η P(t) P(t) γ> ) L(t) γ> 48 48 dc dt t = η P(t) L(t)

New predictive tool Consumption and weight gain each day Input New predictive tool Output Any new feeding plan dp dt t = α> Q t + β?l t ( η P(t) P(t) γ> ) L(t) γ> 49 49 dc dt t = η P(t) L(t)

NEW MACHINE LEARNING TOOL BASED ON ODE DISCRETIZATION 50

Machine Learning How it works Random Forests Decision Tree Neuron network Deep learning Input ML Tool Output Classification SVM Ar Arma Arima Adjustment dp dt dc dt P(t) P(t) γ t = α Q t + β L t (η ) L(t) γ t = η P(t) L(t) 51 51

Machine Learning How it works Random Forests Decision Tree Neuron network Deep learning Input ML Tool Output Classification SVM Ar Arma Arima Adjustment dp dt t = α> Q t + β?l t ( η P(t) P(t) γ> ) L(t) γ> dc dt t = η P(t) L(t) 52 52

53 Thanks for your attention