Machine Learning for Signal Processing Prediction and Estimation, Part II

Similar documents
The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

Introduction. If there are no physical guides, the motion is said to be unconstrained. Example 2. - Airplane, rocket

5.1 Angles and Their Measure

Lecture 3: Resistive forces, and Energy

10.7 Temperature-dependent Viscoelastic Materials

AP Physics 1 MC Practice Kinematics 1D

CHAPTER 2 Describing Motion: Kinematics in One Dimension

Kinematics Review Outline

An application of nonlinear optimization method to. sensitivity analysis of numerical model *

Section 11 Basics of Time-Series Regression

(V 1. (T i. )- FrC p. ))= 0 = FrC p (T 1. (T 1s. )+ UA(T os. (T is

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 15 10/30/2013. Ito integral for simple processes

EECE 301 Signals & Systems Prof. Mark Fowler

An recursive analytical technique to estimate time dependent physical parameters in the presence of noise processes

Modeling the Evolution of Demand Forecasts with Application to Safety Stock Analysis in Production/Distribution Systems

21.9 Magnetic Materials

Brace-Gatarek-Musiela model

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

L07. KALMAN FILTERING FOR NON-LINEAR SYSTEMS. NA568 Mobile Robotics: Methods & Algorithms

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical.

Let. x y. denote a bivariate time series with zero mean.

CHAPTER 2 Describing Motion: Kinematics in One Dimension

Introduction to SLE Lecture Notes

THE DETERMINATION OF CRITICAL FLOW FACTORS FOR NATURAL GAS MIXTURES. Part 3: The Calculation of C* for Natural Gas Mixtures

Two Popular Bayesian Estimators: Particle and Kalman Filters. McGill COMP 765 Sept 14 th, 2017

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

PRINCE SULTAN UNIVERSITY Department of Mathematical Sciences Final Examination Second Semester (072) STAT 271.

a. (1) Assume T = 20 ºC = 293 K. Apply Equation 2.22 to find the resistivity of the brass in the disk with

Notes on Kalman Filtering

Object tracking: Using HMMs to estimate the geographical location of fish

Motion Along a Straight Line

Ensamble methods: Boosting

Ensamble methods: Bagging and Boosting

Impact Switch Study Modeling & Implications

u(t) Figure 1. Open loop control system

Coherent PSK. The functional model of passband data transmission system is. Signal transmission encoder. x Signal. decoder.

Robot Motion Model EKF based Localization EKF SLAM Graph SLAM

Algorithmic Discrete Mathematics 6. Exercise Sheet

CHAPTER 7 CHRONOPOTENTIOMETRY. In this technique the current flowing in the cell is instantaneously stepped from

OBJECTIVES OF TIME SERIES ANALYSIS

EE Control Systems LECTURE 2

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

6.8 Laplace Transform: General Formulas

6.302 Feedback Systems Recitation : Phase-locked Loops Prof. Joel L. Dawson

Diebold, Chapter 7. Francis X. Diebold, Elements of Forecasting, 4th Edition (Mason, Ohio: Cengage Learning, 2006). Chapter 7. Characterizing Cycles

Physics Courseware Physics I Constant Acceleration

i-clicker Question lim Physics 123 Lecture 2 1 Dimensional Motion x 1 x 2 v is not constant in time v = v(t) acceleration lim Review:

BAYESIAN MOBILE LOCATION IN CELLULAR NETWORKS

Chem. 6C Midterm 1 Version B October 19, 2007

Chapter 9 - The Laplace Transform

The Buck Resonant Converter

Visco-elastic Layers

Using the Kalman filter Extended Kalman filter

Types of Exponential Smoothing Methods. Simple Exponential Smoothing. Simple Exponential Smoothing

Linear Gaussian State Space Models

Probabilistic Robotics

Recent Developments In Evolutionary Data Assimilation And Model Uncertainty Estimation For Hydrologic Forecasting Hamid Moradkhani

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

3 ) = 10(1-3t)e -3t A

State-Space Models. Initialization, Estimation and Smoothing of the Kalman Filter

hen found from Bayes rule. Specically, he prior disribuion is given by p( ) = N( ; ^ ; r ) (.3) where r is he prior variance (we add on he random drif

Stability of the SDDRE based Estimator for Stochastic Nonlinear System

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Section 12 Time Series Regression with Non- Stationary Variables

and Sun (14) and Due and Singlen (19) apply he maximum likelihd mehd while Singh (15), and Lngsa and Schwarz (12) respecively emply he hreesage leas s

m = 41 members n = 27 (nonfounders), f = 14 (founders) 8 markers from chromosome 19

Sequential Importance Resampling (SIR) Particle Filter

Efficient and Fast Simulation of RF Circuits and Systems via Spectral Method

CHAPTER 7: SECOND-ORDER CIRCUITS

ELEG 205 Fall Lecture #10. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)

2.160 System Identification, Estimation, and Learning. Lecture Notes No. 8. March 6, 2006

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

מקורות לחומר בשיעור ספר הלימוד: Forsyth & Ponce מאמרים שונים חומר באינטרנט! פרק פרק 18

Derivation of an Analytic Expression for the Mass of an Individual Fish Larvae in an Uncapped Rate Stochastic Situation.

1 Motivation and Basic Definitions

CS 4495 Computer Vision Tracking 1- Kalman,Gaussian

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Introduction to Mobile Robotics

Lecture 3: Exponential Smoothing

Revelation of Soft-Switching Operation for Isolated DC to Single-phase AC Converter with Power Decoupling

20. Applications of the Genetic-Drift Model

GMM Estimation of the Number of Latent Factors

Randomized Perfect Bipartite Matching

independenly fllwing square-r prcesses, he inuiive inerpreain f he sae variables is n clear, and smeimes i seems dicul nd admissible parameers fr whic

Estimation of Poses with Particle Filters

CSE-473. A Gentle Introduction to Particle Filters

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

Y, where. 1 Estimate St.error

Productivity changes of units: A directional measure of cost Malmquist index

Comparing Means: t-tests for One Sample & Two Related Samples

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Tom Heskes and Onno Zoeter. Presented by Mark Buller

x i v x t a dx dt t x

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Matlab and Python programming: how to get started

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

Graphs III - Network Flow

THE UNIVERSITY OF TEXAS AT AUSTIN McCombs School of Business

Tracking. Announcements

On the Stability and Boundedness of Solutions of Certain Non-Autonomous Delay Differential Equation of Third Order

Transcription:

Machine Learning fr Signal Prceing Predicin and Eimain, Par II Bhikha Raj Cla 24. 2 Nv 203 2 Nv 203-755/8797

Adminirivia HW cre u Sme uden wh g really pr mark given chance upgrade Make i all he way he 50 percenile fr each prblem HW2 cre be u by nex week Pleae end u prjec updae 2 Nv 203-755/8797 2

Recap: An aumive example Deermine aumaically, by nly liening a running aumbile, if i i: Idling; r ravelling a cnan velciy; r Acceleraing; r Deceleraing Aume fr illurain ha we nly recrd energy level SPL in he und he SPL i meaured nce per ecnd 2 Nv 203-755/8797 3

he Mdel! 0.33 Px accel Px idle 45 0.5 Idling ae 60 he ae-pace mdel Auming all raniin frm a ae are equally prbable 2 Nv 203-755/8797 4 70 Acceleraing ae 0.33 0.33 0.5 0.25 0.25 0.25 0.33 Deceleraing ae 0.33 Cruiing ae 0.25 0.33 65 I A C D I 0.5 0.5 0 0 A 0 /3 /3 /3 C 0 /3 /3 /3 D 0.25 0.25 0.25 0.25

Overall prcedure Predic he diribuin f he ae a =+ PS x 0:- = S S- PS - x 0:- PS S - PS x 0: = C. PS x 0:- Px S PREDIC Updae he diribuin f he ae a afer berving x UPDAE A =0 he prediced ae diribuin i he iniial ae prbabiliy A each ime, he curren eimae f he diribuin ver ae cnider all bervain x 0... x A naural ucme f he Markv naure f he mdel he predicin+updae i idenical he frward cmpuain fr HMM wihin a nrmalizing cnan 2 Nv 203-755/8797 5

Eimaing he ae =+ PS x 0:- = S S- PS - x 0:- PS S - PS x 0: = C. PS x 0:- Px S Predic he diribuin f he ae a Updae he diribuin f he ae a afer berving x EimaeS = argmax S PS x 0: EimaeS he ae i eimaed frm he updaed diribuin he updaed diribuin i prpagaed in ime, n he ae 2 Nv 203-755/8797 6

Predicing he nex bervain Predic he diribuin f he ae a =+ PS x 0:- = S S- PS - x 0:- PS S - PS x 0: = C. PS x 0:- Px S Updae he diribuin f he ae a afer berving x Predic Px x 0:- Predic x he prbabiliy diribuin fr he bervain a he nex ime i a mixure: Px x 0:- = S S Px S PS x 0:- he acual bervain can be prediced frm Px x 0:- 2 Nv 203-755/8797 7

Cninuu ae yem f g,, he ae i a cninuu valued parameer ha i n direcly een he ae i he piin f navlab r he ar he bervain are dependen n he ae and are he nly way f knwing abu he ae Senr reading fr navlab r recrded image fr he elecpe

Dicree v. Cninuu Sae Syem 2 0 3 f g,, P Predicin a ime : O P 0:- O0:- P Updae afer O : P O : CP O0:- PO P O : CP O0:- PO 0 P O0 :- P O0:- P d 0

Special cae: Linear Gauian mdel A B P P 2 m m A linear ae dynamic equain Prbabiliy f ae driving erm i Gauian Smeime viewed a a driving erm m and addiive zer-mean nie A linear bervain equain Prbabiliy f bervain nie i Gauian A, B and Gauian parameer aumed knwn May vary wih ime 2 Nv 203-755/8797 0 2 d d exp 0.5 exp 0.5 m m

he Linear Gauian mdel KF Ieraive predicin and updae 2 Nv 203-755/8797, ; 0 R Gauian P, ; m A Gauian P R Gauian P ˆ, ˆ ; : 0 R B B R B R B I R B B R B R B ˆ ˆ A A R R A ˆ ˆ m, ; B Gauian P R Gauian P, ; : 0 A B

he Kalman filer Predicin Updae 2 Nv 203-755/8797 2 m ˆ A R K B I R ˆ A A R R ˆ B K ˆ B B R R B K A B

he Kalman filer Predicin Updae 2 Nv 203-755/8797 3 m ˆ A R K B I R ˆ A R A R ˆ B K ˆ B B R R B K A B he prediced ae a ime i bained imply by prpagaing he eimaed ae a - hrugh he ae dynamic equain

he Kalman filer Predicin A ˆ m A B he Updae predicin i imperfec. he variance f he predicr K R= Bvariance B R B f + variance f A - Rˆ crrelaed wih R A R ˆ ˆ he w imply add becaue i n I K K B R 2 Nv 203-755/8797 4 A B

he Kalman filer Predicin A ˆ m A B R A R ˆ We Updae can al predic he bervain frm he prediced K ae R B uing B R B he bervain equain ˆ K A B ˆ B Rˆ I K B R 2 Nv 203-755/8797 5

MAP Recap fr Gauian 2 Nv 203-755/8797 6, xy xx yx yy x xx yx y C C C C x C C N x y P m m If Px,y i Gauian:,, yy yx xy xx y x y x C C C C N P m m ˆ x xx yx y x C C y m m

MAP Recap: Fr Gauian 2 Nv 203-755/8797 7, xy xx yx yy x xx yx y C C C C x C C N x y P m m If Px,y i Gauian:,, yy yx xy xx y x x y C C C C N P m m ˆ x xx yx y x C C y m m Slpe f he line

he Kalman filer Predicin A ˆ m A Updae R A R ˆ A B K R B B R B hi i he lpe ˆ f he K MAP B eimar ha predic frm RB = C, BRB R + I K= CB R ˆ hi i al called he Kalman Gain 2 Nv 203-755/8797 8

he Kalman filer Predicin A ˆ m R A R ˆ A A B We Updae mu crrec he prediced value f he ae afer making an bervain K ˆ ˆ R B B R B K he crrecin i he difference beween R I K B R he acual bervain and he prediced bervain, caled by he Kalman Gain 2 Nv 203-755/8797 9 B ˆ B

Predicin Updae: Updae he Kalman filer Rˆ I A ˆ K B m R A R ˆ he uncerainy in ae decreae if we berve he daa K Rand B make a crrecin he reducin i ˆ a muliplicaive K B hrinkage baed n Kalman gain and B R 2 Nv 203-755/8797 20 A B R B A B ˆ B

he Kalman filer Predicin Updae: Updae 2 Nv 203-755/8797 2 m ˆ A R K B I R ˆ A A R R ˆ B K ˆ B B R R B K A B

Linear Gauian Mdel P P - PO a priri raniin prb. Sae upu prb P 0 P A B P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d P 2 O 0:2 C P 2 O 0: PO 2 2 0 All diribuin remain Gauian

Prblem f g,, f and/r g may n be nice linear funcin Cnveninal Kalman updae rule are n lnger valid and/r may n be Gauian Gauian baed updae rule n lnger valid 2 Nv 203-755/8797 23

Prblem f g,, f and/r g may n be nice linear funcin Cnveninal Kalman updae rule are n lnger valid and/r may n be Gauian Gauian baed updae rule n lnger valid 2 Nv 203-755/8797 24

he prblem wih nn-linear funcin f g,, P 0 :- P 0:- P d P : CP 0:- P 0 Eimain require knwledge f P Difficul eimae fr nnlinear g Even if i can be eimaed, may n be racable wih updae lp Eimain al require knwledge f P - Difficul fr nnlinear f May n be amenable cled frm inegrain 2 Nv 203-755/8797 25

he prblem wih nnlineariy he PDF may n have a cled frm Even if a cled frm exi iniially, i will ypically becme inracable very quickly 2 Nv 203-755/8797 26 g g J P P, :,..., n n n n J g, g

Example: a imple nnlineariy lg exp P =? Aume i Gauian P = Gauian; m, 0 ; 2 Nv 203-755/8797 27

Example: a imple nnlineariy lg exp P =? 0 ; P Gauian ; m, P Gauian ; m lg exp, 2 Nv 203-755/8797 28

Example: A =0. lg exp ; =0 Aume iniial prbabiliy P i Gauian P 0 0 P Gauian ;, R Updae P 0 0 CP 0 0 P 0 P 0 0 0 CGauian ; m lg exp 0, Gauian ;, R 2 Nv 203-755/8797 29

UPDAE: A =0. lg exp m 0; ; 0 R ; =0 P 0 P 0 0 CGauian ; m lg exp 0, Gauian ;, R 0 0 0.5 m lg exp 0 lg exp C exp m 0.5 0 R 0 = N Gauian 0 2 Nv 203-755/8797 30

Predicin fr = P Gauian ;0, rivial, linear ae raniin equain P Predicin Gauian ;, P 0 P 0 0 P 0 d 0 0 0 0 0.5 m lg exp 0 lg exp 0 P 0 C exp m exp d 0.5 0 R 0 = inracable 2 Nv 203-755/8797 3

Updae a = and laer Updae a = P : CP 0:- P 0 Inracable Predicin fr =2 P Inracable 0 :- P 0:- P d 2 Nv 203-755/8797 32

he Sae predicin Equain f, Similar prblem arie fr he ae predicin equain P - may n have a cled frm Even if i de, i may becme inracable wihin he predicin and updae equain Paricularly he predicin equain, which include an inegrain perain 2 Nv 203-755/8797 33

Simplifying he prblem: Linearize lg exp he angen a any pin i a gd lcal apprximain if he funcin i ufficienly mh 2 Nv 203-755/8797 34

Simplifying he prblem: Linearize lg exp he angen a any pin i a gd lcal apprximain if he funcin i ufficienly mh 2 Nv 203-755/8797 35

Simplifying he prblem: Linearize lg exp he angen a any pin i a gd lcal apprximain if he funcin i ufficienly mh 2 Nv 203-755/8797 36

Simplifying he prblem: Linearize he angen a any pin i a gd lcal apprximain if he funcin i ufficienly mh 2 Nv 203-755/8797 37

Linearizing he bervain funcin P Gauian, R g g J g Simple fir-rder aylr erie expanin J i he Jacbian marix Simply a deerminan fr calar ae Expanin arund a priri r prediced mean f he ae 2 Nv 203-755/8797 38

M prbabiliy i in he lw-errr regin P Gauian, R P i mall apprximain errr i large M f he prbabiliy ma f i in lw-errr regin 2 Nv 203-755/8797 39

Linearizing he bervain funcin P Gauian, R g g J g Obervain PDF i Gauian P Gauian ;0, P Gauian ; g J g, 2 Nv 203-755/8797 40

UPDAE. Gauian!! Ne: hi i acually nly an apprximain 2 Nv 203-755/8797 4, ;, ; R Gauian J g CGauian P g R J RJ J RJ I g RJ J RJ Gauian P g g g g g g g, ; J g g, ; J g Gauian P g P CP P, ; R Gauian P

Predicin? f P Gauian ;0, Again, direc ue f f can be diaru Sluin: Linearize P ; ˆ, ˆ 0: Gauian R f f ˆ ˆ ˆ J f Linearize arund he mean f he updaed diribuin f a - Which huld be Gauian 2 Nv 203-755/8797 42

Predicin f f ˆ ˆ ˆ J f P ; ˆ, ˆ 0: Gauian R P Gauian ;0, he ae raniin prbabiliy i nw: P ; ˆ ˆ ˆ Gauian f J f, he prediced ae prbabiliy i: P 0 :- P 0:- P d 2 Nv 203-755/8797 43

Predicin Gauian!! hi i acually nly an apprximain 2 Nv 203-755/8797 44, ˆ ˆ ˆ ; f J f Gauian P he prediced ae prbabiliy i: ˆ, ˆ ; 0: R Gauian P 0:- :- 0 d P P P :- 0, ˆ ˆ ˆ ; ˆ, ˆ ; f d J f Gauian R Gauian P f f J R J f Gauian P ˆ ˆ ˆ, ˆ ; 0:-

he linearized predicin/updae g f Given: w nn-linear funcin fr ae updae and bervain generain Ne: he equain are deerminiic nn-linear funcin f he ae variable hey are linear funcin f he nie! Nn-linear funcin f chaic nie are lighly mre cmplicaed handle 2 Nv 203-755/8797 45

Linearized Predicin and Updae Predicin fr ime 2 Nv 203-755/8797 46 Updae a ime R Gauian P, ; :- 0 f f J R J R f ˆ ˆ ˆ ˆ R Gauian P ˆ, ˆ ; : 0 g g g g g g g R J R J J R J I R g R J J R J ˆ ˆ

Linearized Predicin and Updae Predicin fr ime 2 Nv 203-755/8797 47 Updae a ime R Gauian P, ; :- 0 A A R R f ˆ ˆ R Gauian P ˆ, ˆ ; : 0 R B B R B R B I R g B R B R B ˆ ˆ ˆ g f J B J A

he Exended Kalman filer Predicin Updae 2 Nv 203-755/8797 48 ˆ f R K B I R ˆ A A R R ˆ ˆ g K B B R R B K ˆ g f J B J A

he Kalman filer Predicin A ˆ m R A R ˆ A Updae K R B B R B ˆ K B Rˆ I K B R 2 Nv 203-755/8797 49

he Exended Kalman filer Predicin Updae ˆ f R A R ˆ A f g A B J f J ˆ g K R B B R B ˆ K g Rˆ I K B R 2 Nv 203-755/8797 50

he Exended Kalman filer Predicin f he prediced ae a ime i bained B J g imply by prpagaing he eimaed ae Updae a - hrugh he ae dynamic equain K ˆ f R A R A R B ˆ B R B f g A J ˆ ˆ K g Rˆ I K B R 2 Nv 203-755/8797 5

he Exended Kalman filer Predicin B J g Updae he predicin i imperfec. he variance f he predicr K R= Bvariance B R B f + variance f A - Rˆ ˆ f I K B R A R ˆ ˆ K A g A i bained by linearizing f R A f g ˆ J f 2 Nv 203-755/8797 52

he Exended Kalman filer Predicin ˆ f f g Updae R A R ˆ A B J g K R B B R B he Kalman gain ˆ i he K lpe g f he MAP RB = C, BRBR + I K= BC R eimar ha predic frm ˆ B i bained by linearizing g 2 Nv 203-755/8797 53 g

he Exended Kalman filer Predicin ˆ f f g R A R ˆ We Updae can al predic he bervain frm he prediced ae uing he bervain K R B B R B equain ˆ K A g Rˆ I K B R g 2 Nv 203-755/8797 54

he Exended Kalman filer Predicin ˆ f f g R A R ˆ A We Updae mu crrec he prediced value f he ae afer making an bervain K ˆ R B B R B K g g he crrecin i he difference beween ˆ R I K B R he acual bervain and he prediced bervain, caled by he Kalman Gain 2 Nv 203-755/8797 55

he Exended Kalman filer Predicin ˆ f f g Updae R A R ˆ he uncerainy in ae decreae if we berve he daa K Rand B make a crrecin he reducin i ˆ a muliplicaive K g hrinkage baed n Kalman gain and B Rˆ I K B A B R B R B J g 2 Nv 203-755/8797 56

he Exended Kalman filer Predicin Updae ˆ f R A R ˆ A f g A B J f J ˆ g K R B B R B ˆ K g Rˆ I K B R 2 Nv 203-755/8797 57

EKF EKF are prbably he m cmmnly ued algrihm fr racking and predicin M yem are nn-linear Specifically, he relainhip beween ae and bervain i uually nnlinear he apprach can be exended include nn-linear funcin f nie a well he erm Kalman filer fen imply refer an exended Kalman filer in m cnex. Bu.. 2 Nv 203-755/8797 58

EKF have limiain If he nn-lineariy change quickly wih, he linear apprximain i invalid Unable he eimae i fen biaed he rue funcin lie enirely n ne ide f he apprximain Variu exenin have been prped: Invarian exended Kalman filer IEKF Uncened Kalman filer UKF 2 Nv 203-755/8797 59

A differen prblem: Nn-Gauian g PDF We have aumed far ha: P 0 i Gauian r can be apprximaed a Gauian P i Gauian P i Gauian f hi ha a happy cnequence: All diribuin remain Gauian Bu when any f hee are n Gauian, he reul are n happy 2 Nv 203-755/8797 60

Linear Gauian Mdel P P - PO a priri raniin prb. Sae upu prb P 0 P A B P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d P 2 O 0:2 C P 2 O 0: PO 2 2 0 All diribuin remain Gauian

A differen prblem: Nn-Gauian PDF g f We have aumed far ha: P 0 i Gauian r can be apprximaed a Gauian P i Gauian P i Gauian hi ha a happy cnequence: All diribuin remain Gauian Bu when any f hee are n Gauian, he reul are n happy 2 Nv 203-755/8797 62

A imple cae P i a mixure f nly w Gauian i a linear funcin f Nn-linear funcin wuld be linearized anyway P i al a Gauian mixure! 2 Nv 203-755/8797 63 B 0, ; i i i w i Gauian P m 0, ; i i i i B w Gauian B P P m P P

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P P 0 O 0 C P 0 PO 0 0

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d 0

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 0

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d 0

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d P 2 O 0:2 C P 2 O 0: PO 2 2 0 When PO ha mre han ne Gauian, afer nly a few ime ep

When diribuin are n Gauian P O0: We have many Gauian fr cmfr..

Relaed pic: Hw ample frm a Diribuin? Sampling frm a Diribuin Px; G wih parameer G Generae randm number uch ha he diribuin f a large number f generaed number i Px; G he parameer f he diribuin are G Many algrihm generae RV frm a variey f diribuin Generain frm a unifrm diribuin i well udied Unifrm RV ued ample frm mulinmial diribuin Oher diribuin: M cmmnly, ranfrm a unifrm RV he deired diribuin 2 Nv 203-755/8797 7

Sampling frm a mulinmial Given a mulinmial ver N ymbl, wih prbabiliy f i h ymbl = Pi Randmly generae ymbl frm hi diribuin Can be dne by ampling frm a unifrm diribuin 2 Nv 203-755/8797 72

Sampling a mulinmial.0 P P2 P3 PN Segmen a range 0, accrding he prbabiliie Pi he Pi erm will um.0 Randmly generae a number frm a unifrm diribuin Malab: rand. Generae a number beween 0 and wih unifrm prbabiliy If he number fall in he i h egmen, elec he i h ymbl 2 Nv 203-755/8797 73

Sampling a mulinmial P+P2.0 P+P2+P3 P P2 P3 PN Segmen a range 0, accrding he prbabiliie Pi he Pi erm will um.0 Randmly generae a number frm a unifrm diribuin Malab: rand. Generae a number beween 0 and wih unifrm prbabiliy If he number fall in he i h egmen, elec he i h ymbl 2 Nv 203-755/8797 74

Relaed pic: Sampling frm a Many algrihm Gauian Simple: add many ample frm a unifrm RV he um f 2 unifrm RV unifrm in 0, i apprximaely Gauian wih mean 6 and variance Fr calar Gauian, mean m, d dev : x i Malab : x = m + randn* randn draw frm a Gauian f mean=0, variance= 2 r i 6 2 Nv 203-755/8797 75

Relaed pic: Sampling frm a Gauian Mulivariae d-dimeninal Gauian wih mean m and cvariance Cmpue eigen value marix L and eigenvecr marix E fr = E L E Generae d 0-mean uni-variance number x..x d Arrange hem in a vecr: X = [x.. x d ] Muliply X by he quare r f L and E, add m Y = m + E qrl X 2 Nv 203-755/8797 76

Sampling frm a Gauian Mixure i w Gauian X; m, i Selec a Gauian by ampling he mulinmial diribuin f weigh: j ~ mulinmialw, w 2, Sample frm he eleced Gauian Gauian X; m, j j i i 2 Nv 203-755/8797 77

When diribuin are n Gauian P = P - = PO = a priri raniin prb. Sae upu prb P 0 P P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d P 2 O 0:2 C P 2 O 0: PO 2 2 0 When PO ha mre han ne Gauian, afer nly a few ime ep

he prblem f he explding diribuin he cmplexiy f he diribuin increae expnenially wih ime hi i a cnequence f having a cninuu ae pace Only Gauian PDF prpagae wihu increae f cmplexiy Dicree-ae yem d n have hi prblem he number f ae in an HMM ay fixed Hwever, dicree ae pace are care Sluin: Cmbine he w cncep Dicreize he ae pace dynamically 2 Nv 203-755/8797 79

Dicree apprximain a diribuin A large-enugh cllecin f randmly-drawn ample frm a diribuin will apprximaely quanize he pace f he randm variable in equi-prbable regin We have mre randm ample frm high-prbabiliy regin and fewer ample frm lw-prbabiliy reign 2 Nv 203-755/8797 80

Dicree apprximain: Randm ampling A PDF can be apprximaed a a unifrm prbabiliy diribuin ver randmly drawn ample Since each ample repreen apprximaely he ame prbabiliy ma /M if here are M ample P x M M i0 x x i 2 Nv 203-755/8797 8

Ne: Prperie f a dicree diribuin he prduc f a dicree diribuin wih anher diribuin i imply a weighed dicree prbabiliy he inegral f he prduc i a mixure diribuin 2 Nv 203-755/8797 82 0 M i x i x M x P 0 M i i x i x x y P x y P x P 0 M i i x i y w P dx x y P x P 0 M i i x i x w x P

Dicreizing he ae pace A each ime, dicreize he prediced ae pace P M 0 : i M i0 i are randmly drawn ample frm P 0: Prpagae he dicreized diribuin 2 Nv 203-755/8797 83

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb predic P 0 P Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P ample Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P ample updae P 0 O 0 C P 0 PO 0 0 Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P ample predic P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d 0 Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P predic P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d 0 Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P ample updae P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 0 Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P ample predic P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d 0 Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = a priri raniin prb. Sae upu prb P 0 P ample predic P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d 0 Auming ha we nly generae FOUR ample frm he prediced diribuin

Paricle Filering P = P - = PO = ample a priri raniin prb. Sae upu prb updae Auming ha we nly generae FOUR ample frm he prediced diribuin P 0 P P 0 O 0 C P 0 PO 0 0 O0 P 0 O0 P 0 P d P O 0: C P O 0 PO 0 2 O0: P O0: P 2 P d P 2 O 0:2 C P 2 O 0: PO 2 2 0

Paricle Filering Dicreize ae pace a he predicin ep By ampling he cninuu prediced diribuin If apprpriaely ampled, all generaed ample may be cnidered be equally prbable Sampling reul in a dicree unifrm diribuin Updae ep updae he diribuin f he quanized ae pace Reul in a dicree nn-unifrm diribuin Prediced ae diribuin fr he nex ime inan will again be cninuu Mu be dicreized again by ampling A any ep, he curren ae diribuin will n have mre cmpnen han he number f ample generaed a he previu ampling ep he cmplexiy f diribuin remain cnan 2 Nv 203-755/8797 93

Paricle Filering P = P - = PO = ample a priri raniin prb. Sae upu prb predic updae Predicin a ime : O0 :- P O0:- P d Number f mixure cmpnen in prediced diribuin gverned by number f ample in dicree diribuin By deriving a mall 00-000 number f ample a each ime inan, all diribuin are kep manageable P Updae a ime : P O : CP O0:- PO 0

Paricle Filering g P f P A = 0, ample he iniial ae diribuin P M 0 0 0 P 0 0 i where i P M 0 i0 Updae he ae diribuin wih he bervain P M 0 : C P g i i i0 M 2 Nv 203-755/8797 95 C i0 P g i

Paricle Filering Predic he ae diribuin a he nex ime Sample he prediced ae diribuin 2 Nv 203-755/8797 96 f g P P 0 : 0 M i i i f P g P C P where 0: 0 : 0 i M i i P M P

Paricle Filering Predic he ae diribuin a Sample he prediced ae diribuin a Updae he ae diribuin a 2 Nv 203-755/8797 97 f g P P 0 : 0 M i i i f P g P C P where 0: 0 : 0 i M i i P M P 0 : 0 M i i i g P C P 0 M i i g P C

Eimaing a ae he algrihm give u a dicree updaed diribuin ver ae: he acual ae can be eimaed a he mean f hi diribuin Alernaely, i can be he m likely ample 2 Nv 203-755/8797 98 0 : 0 M i i i g P C P 0 ˆ M i i i g P C arg max : ˆ i i j g P j

Simulain wih a Linear Mdel x ha a Gauian diribuin wih 0 mean, knwn variance x ha a mixure Gauian diribuin wih knwn parameer Simulain: Generae ae equence frm mdel Generae equence f x frm mdel wih ne x erm fr every erm Generae bervain equence frm and x Aemp eimae frm

Simulain: Synheizing daa Generae ae equence accrding : i Gauian wih mean 0 and variance 0 2 Nv 203-755/8797 00

Simulain: Synheizing daa Generae ae equence accrding : i Gauian wih mean 0 and variance 0 Generae bervain equence frm ae equence accrding : x i mixure Gauian wih parameer: Mean = [-4, 0, 4, 8, 2, 6, 8, 20] Variance = [0, 0, 0, 0, 0, 0, 0, 0] Mixure weigh = [0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25, 0.25] x 2 Nv 203-755/8797 0

Simulain: Synheizing daa Cmbined figure fr mre cmpac repreenain 2 Nv 203-755/8797 02

SIMULAION: IME = predic PREDICED SAE DISRIBUION A IME = 2 Nv 203-755/8797 03

SIMULAION: IME = predic ample SAMPLED VERSION OF PREDICED SAE DISRIBUION A IME = 2 Nv 203-755/8797 04

SIMULAION: IME = ample SAMPLED VERSION OF PREDICED SAE DISRIBUION A IME = 2 Nv 203-755/8797 05

SIMULAION: IME = ample updae UPDAED VERSION OF SAMPLED VERSION OF PREDICED SAE DISRIBUION A IME = AFER SEEING FIRS OBSERVAION 2 Nv 203-755/8797 06

SIMULAION: IME = updae updae, <= 2 Nv 203-755/8797 07

SIMULAION: IME = 2 updae predic updae, <= 2 Nv 203-755/8797 08

SIMULAION: IME = 2 predic updae, <= 2 Nv 203-755/8797 09

SIMULAION: IME = 2 predic ample updae, <= 2 Nv 203-755/8797 0

SIMULAION: IME = 2 ample updae, <= 2 Nv 203-755/8797

SIMULAION: IME = 2 ample updae updae, <= 2 Nv 203-755/8797 2

SIMULAION: IME = 2 updae updae, <= 2 2 Nv 203-755/8797 3

SIMULAION: IME = 3 updae predic updae, <= 2 2 Nv 203-755/8797 4

SIMULAION: IME = 3 predic updae, <= 2 2 Nv 203-755/8797 5

SIMULAION: IME = 3 predic ample updae, <= 2 2 Nv 203-755/8797 6

SIMULAION: IME = 3 ample updae, <= 2 2 Nv 203-755/8797 7

SIMULAION: IME = 3 ample updae updae, <= 2 2 Nv 203-755/8797 8

SIMULAION: IME = 3 updae he figure belw hw he cnur f he updaed ae prbabiliie fr all ime inan unil he curren inan updae, <= 3 2 Nv 203-755/8797 9

Simulain: Updaed Prb Unil =3 updae, <= 3 2 Nv 203-755/8797 20

Simulain: Updaed Prb Unil =00 updae, <= 00 2 Nv 203-755/8797 2

Simulain: Updaed Prb Unil =200 updae, <= 200 2 Nv 203-755/8797 22

Simulain: Updaed Prb Unil =300 updae, <= 300 2 Nv 203-755/8797 23

Simulain: Updaed Prb Unil =500 updae, <= 500 2 Nv 203-755/8797 24

Simulain: Updaed Prb Unil =000 updae, <= 000 2 Nv 203-755/8797 25

Updaed Prb Unil = 000 updae, <= 000 2 Nv 203-755/8797 26

Updaed Prb Unil = 000 updae, <= 000 2 Nv 203-755/8797 27

Updaed Prb: p View updae, <= 000 2 Nv 203-755/8797 28

ESIMAED SAE 2 Nv 203-755/8797 29

Obervain, rue Sae, Eimae 2 Nv 203-755/8797 30

Paricle Filering Generally quie effecive in cenari where EKF/UKF may n be applicable Penial applicain include racking and edge deecin in image! N very cmmnly ued hwever Highly dependen n ampling A large number f ample required fr accurae repreenain Sample may n repreen mde f diribuin Sme diribuin are n amenable ampling Ue imprance ampling inead: Sample a Gauian and aign nnunifrm weigh ample 2 Nv 203-755/8797 3

Predicin filer HMM Cninuu ae yem Linear Gauian: Kalman Nnlinear Gauian: Exended Kalman Nn-Gauian: Paricle filering EKF are he m cmmnly ued kalman filer.. 2 Nv 203-755/8797 32