Finite Element Models for Steady Flows of Viscous Incompressible Fluids

Similar documents
NONLINEAR ANALYSIS OF PLATE BENDING

AS 5850 Finite Element Analysis

OTHER TPOICS OF INTEREST (Convection BC, Axisymmetric problems, 3D FEM)

Nonlinear Bending of Strait Beams

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

Finite element discretization of Laplace and Poisson equations

COMPUTATIONAL NUCLEAR THERMAL HYDRAULICS

1 Isoparametric Concept

2008 AP Calculus BC Multiple Choice Exam

CHAPTER 9. Interpolation functions for 2D elements. Numerical Integration. Modeling Considerations

Chapter 5. Introduction. Introduction. Introduction. Finite Element Modelling. Finite Element Modelling

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Higher-Order Discrete Calculus Methods

Derivation of Eigenvalue Matrix Equations

Sec 2.3 Modeling with First Order Equations

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

Section 11.6: Directional Derivatives and the Gradient Vector

3 Finite Element Parametric Geometry

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

Calculus II (MAC )

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

(1) Then we could wave our hands over this and it would become:

Middle East Technical University Department of Mechanical Engineering ME 413 Introduction to Finite Element Analysis

The Finite Element Method

Construction of Mimetic Numerical Methods

6.1 Integration by Parts and Present Value. Copyright Cengage Learning. All rights reserved.

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

Differentiation of Exponential Functions

Higher order derivatives

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

Abstract Interpretation: concrete and abstract semantics

DIFFERENTIAL EQUATION

GRAnada COde for the resolution of the adiabatic and non-adiabatic stellar oscillations. General scheme

1997 AP Calculus AB: Section I, Part A

16. Electromagnetics and vector elements (draft, under construction)

Hydrogen Atom and One Electron Ions

Inference Methods for Stochastic Volatility Models

LEAST-SQUARES FINITE ELEMENT MODELS

Elements of Statistical Thermodynamics

1973 AP Calculus AB: Section I

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

Analysis of potential flow around two-dimensional body by finite element method

Southern Taiwan University

CHAPTER 2 LAGRANGIAN AND EULERIAN FINITE ELEMENTS IN ONE DIMENSION

Direct Approach for Discrete Systems One-Dimensional Elements

INTEGRATION BY PARTS

Numerical methods for PDEs FEM implementation: element stiffness matrix, isoparametric mapping, assembling global stiffness matrix

MA 262, Spring 2018, Final exam Version 01 (Green)

ME469A Numerical Methods for Fluid Mechanics

High Energy Physics. Lecture 5 The Passage of Particles through Matter

Chapter 6 Folding. Folding

VSMN30 FINITA ELEMENTMETODEN - DUGGA

MAE4700/5700 Finite Element Analysis for Mechanical and Aerospace Design

Finite Element Analysis

u 3 = u 3 (x 1, x 2, x 3 )

Maxwell s Equations on a Yee Grid

Thomas Whitham Sixth Form

as a derivative. 7. [3.3] On Earth, you can easily shoot a paper clip straight up into the air with a rubber band. In t sec

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Integration by Parts

Where k is either given or determined from the data and c is an arbitrary constant.

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

INC 693, 481 Dynamics System and Modelling: The Language of Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Professor

INC 693, 481 Dynamics System and Modelling: Linear Graph Modeling II Dr.-Ing. Sudchai Boonto Assistant Professor

Einstein Equations for Tetrad Fields

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

surface of a dielectric-metal interface. It is commonly used today for discovering the ways in

u x A j Stress in the Ocean

General Notes About 2007 AP Physics Scoring Guidelines

1 General boundary conditions in diffusion

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

Exercise 1. Sketch the graph of the following function. (x 2

UNIT I PARTIAL DIFFERENTIAL EQUATIONS PART B. 3) Form the partial differential equation by eliminating the arbitrary functions

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

Broadband All-Angle Negative Refraction by Phononic Crystals

Finite Strain Elastic-Viscoplastic Model

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Rational Approximation for the one-dimensional Bratu Equation

2. Background Material

First derivative analysis

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

Dynamic Modelling of Hoisting Steel Wire Rope. Da-zhi CAO, Wen-zheng DU, Bao-zhu MA *

Discontinuous Galerkin and Mimetic Finite Difference Methods for Coupled Stokes-Darcy Flows on Polygonal and Polyhedral Grids

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

An Investigation on the Effect of the Coupled and Uncoupled Formulation on Transient Seepage by the Finite Element Method

JOHNSON COUNTY COMMUNITY COLLEGE Calculus I (MATH 241) Final Review Fall 2016

Another view for a posteriori error estimates for variational inequalities of the second kind

Molecules and Covalent Bond

That is, we start with a general matrix: And end with a simpler matrix:

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Massachusetts Institute of Technology Department of Mechanical Engineering

dx equation it is called a second order differential equation.

Pipe flow friction, small vs. big pipes

Thomas Whitham Sixth Form

Text: WMM, Chapter 5. Sections , ,

Transcription:

Finit Elmnt Modls for Stad Flows of Viscous Incomprssibl Fluids Rad: Chaptr 10 JN Rdd CONTENTS Govrning Equations of Flows of Incomprssibl Fluids Mid (Vlocit-Prssur) Finit Elmnt Modl Pnalt Function Mthod - algbraic problm Pnalt Finit Elmnt Modl of Viscous Incomprssibl Fluids Numrical Rsults Closur Viscous Incompr. Flows: 1

JN Rdd Govrning Equations of Flows of Viscous incomprssibl Fluids Equations of motion Dv σ + f = ρ Dt σ σ Dv + + f = ρ Dt σ σ Dv + + f = ρ Dt Matrial tim drivativ D D = + v = + v + v Dt t Dt t Consrvation of mass v v = 0 v + = 0 Constitutiv rlations σ = P I + τ, τ = 2µ D Viscous Incompr. Flows: 2

Govrning Equations of Flows of Viscous incomprssibl Fluids Kinmatics rlations 1 T D = v + ( v) 2 v v v v D =, D =, 2D = + Strss-vlocit-prssur rlations v v v v σ = 2µ P, σ = 2µ P, σ = µ + Boundar conditions ( v, t ) and ( v, t ) JN Rdd t = σ n + σ n, t = σ n + σ n Viscous Incompr. Flows: 3

Govrning Equations in Trms of Vlocitis and Prssur (2D) Diffrntial quations v v v σ σ ρ + v + v f = t 0 JN Rdd v v v σ σ ρ + v + v f = 0 t v v + = 0 Boundar conditions ( v, t) and ( v, t) v v v v σ = 2µ P, σ = 2µ P, σ = µ + Viscous Incompr. Flows: 4

WEAK FORMS OF THE EQUATIONS 0 0 v v v σ σ = w1 ρ + v + v f dd t Ω v v v w1 w 1 = ρw1 + v + v + σ + σ w1f dd w1t ds, t Ω v v v σ σ = w2 ρ + v + v f dd t Ω v v v w w = ρw + v + v + σ + σ wf t Ω 2 2 2 2 dd w2 t ds, t = σ n + σ n, t = σ n + σ n w Γ w Γ v 1 v 2 0 v v = w3 + Ω dd w3 P JN Rdd Viscous Incompr. Flows: 5

JN Rdd Mid Finit Elmnt Modl for th stad-stat cas m m n v = v, v = v, P = P, j j j j j j j= 1 j= 1 j= 1 11 11 12 13 1 M 0 0 v K + G(v) K K v F 22 21 22 23 2 0 M 0 v + K K + G(v) K v = F 31 32 33 3 0 0 0 P K K K P F 11 i j j j j i Kij = 2 + dd, Gij( v, v ) = i v + v dd 12 i j 13 23 K, i, i ij = dd Kij = j dd Kij = j dd, K 22 ij i j i = + 2 j dd, K = K, K = K, K = K, K = 21 12 31 13 32 23 33 ij ji ij ji ij ji ij F = f dd + t ds, F = f dd + t ds 1 2 i i i i i i 0 Viscous Incompr. Flows: 6

Mid Finit Elmnt Modl (continud) v = u, v = v v 1 1 P u 1 v 3 3 u 3 v 2 2 u 2 Quadratic (u,v); linar P Quadratic (u,v); linar P Linar (u,v); constant P Linar (u,v); constant P JN Rdd Viscous Incompr. Flows: 7

Pnalt Function Mthod-algbraic Problm: Find th minimum of th function F (; ) subjct to th constraint G(; ) = 0 df @F @ Lagrang multiplir mthod d + @F @ d = 0 F L (; ; ) F (; ) + G(; ) df L @F L @ d + @F L @ d + @F L @ d = 0 µ @F = @ + @G µ @F d + @ @ + @G d + G(; )d @ JN Rdd @F @ + @G @ = 0; @F @ + @G @ = 0; G(; ) = 0 Viscous Incompr. Flows: 8

Pnalt Function Mthod-algbraic (continud) Pnalt function mthod F P (; ) = F (; ) + [G(; ) 0]2 2 df P @F P @ d + @F P @ d = 0 µ @F = + G(; )@G d + @ @ µ @F @ + G(; )@G @ d @F @ + G(; )@G @ = 0; @F @ + G(; )@G @ = 0 JN Rdd Viscous Incompr. Flows: 9

df L @F L @ d + @F L @ d + @F L @ d = 0 µ Pnalt @F = function mthod @ + @G µ @F d + @ @ + @G d + G(; )d @ F P (; ) = F (; ) + @F [G(; ) 0]2 2 @ + @G @ = 0; @F @ + @G = 0; G(; ) = 0 @ df P @F P @ d + @F P @ d = 0 µ @F = + G(; )@G d + @ @ µ @F @ + G(; )@G d @ @F @ + G(; )@G @ = 0; @F @ + G(; )@G @ = 0 JN Rdd Approimation of th Lagrang multiplid can b computd in th pnalt mthod from λ γ = γ G( γ, γ ) Viscous Incompr. Flows: 10

Pnalt Function Mthod-algbraic (An Eampl) F (; ) = 2 2 + 2 8 + + 1; G(; ) 2 = 0 Lagrang Multiplir Mthod 4 8 + 2 = 0; 2 + 1 = 0; 2 = 0 Pnalt Function Mthod = 0:5; = 1:0; = 3:0 4 8 + 2 (2 ) = 0; 2 + 1 (2 ) = 0 Clarl, as! 1, w hav = 8 + 3 4 + 6 ; = 3 1 2 + 3 lim!1 = 0:5 = ; lim!1 = 1:0 = JN Rdd Viscous Incompr. Flows: 11

Pnalt Function Mthod-algbraic (Eampl - continud) Tabl: A comparison of th pnalt solution with th act for various valus of th pnalt paramtr. 1.0 10.0 25.0 50.0 100.0 1000.0 1.1 0.5938 0.5390 0.5197 0.5099 0.5010 0.4 0.9063 0.9610 0.9803 0.9901 0.9990 G( ; ) 1.8 0.2813 0.1169 0.0592 0.0298 0.0030 1.8 2.8125 2.9221 2.9605 2.9801 2.9980 λγ = γ G( γ, γ ) JN Rdd Viscous Incompr. Flows: 12

0 PENALTY FINITE ELEMENT FORMULATION for th Stad-Stat Cas Considr th wak forms v v v w2 w 2 0 = ρw2 + v + v + σ + σ w2f dd w2tds, t 0 v v v w1 w 1 = ρw1 + v + v + σ + σ w1f dd w1t ds, t Ω Ω = 3 + Ω w v v dd, t = σ n + σ n, t = σ n + σ n Γ Γ JN Rdd Viscous Incompr. Flows: 13

Pnalt Finit Elmnt Formulation (continud) Now suppos that th vlocit fild satisfis th constraint v v v v w w 1 2 + = 0 + + = 0 Thn adding th thr wak statmnts, w obtain w v w v 1 2 w w v v 1 2 0 2 2 w w v v 1 2 P w w f w f dd 3 1 2 0 0 v v v w v v v w v 1 2 v dd w t w t ds 1 2 JN Rdd Viscous Incompr. Flows: 14

JN Rdd Pnalt Finit Elmnt Formulation - continud Thus, th wak form of th problm, subjctd to th constraint is w1 u w2 v w w 1 2 u v 0 2 2 w f w f dd w t w t ds 1 2 1 2 v v v v w v v w v v dd 1 2 Thus, th variational problm is 0 I( v, v) v subjct to th constraint v + = 0 Viscous Incompr. Flows: 15

JN Rdd Pnalt Finit Elmnt Formulation - continud Thn, th modifid wak form with th constraint is 0 v v I p( v, v) I( v, v) dd 2 w1 u w2 v w w 1 2 u v 0 2 2 w f w f dd w t w t ds 1 2 1 2 v v v v w v v w v v dd 1 2 w1 w 2 v v dd 2 Pnalt prssion Viscous Incompr. Flows: 16

Pnalt Finit Elmnt Formulation - continud Th wak form of th problm can b sparatd into th following two statmnts: w v w v v 1 1 w v v 1 0 2 w f dd 1 v v w t ds w v v dd 1 1 w v 2 w v v 2 w v v 2 0 2 w f dd 2 v v w t ds w v v dd 2 2 Ths statmnts form th basis of th pnalt FE Modl. JN Rdd Viscous Incompr. Flows: 17

JN Rdd Pnalt Finit Elmnt Formulation continud Altrnativl, th prssur (ngativ of th Lagrang multiplir) in th govrning quations can b rplacd b v v P W obtain v v v v v v f 0 v v v v v v f 0 Th wak forms of ths quations ar prcisl th sam as thos on th prvious slid. Viscous Incompr. Flows: 18

JN Rdd Pnalt Finit Elmnt Modl m v = v (, ), v = v (, ) j j j j j= 1 j= 1 Substitution into th wak forms (adding inrtia trms) ilds th quations 11 11 12 1 M 0 v K + Gv ( ) K v F 22 + 21 22 2 0 M v = K K + Gv ( ) v F 11 j j j K 2 i i i ij = + dd + dd K = dd + dd, K = K 12 i j i j 21 12 ij ij ji 22 i j j j K 2 i i ij = + dd + dd F = f dd + t 1 i i m ds, F = f dd + t ds 2 i i i i Viscous Incompr. Flows: 19

Elmnts Usd for Pnalt FE Modl v 3 v 2 2 v 2 3 v 3 v 1 1 v 1 Nods with v and v JN Rdd Viscous Incompr. Flows: 20

Computational Aspcts of th Pnalt FEM Gnral form of th Pnalt FEM: ¹[K 1 ] + ½[K 2 ] + [K 3 ] f g = ff g Elmnt `locking': lim! 0 ¹[K 1 ] + ½[K 2 ] + [K 3 ] f g = ff g! [K 3 ]f g = ff g Choic of th pnalt paramtr: = 10 4 ¹ to = 10 12 ¹ Rducd intgration of th pnalt trms JN Rdd Viscous Incompr. Flows: 21

Numrical Eampls Viscous fluid squzd btwn paralll plats V 0 Computational domain Linar lmnt Quadratic lmnt v = V0, v = 0 2b 2a v t = 0 = 0 t t = 0 = 0 V 0 (a) v 0, t = 0 = (b) JN Rdd Viscous Incompr. Flows: 22

Viscous fluid squzd btwn paralll plats: Vlocit fild Distanc, 2.0 1.5 1.0 0.5 v at = 4 Analtical solution v at = 6 0.0, v 0 1 2 3 4 Horizontal vlocit JN Rdd Viscous Incompr. Flows: 23

Viscous fluid squzd btwn paralll plats: Prssur fild Prssur, P 10 9 8 7 6 5 4 3 2 1 Analtical solution ( = 2) FEM solution ( = 0.1875) Prssur, P 8 7 6 5 4 3 2 1 0 Analtical solution ( = 0) FEM solution ( = 0.0625) 0 0 1 2 3 4 5 6 Distanc, -1 0 1 2 3 4 5 6 Distanc, JN Rdd Viscous Incompr. Flows: 24

LID-DRIVEN CAVITY FLOW v = 1, v = 0 Vr long v = 0, v = 0 a a 0.5 a v = 0, v = 0 v 0, v = 0 = JN Rdd Viscous Incompr. Flows: 25

1.0 LID-DRIVEN CAVITY FLOW Distanc along vrtical cntrlin, 0.8 0.6 0.4 0.2 Linar lmnt (88 msh) Quadratic lmnt (44 msh) Linar lmnt (88 msh) Quadratic lmnt (44 msh) Circls dnot pnalt paramtr of 10^8 Squars dnot pnalt paramtr of 10^2 0.0-0.2 0.0 0.2 0.4 0.6 0.8 1.0 JN Rdd Horizontal vlocit, u Viscous Incompr. Flows: 26

Wall-drivn cavit flow vlocit profils 1.0 0.9 0.8 Distanc, 0.7 0.6 0.5 0.4 0.3 Pnalt FEM 8 8 msh 16 20 msh 0.2 0.1 0.0-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 Horizontal vlocit, v (0.5,) JN Rdd Viscous Incompr. Flows: 27

Wall-Drivn Cavit rsults (continud) 1.0 0.9 0.8 Distanc, 0.7 0.6 0.5 0.4 0.3 0.2 0.1 16 20 msh of bilinar lmnts ( R = 500, β = 0.5, ε = 10 2 ) R = 10,000 R = 5,000 R = 1,000 R = 500 JN Rdd 0.0-0.3-0.2-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Horizontal vlocit, v (0.5,) Viscous Incompr. Flows: 28

Stramlins 4 R = 10 Prssur contours Dilatation contours JN Rdd FluidMch LSFEM - 29 Viscous Incompr. Flows: 29

SUMMARY Th following topics wr covrd in this lctur: Govrning quations of flows of incomprssibl fluids Mid (vlocit-prssur) finit lmnt modl Pnalt function mthod - algbraic problm Pnalt finit lmnt modl of viscous incomprssibl fluids Numrical rsults JN Rdd Viscous Incompr. Flows: 30