BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

Similar documents
Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

AE/ME 339. K. M. Isaac. 8/31/2004 topic4: Implicit method, Stability, ADI method. Computational Fluid Dynamics (AE/ME 339) MAEEM Dept.

One Dimensional Axial Deformations

1. Solve Problem 1.3-3(c) 2. Solve Problem 2.2-2(b)

Finite Element Modelling of truss/cable structures

MEMBRANE ELEMENT WITH NORMAL ROTATIONS

Indeterminate pin-jointed frames (trusses)

INDETERMINATE STRUCTURES METHOD OF CONSISTENT DEFORMATIONS (FORCE METHOD)

C PLANE ELASTICITY PROBLEM FORMULATIONS

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

Application to Plane (rigid) frame structure

Module 11 Design of Joints for Special Loading. Version 2 ME, IIT Kharagpur

COMPOSITE BEAM WITH WEAK SHEAR CONNECTION SUBJECTED TO THERMAL LOAD

Quantum Mechanics I - Session 4

MECHANICS OF MATERIALS

Physics 2A Chapters 6 - Work & Energy Fall 2017

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Research Note NONLINEAR ANALYSIS OF SEMI-RIGID FRAMES WITH RIGID END SECTIONS * S. SEREN AKAVCI **

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

APPENDIX F A DISPLACEMENT-BASED BEAM ELEMENT WITH SHEAR DEFORMATIONS. Never use a Cubic Function Approximation for a Non-Prismatic Beam

Second Order Analysis

UNIVERSITY OF BOLTON RAK ACADEMIC CENTRE BENG(HONS) MECHANICAL ENGINEERING SEMESTER TWO EXAMINATION 2017/2018 FINITE ELEMENT AND DIFFERENCE SOLUTIONS

NMT EE 589 & UNM ME 482/582 ROBOT ENGINEERING. Dr. Stephen Bruder NMT EE 589 & UNM ME 482/582

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

C PLANE ELASTICITY PROBLEM FORMULATIONS

In this section is given an overview of the common elasticity models.

Module 3: Element Properties Lecture 1: Natural Coordinates

CIVL 7/8111 Chapter 1 - Introduction to FEM 1/21

MEEM 3700 Mechanical Vibrations

= = = (a) Use the MATLAB command rref to solve the system. (b) Let A be the coefficient matrix and B be the right-hand side of the system.

Linear Momentum. Center of Mass.

Physics 181. Particle Systems

ˆ (0.10 m) E ( N m /C ) 36 ˆj ( j C m)

FEA Solution Procedure

Part C Dynamics and Statics of Rigid Body. Chapter 5 Rotation of a Rigid Body About a Fixed Axis

EN40: Dynamics and Vibrations. Homework 7: Rigid Body Kinematics

Translational Equations of Motion for A Body Translational equations of motion (centroidal) for a body are m r = f.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

Tensor Analysis. For orthogonal curvilinear coordinates, ˆ ˆ (98) Expanding the derivative, we have, ˆ. h q. . h q h q

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 19 Group Theory For Crystals

2.3 Nilpotent endomorphisms

DUE: WEDS FEB 21ST 2018

ENGN 40 Dynamics and Vibrations Homework # 7 Due: Friday, April 15

1 Matrix representations of canonical matrices

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

Here is the rationale: If X and y have a strong positive relationship to one another, then ( x x) will tend to be positive when ( y y)

Momentum. Momentum. Impulse. Momentum and Collisions

Frame element resists external loads or disturbances by developing internal axial forces, shear forces, and bending moments.

APPENDIX A Some Linear Algebra

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

Week 9 Chapter 10 Section 1-5

Solutions to Problem Set 6

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 13

Army Ants Tunneling for Classical Simulations

3/31/ = 0. φi φi. Use 10 Linear elements to solve the equation. dx x dx THE PETROV-GALERKIN METHOD

NEWTON S LAWS. These laws only apply when viewed from an inertial coordinate system (unaccelerated system).

Period & Frequency. Work and Energy. Methods of Energy Transfer: Energy. Work-KE Theorem 3/4/16. Ranking: Which has the greatest kinetic energy?

Modeling of Dynamic Systems

PHYS 705: Classical Mechanics. Newtonian Mechanics

TEST 5 (phy 240) 2. Show that the volume coefficient of thermal expansion for an ideal gas at constant pressure is temperature dependent and given by

Structure and Drive Paul A. Jensen Copyright July 20, 2003

Chapter 3 and Chapter 4

Chapter 07: Kinetic Energy and Work

Inner Product. Euclidean Space. Orthonormal Basis. Orthogonal

Lecture 12: Discrete Laplacian

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Lecture Note 3. Eshelby s Inclusion II

Virtual Work 3rd Year Structural Engineering

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Lesson 5: Kinematics and Dynamics of Particles

Force = F Piston area = A

First day August 1, Problems and Solutions

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

PHYS 1441 Section 002 Lecture #16

Physics 2A Chapter 3 HW Solutions

Solutions to selected problems from homework 1.

First Law: A body at rest remains at rest, a body in motion continues to move at constant velocity, unless acted upon by an external force.

Solutions to exam in SF1811 Optimization, Jan 14, 2015

I have not received unauthorized aid in the completion of this exam.

Principle of virtual work

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Formulas for the Determinant

Numerical Heat and Mass Transfer

Some Comments on Accelerating Convergence of Iterative Sequences Using Direct Inversion of the Iterative Subspace (DIIS)

C/CS/Phy191 Problem Set 3 Solutions Out: Oct 1, 2008., where ( 00. ), so the overall state of the system is ) ( ( ( ( 00 ± 11 ), Φ ± = 1

PHYS 1441 Section 002 Lecture #15

e - c o m p a n i o n

New Method for Solving Poisson Equation. on Irregular Domains

11. Dynamics in Rotating Frames of Reference

Introduction to elastic wave equation. Salam Alnabulsi University of Calgary Department of Mathematics and Statistics October 15,2012

PHYS 1443 Section 002 Lecture #20

Formal solvers of the RT equation

Linear Algebra and its Applications

Advanced topics in Finite Element Method 3D truss structures. Jerzy Podgórski

General displacement arch-cantilever element method for stress analysis of arch dam

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

Transcription:

BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons o derental eqatons. Partton o the doman nto a set o smple shapes (element) Approxmate the solton sng pecewse polynomals wthn the element F xx xy bx 0 x y xy yy Strctre by 0 x y Element Pecewse-Lnear Approxmaton x

INTRODUCTION TO FEM cont. How to dscretze the doman? Usng smple shapes (element) All elements are connected sng nodes. 5 6 7 8 Nodes Elements Solton at Element s descrbed sng the vales at Nodes,, 6, and 5 (Interpolaton). Elements and share the solton at Nodes and 6. INTRODUCTION TO FEM cont. Methods Drect method: Easy to nderstand, lmted to D problems Varatonal method Weghted resdal method Obectves Determne dsplacements, orces, and spportng reactons Wll consder only statc problem

-D SYSTEM OF SPRINGS F 5 F 6 5 F Bodes move only n horzontal drecton External orces, F, F, and F, are appled No need to dscretze the system (t s already dscretzed!) Rgd body (ncldng walls) NODE Sprng ELEMENT 5 SPRING ELEMENT Element e Consst o Nodes and, Sprng constant k (e) Force appled to the nodes: e e, () e e, () e Dsplacement and Elongaton: e e e e Force n the sprng: P k k Relaton b/w sprng orce and nodal orces: Eqlbrm: ( e ) e e e e 0 or e P e 6

Sprng Element e SPRING ELEMENT cont. Relaton between nodal orces and dsplacements e e e e k k Matrx notaton: k: stness matrx q: vector o DOFs : vector o element orces e e k e e k k k k [ k ] q k q 7 Stness matrx SPRING ELEMENT cont. It s sqare as t relates to the same nmber o orces as the dsplacements. It s symmetrc. It s snglar,.e., determnant s eqal to zero and t cannot be nverted. It s postve sem-dente Observaton For gven nodal dsplacements, nodal orces can be calclated by [ k ] q ( e ) ( e ) ( e ) For gven nodal orces, nodal dsplacements cannot be determned nqely e k k e k k e e 8

Element eqaton and assembly SYSTEM OF SPRINGS cont. F F 5 F 6 5 () k k () k k () k k 0 0 0 () 0 0 0 k k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 () k k () k k () k k 0 0 0 () () k 0 k 0 k k 0 0 0 0 0 0 () 0 k 0 k 0 0 0 0 0 0 0 5 9 SYSTEM OF SPRINGS cont. () k k 0 0 0 () () () () k k 0 k k k k k k () k k () 0 k k 0 0 ( ) 0 k 0 k 0 0 0 0 0 0 5 0 () () kk k k 0 0 () () () () k k 0 k k k k k k () k k () () k k kk 0 0 () 0 k 0 k 0 0 0 0 0 0 5 0 (5) k5 k5 (5) k5 k 5 () () kk k k 0 0 () () () k k 0 k k k k () () (5) k k k k k5 k5 0 () (5) 0 k k5 k k5 0 0 0 0 0 0 5 0 0 5

(6) k6 k6 (6) k6 k 6 5 5 SYSTEM OF SPRINGS cont. () () kk k k 0 0 () () () k k k k k k 0 () () (5) k k k k5 k k5 0 () (5) (6) 0 k k5 k k5 k6 k 6 (6) 0 0 0 k6 k6 5 5 F 5 F 6 5 F Relaton b/w element orces and external orce Force eqlbrm F e e e e e e SYSTEM OF SPRINGS cont. 0 F,,... ND At each node, the smmaton o element orces s eqal to the appled, external orce F () () F 5 F 6 5 (5) F R () () () () () F () () (5) F () (5) (6) F (6) R 5 5 6

SYSTEM OF SPRINGS cont. Assembled System o Matrx Eqaton: k k k k 0 0 R k k k k k k 0 F k k k k5 k k5 0 F 0 k k5 k k5 k6 k 6 F 0 0 0 k6 k6 5 R5 [ ]{ Q } { F } s s s [ s ] s sqare, symmetrc, snglar and postve sem-dente. When dsplacement s known, orce s nknown 5 0 R and R 5 are nknown reacton orces SYSTEM OF SPRINGS cont. Imposng Bondary Condtons Ignore the eqatons or whch the RHS orces are nknown and strke ot the correspondng rows n [ s ]. Elmnate the colmns n [ s ] that mltply nto zero vales o dsplacements o the bondary nodes. k k k k 0 0 R k k k k k k 0 F k k k k5 k k5 0 F 0 k k k k k k F 5 5 6 6 0 0 0 k6 k6 5 R5 7

Global Matrx Eqaton SYSTEM OF SPRINGS cont. k k k k k F k k k k5 k 5 F k k5 k k5 k 6 F [ ]{ Q} { F} Global Stness Matrx [] sqare, symmetrc and postve dente and hence non-snglar Solton { Q} [ ] { F} Once nodal dsplacements are obtaned, sprng orces can be calclated rom e e e e P k k 5 UNIAXIAL BAR For general naxal bar, we need to dvde the bar nto a set o elements and nodes Elements are connected by sharng a node Forces are appled at the nodes (dstrbted load mst be converted to the eqvalent nodal orces) Assemble all elements n the same way wth the system o sprngs Solve the matrx eqaton or nodal dsplacements p(x) F Calclate stress and stran sng nodal dsplacements Statcally ndetermnate p(x) Statcally determnate F x 6 8

Two-orce member Only constant cross-secton Element orce s proportonal to relatve dspl Frst node: second code: Force-dsplacement relaton D BAR ELEMENT () e Node x L =EA/L Node A () e AE ( ) L AE ( ) L Smlar to the sprng element 7 Matrx notaton D BAR ELEMENT cont. AE L Ether orce or dsplacement (not both) mst be gven at each node. Example: = 0 and = 00 N. What happens when and are gven? Nodal eqlbrm Eqlbrm o orces actng on Node I () e Node =EA/L ( ) ( ) ( ) { e } [ k e ]{ q e } Node () e F 0 F In general F e F e Element e (e) Node (e+) Element e+ 8 9

Assembly D BAR ELEMENT cont. Smlar process as sprng elements Replace all nternal nodal orces wth External Appled Nodal Force Obtan system o eqatons [ ]{ Q } { F } s s s Property o [ s ] [ s ]: Strctral stness matrx {Q s } Vector o nodal DOFs {F s }: Vector o appled orces Sqare, symmetrc, postve sem-dente, snglar, non-negatve dagonal terms Applyng bondary condtons Remove rgd-body moton be xng DOFs Strkng-the-nodes and strkng-the-colmns (Reer to sprnt elements) [ ]{ Q} { F} []: Global stness matrx {Q} Vector o nknown nodal DOFs {F}: Vector o known appled orces 9 D BAR ELEMENT cont. Applyng bondary condtons cont. [] s sqare, symmetrc, postve dente, non-snglar, nvertble, and postve dagonal terms Can obtan nqe {Q} Element orces Ater solvng nodal dsplacements, the element orce can be calclated AE P L P A Element stress Reacton Forces P AE P L Note P = P Use [ s ]{Q s } = {F s }: the rows that have been deleted (strke-the-rows) Or, se e F e 0 0

EXAMPLE elements and nodes At node : F () () () Eqaton or each element: F Element Element x Element () () () () () () N F Element Element N N Element N F F EXAMPLE cont. How can we combne derent element eqatons? (Assembly) Frst, prepare global matrx eqaton: 0 0 0 0 00 0 0 0 0 0 0 Dsplacement vector 0 0 0 0 0 0 Stness matrx 0 0 0 0 0 0 Appled orce vector Wrte the eqaton o element n the correspondng locaton 0 0 () () 0 0 0 0 0 0 0 0 0 0 0 0

Wrte the eqaton o element : 0 0 0 0 0 EXAMPLE cont. () 0 0 () 0 0 0 0 0 0 0 Combne two eqatons o elements and 0 0 () () () 0 () 0 0 0 0 0 0 0 Wrte the eqaton o element EXAMPLE cont. 0 0 0 0 0 () 0 0 0 0 0 0 0 () 0 0 Combne wth other two elements () F 0 0 () () () F ( ) () F 0 0 () F 0 0 Strctral Stness Matrx

EXAMPLE cont. Sbsttte bondary condtons and solve or the nknown dsplacements. Let = 50 N/cm, = 0 N/cm, = 70 N/cm and = 0 N. F 50 50 0 0 F 50 (50 0 70) 0 70 F 0 0 0 0 F 0 70 0 70 nowns: F, F,, and Unknowns: F, F,, and 0 50 50 0 0 0 50 (50 0 70) 0 70 F 0 0 0 0 0 F 0 70 0 70 0 5 EXAMPLE cont. Remove zero-dsplacement colmns: and. 0 50 50 0 50 50 F 0 0 F 0 70 Remove nknown orce rows: F and F. 0 50 50 0 50 50 Now, the matrx shold not be snglar. Solve or and. Usng and, Solve or F and F.. cm 0. cm F 0 0 N F 0 70 8 N 6

EXAMPLE cont. Recover element data () 50 50. 0 () 50 50 0. 0 Element orce () 0 0 0. () 0 0 0.0 () 70 70 0. 8 () 70 70 0.0 8 - N F = 0 N. cm 0. cm -8 N 7 EXAMPLE Statcally ndetermnate bars E = 00 GPa R L F = 0,000 N A = 0 m, A = 0 m Element stness matrces: () 0 0 7 [ k ] 0 0.5 A B C 0.5 m () 0 0 7 5 5 [ k ] 0 0. 5 5 Assembly 0 F 7 0 9 5 0, 000 0 5 5 F F 0. m R R 8

Applyng BC EXAMPLE cont. 0 9 0,000.0 m 7 Element orces or Element stresses AE P L Reacton orces () 7 P 0, N () 7 P 50 5,556N () RL P N () RR P 5,556N,, 9 PLANE TRUSS ELEMENT What s the derence between D and D nte elements? D element can move x- and y-drecton ( DOFs per node). However, the stness can be appled only axal drecton. Local Coordnate System D FE ormlaton can be sed a body-xed local coordnate system s constrcted along the length o the element Y The global coordnate system (X and Y axes) s chosen to represent the entre strctre X The local coordnate system (x and y axes) s selected to algn the x-axs along the length o the element x EA x L cm 8 cm 50 N 0 5

PLANE TRUSS ELEMENT cont. Element Eqaton (Local Coordnate System) Axal drecton s the local x-axs. D element eqaton x 0 0 y 0 0 0 0 v EA x L 0 0 y 0 0 0 0 v { } [ k]{ q} [ k] s sqare, symmetrc, postve sem-dente, and non-negatve dagonal components. How to connect to the neghborng elements? Cannot connect to other elements becase LCS s derent Use coordnate transormaton y x Local coordnates v y x v x Global coordnates x COORDINATE TRANSFORMATION Transorm to the global coord. and assemble cos sn v sn cos v cos sn v sn cos v v v Transormaton matrx cos sn 0 0 v sn cos 0 0 v 0 0 cos sn v 0 0 sn cos v local global { q} [ T]{ q} Transormaton matrx 6

COORDINATE TRANSFORMATION cont. The same transormaton or orce vector x cos sn 0 0 x y sn cos 0 0 y 0 0 cos sn x x y 0 0 sn cos y local global Property o transormaton matrx T T { } [ T]{ } { } [ T] T { } [ ] [ ] T { } [ T]{ } ELEMENT STIFFNESS IN GLOBAL COORD. Element x 0 0 y EA 0 0 0 0 v L 0 0 x y 0 0 0 0 v element stness matrx { } [ k]{ q} Transorm to the global coordnates [ T]{ } [ k][ T]{ q} y x v N { } [ T] [ k][ T] { q} global global v N x x [ k] [ T] [ k][ T] { } [ k]{ q} 7

ELEMENT STIFFNESS IN GLOBAL COORD. cont. Element stness matrx n global coordnates [ k] T [ k] T [ k] EA L T cos cos sn cos cos sn cos sn sn cos sn sn cos cos sn cos cos sn cos sn sn cos sn sn Depends on Yong s modls (E), cross-sectonal area (A), length (L), and angle o rotaton () Axal rgdty = EA Sqare, symmetrc, postve sem-dente, snglar, and non-negatve dagonal terms 5 EXAMPLE N 50 N Two-bar trss Dameter = 0.5 cm E = 00 6 N/cm Element 8 cm Element In local coordnate () () () { } [ k ]{ q } N cm Element N x 0 0 y EA 0 0 0 0 v L 0 0 x y 0 0 0 0 v y x v N v N x =.7 o E = 0 x 0 6 N/cm A = pr = 0.09 cm L =. cm x 6 8

Element cont. EXAMPLE cont. Element eqaton n the global coordnates () x 0.69 0.6 0.69 0.6 () 0.6 0.08 0.6 0.08 y v 050 () x 0.69 0.6 0.69 0.6 () y 0.6 0.08 0.6 0.08 v y () () () { } [ k ]{ q } x Element () x 0 0 0 0 () 0 0 y v 85 () x 0 0 0 0 () y 0 0 v = 90 o E = 0 x 0 6 N/cm A = pr = 0.09 cm L = 8 cm N v N v x x 7 EXAMPLE cont. Assembly Ater transormng to the global coordnates Element F x 70687 79 70687 79 0 0 F 79 6 79 6 0 0 y v F x 70687 79 70687 79 0 0 F y 79 6 79 5587 0 85 v F x 0 0 0 0 0 0 F y 0 0 0 85 0 85 v Bondary Condtons Nodes and are xed. Node has known appled orces: F x = 50 N, F y = 0 N Element 8 9

EXAMPLE cont. Bondary condtons (strkng-the-colmns) F x 70687 79 70687 79 0 0 0 F 79 6 79 6 0 0 0 y 50 70687 79 70687 79 0 0 0 79 6 79 5587 0 85v F x 0 0 0 0 0 0 0 F 0 0 0 85 0 85 0 y Strkng-the-rows 50 70687 79 0 79 5587 v Solve the global matrx eqaton v 8.80 cm.80 cm 9 Spport reactons EXAMPLE cont. F x 70687 79 50 F 79 6.9 y 8.80 N F x 0 0.80 0 F y 0 85.9 The reacton orce s parallel to the element length (two-orce member) Element orce and stress (Element ) Need to transorm to the element local coordnates.8.555 0 0 0 0 v.555.8 0 0 0 0 0 0.8.555 5.890 v 0 0.555.8 v 6.0 0 0

EXAMPLE cont. Element orce and stress (Element ) cont. Element orce can only be calclated sng local element eqaton x 0 0 0 60. EA 0 0 0 0 0 0 N y x L 0 0 5.890 60. y 0 0 0 0 6.0 0 There s no orce components n the local y-drecton In x-drecton, two orces are eqal and opposte The orce n the second node s eqal to the element orce Normal stress = 60. / 0.09 = 8 N/cm. 60. N 60. N OTHER WAY OF ELEMENT FORCE CALCULATION Element orce or plane trss AE AE P L L Wrte n terms o global dsplacements AE P l mv l mv L l mv v AE L l cos m sn

EXAMPLE Drectly assemblng global matrx eqaton (applyng BC n the element level) Element property & drecton cosne table Elem AE/L -> l = cos m = sn 06 0 5 -> -0 0.866 0.5 06 0 5 -> 90 0 06 0 5 -> 0 0.866 0.5 Snce and v wll be deleted ater assembly, t s not necessary to keep them v v l lm l lm () () EA lm m lm m v L l lm l lm lm m lm m v k F 5 () () EA l lm L lm m v k v SPACE TRUSS ELEMENT A smlar extenson sng coordnate transormaton DOF per node, v, and w x, y, and z Y v Y X w v N x Element stness matrx s 6x6 x w N Z X Z FE eqaton n the local coord. x AE x L { } [ k]{ q}

SPACE TRUSS ELEMENT cont. Relaton between local and global dsplacements Each node has DOFs (, v, w ) v l m n 0 0 0w { q} [ T] { q} 0 0 0 l m n () ( 6) (6) v w Drecton cosnes x x y y z z l cos x, m cos y, n cosz L L L L x x y y z z 5 SPACE TRUSS ELEMENT cont. Relaton between local and global orce vectors Stness matrx x l 0 y m 0 z n 0 x x 0 l x y 0 m z 0 n { } [ T] T { } T T { } [ k]{ q } [ T] { } [ T] [ k][ T]{ q } { } [ k]{ q} l lm ln l lm ln m mn lm m mn v EA n ln mn n w [ k] L l lm ln sym m mn v n w [ k] [ T] T [ k][ T] 6

THERMAL STRESSES Temperatre change cases thermal stran L L L No stress, no stran No stress, thermal stran (a) at T = T re Thermal stress, no stran (b) at T = T re + T Constrants case thermal stresses Thermo-elastc stress-stran relatonshp = E T = + T E Thermal expanson coecent 7 THERMAL STRESSES cont. Force-dsplacement relaton L L P = AE T AE AET L L Fnte element eqaton Thermal orce vector ( ) ( ) ( ) ( ) { e } [ k e ]{ q e } { e T } ( ) 0 e v { T } AET For plane trss, transorm to the global coord. 0 v { } [ k]{ q} { } [ k]{ q} { } { } T T l m v { T} AET l mv [ ]{ Q } { F } { F } s s s Ts 8