Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Similar documents
Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum

p = mv and its units are kg m/s or N.s Momentum is a vector quantity that has the same direction as the velocity

Chapter 7. Impulse and Momentum

Impulse and Momentum continued

LINEAR MOMENTUM AND COLLISIONS

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

Chapter 9. Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions

Chapter 9 Impulse and Momentum

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Center of Mass & Linear Momentum

Impulse & Linear Momentum

Chapter 9 Linear Momentum

Chap. 8: Collisions and Momentum Conservation

AP Physics C: Mechanics Practice (Systems of Particles and Linear Momentum)

Per 9 10 Momentum_Presentation.notebook. January 20, Momentum.

Chapter 8 LINEAR MOMENTUM AND COLLISIONS

Chapter 7. Impulse and Momentum

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

October 24. Linear Momentum: - It is a vector which may require breaking it into components

Momentum. Slide 2 / 69. Slide 1 / 69. Slide 4 / 69. Slide 3 / 69. Slide 5 / 69. Slide 6 / 69. Conservation of Momentum. Conservation of Momentum

Impulse/Momentum And Its Conservation

card timer glider B glider A light gates (a) *(i) Describe how you would use the apparatus shown to verify the law of conservation of momentum.

Momentum and Its Relation to Force

Algebra Based Physics

Conservation of Momentum. The total momentum of a closed, isolated system does not change.

Per 3 4 Momentum_Presentation.notebook. January 23, Momentum.

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

Physics 11 (Fall 2012) Chapter 9: Momentum. Problem Solving

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

This Week. 9/5/2018 Physics 214 Fall

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

PHYSICS. Chapter 11 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

Chapter 7. Impulse and Momentum

(D) Based on Ft = m v, doubling the mass would require twice the time for same momentum change

AP Physics 1 Momentum and Impulse Practice Test Name

This Week. 7/29/2010 Physics 214 Fall

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Momentum in 1-Dimension

Chapter 9. Collisions. Copyright 2010 Pearson Education, Inc.

Physics 10 Lecture 6A. "And in knowing that you know nothing, that makes you the smartest of all. --Socrates

Chapter 9 Linear Momentum and Collisions

4.) A baseball that weighs 1.6 N leaves a bat with a speed of 40.0 m/s. Calculate the kinetic energy of the ball. 130 J

Q2. Two forces of 6 N and 10 N act at a point. Which of the following could not be the magnitude of the result?

frictionless horizontal surface. The bullet penetrates the block and emerges with a velocity of o

Chapter 7 Linear Momentum

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

Chapter 9: Momentum and Conservation. Newton s Laws applied

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Module 17: Systems, Conservation of Momentum and Center of Mass

Σp before ± I = Σp after

Concepts in Physics. Monday, October 5th

A. Incorrect! Remember that momentum depends on both mass and velocity. B. Incorrect! Remember that momentum depends on both mass and velocity.

Conservation of Momentum

CP Snr and Hon Freshmen Study Guide

Momentum and Collisions

6.1 Momentum and Impulse A. What is momentum? Newton defined momentum as the quantity of motion

Momentum and Impulse

Chapter 7- Linear Momentum

Linear momentum conservation

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Energy problems look like this: Momentum conservation problems. Example 8-1. Momentum is a VECTOR Example 8-2

Momentum. Slide 1 / 47. Slide 2 / 47. Slide 3 / 47. Conservation of Momentum. Conservation of Momentum

Momentum and Its Relation to Force

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

6 th week Lectures Feb. 12. Feb

Slide 1 / 47. Momentum by Goodman & Zavorotniy

Name ID Section. 1. One mile is equal to 1609 m; 1 hour is equal to 3600 s. The highway speed limit of 65 mph is equivalent to the speed of:

Chapter 6 - Linear Momemtum and Collisions

The total momentum in any closed system will remain constant.

S15--Phys Q2 Momentum

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

7-6 Inelastic Collisions

Chapter 7 Lecture. Pearson Physics. Linear Momentum and Collisions. Prepared by Chris Chiaverina Pearson Education, Inc.

PS113 Chapter 7. Impulse and Momentum

Momentum Practice Problems

Impulse (J) J = FΔ t Momentum Δp = mδv Impulse and Momentum j = (F)( p = ( )(v) F)(Δ ) = ( )(Δv)

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

All moving objects have what Newton called a quantity of motion.

AAST/AEDT. Center of mass

When particle with mass m moves with velocity v, we define its Linear Momentum p as product of its mass m and its velocity v:

AP PHYSICS C Momentum Name: AP Review

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Chapter 7. Impulse and Momentum

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Physics 211: Lecture 14. Today s Agenda

AP Physics C Mechanics

An Introduction to Momentum (Doodle Science)

TEACHER BACKGROUND INFORMATION FORCE

Momentum is conserved for all collisions as long as external forces don t interfere.

AP Physics C. Momentum. Free Response Problems

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Conservation of Momentum

Momentum Problems. What is the total momentum of the two-object system that is shown after the expansion of the spring?

Transcription:

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and velocity (p=mv) and is symbolized by p. Momentum is a vector quantity since v is a vector and it is multiplied by a scalar (m). The direction is the same as the velocity. p=mv units are kg m/s = N s The more momentum an object has, the harder it is to stop the object and the greater the effect of stopping the object. A net force is required to change momentum in magnitude or direction. Newton s second law states that an unbalanced or net force acting on a mass will accelerate the mass in the direction of the force. Another way of saying this is that a net force acting on a mass will cause the mass to change its momentum. We can rearrange the equation for Newton s second law to emphasize the change in momentum: v F net ma m t Rearranging this equation by dividing both sides by t gives F t mv mv f m v 0 The left side of the equation (Ft) is called the impulse, and the right side is the change in momentum. This equation reflects the impulse-momentum theorem, and in words can be stated the average net force acting on a mass during a time interval is equal to the mass s change in momentum. Impulse-momentum theorem (Ft=p) The impulse (Ft) of a force is the product of the average net force and the time interval during which the force acts which is also equal to p. Impulse is a vector quantity and has the same direction as the average net force. Impulse is very useful when dealing with forces that act over a short time and/or time varying forces hitting a baseball with a bat, for instance (graph below). The area under the curve of a F vs t graph gives impulse which is also equal to p. A change in momentum over a longer time requires less force. The same impulse (same p) can be given to an object by a smaller force, F, if applied over a greater time interval, as long as Ft remains constant. This is the reason why an egg dropped on a pillow does not break while an egg dropped from the same height onto concrete does break. Example 1 Look at the pictures below. If the raindrop and the hailstone have the same mass, which one of the two has a larger change in momentum? Justify your answer.

Example 2 A golf ball (m=0.047 kg) bounces off a hard surface as shown in the diagram to the right. Determine the magnitude and direction of the impulse applied to the ball by the surface. Example 3 A motion sensor and a force sensor record the motion of a cart along a track, as shown below. The cart is given a push so that it moves toward the force sensor and then collides with it. The two sensors record the values shown in the following graphs. (a) Determine the magnitude of the change in the cart's momentum during the collision. (b) Determine the mass of the cart. (c) Determine the energy lost in the collision between the force sensor and the cart.

Law of conservation of momentum A net force is required to change an object s momentum (Newton s 2 nd law). You probably remember from Newton s 3 rd law that forces always occur in pairs (action-reaction), so when two objects interact the forces they apply on each other must be equal in magnitude and opposite in direction. Since the forces are of equal magnitude and they act over the same amount of time, the impulse on each object must also be of equal magnitude. Since each object experiences the same magnitude of impulse, the magnitude of the change in momentum of each object must also be the same. This is the basis for the law of conservation of momentum. The law of conservation of momentum states that the total momentum of all objects interacting with one another remains constant regardless of the nature of the forces between the objects. The law of conservation of momentum is particularly useful when dealing with situations where the forces are not constant such as collisions, explosions, or rocket propulsions a form of a controlled explosion. For example, look at figure to the right. Before the rocket is fired, p total = 0. As fuel burns, p total remains unchanged (p total = 0). The backward p of the expelled gas is just balanced by the forward p gained by the rocket. Thus, rockets can accelerate in empty space. Note that when applying the law of conservation of momentum the objects must be isolated. In an isolated system, the only forces present are those between the objects of the system (internal forces action-reaction pairs). The net external force must be zero ( F external = 0). For example, you may think that momentum is not conserved for a falling rock since its speed and momentum are increasing as it falls; however, you must take into account that the earth is accelerating upward towards the rock. Momentum is conserved for the earth-rock system. Collisions are separated into two categories based on kinetic energy conservation 1. Elastic collision both p and K are conserved If a collision occurs between two objects with no heat produced in the collision (or sound, deformation, etc.), then K is also conserved. Of course, for the brief moment during which the 2 objects are in contact, some (or all) of the E is stored in the form of elastic potential energy. 2. Inelastic collision p is conserved but not K A perfectly (or totally) inelastic collision is a special type of inelastic collision in which the two objects stick together and move as one object after the collision. Two dimensional collisions Momentum is a vector quantity. If a collision is two dimensional (glancing collision), you have to analyze the x and y separately. Momentum is conserved in both dimensions. Look at the diagram below. A ball moving north experiences a glancing collision with a ball at rest. Since the horizontal component of the initial momentum is zero, the total final momentum in the horizontal must also be zero. This means both the horizontal components are equal and oppositely directed. The sum of their vertical components must equal the initial balls momentum. The diagram below right shows how the vector sum is indeed equal to the initial momentum. Center of mass Center of mass is the single point that represents the average location for the total mass of an object or multiple objects. In an isolated system, the total linear momentum does not change; therefore, the center of mass of the system does not change either. For example, the bullet in the diagram to the right is following the typical parabolic path when it explodes into two pieces. The individual pieces now follow a different path, but the center of mass continues along the same parabolic trajectory.

Steps for solving problems using conservation of linear momentum 1. Decide which objects are included in the system. Sketch the situation if a good diagram is not given. 2. Make sure that the system is isolated (only internal forces present; F external = 0) or that the interactions are sufficiently short and intense that you can ignore external forces. If the system is not isolated, you would have to include the other objects producing the forces. 3. Set the total final momentum equal to the total initial momentum. Solve for unknown quantities. Remember that momentum is a vector quantity so you must take into account the direction (positive or negative) of the initial and final velocities and analyze x and y independently if in two dimensions. Example 4 A freight train is being assembled in a switching yard. Car 1 has a mass of 65,000 kg and moves at a velocity of +0.80 m/s. Car 2, with a mass of 92,000 kg and a velocity of +1.3 m/s, overtakes car 1 and couples to it. Neglecting friction, find the common velocity of the cars after they become coupled. Example 5 Starting from rest, two skaters push off against each other on smooth level ice, where friction is negligible. One is a woman with a mass of 54 kg and the other is a man with a mass of 88 kg. Complete the table below comparing each quantity for the man and woman while they are pushing on each other. Quantity Magnitude of force Greater for man Greater for woman Equal Magnitude of impulse Magnitude of momentum change Magnitude of acceleration Change in speed Change in kinetic energy If the woman moves away with a velocity of 2.5 m/s, find the recoil velocity of the man.

Example 6 A ballistic pendulum is sometimes used in laboratories to measure the speed of a projectile, such as a bullet. The ballistic pendulum shown in the diagram below consists of a block of wood (mass = 2.50 kg) suspended by a wire of negligible mass. A bullet (mass = 0.0100 kg) is fired horizontally at the block. The bullet collides with the block and the combined mass swings to a maximum height of 0.650 m above the initial position. Find the speed of the bullet just before it strikes the block, assuming that air resistance is negligible. Example 7 An unstable nucleus of mass 1710-27 kg, initially at rest, disintegrates into three particles. One of the particles has a mass of 5.010-27 kg and moves along the positive y axis with a speed of 6.010 6 m/s. Another particle has a mass of 1.010-26 kg and moves along the positive x axis with a speed of 4.010 6 m/s. Determine the magnitude and direction of the third particle s velocity (for now, you may assume that mass is also conserved in the disintegration process).