GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid.

Similar documents
ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Sequences and series Mixed exercise 3

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

Properties and Formulas

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai +

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c

The Discrete Fourier Transform

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks

ME 501A Seminar in Engineering Analysis Page 1

Semiconductors materials

Advanced Higher Formula List

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

Physics 235 Final Examination December 4, 2006 Solutions

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

MATH Midterm Solutions

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents =

GEOMETRY Properties of lines

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Chapter 5. Long Waves

CHAPTERS 5-7 BOOKLET-2

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by

Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-shape and T-shape Samples, Direct and Inverse Problems

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials)

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

PHY2061 Enriched Physics 2 Lecture Notes Relativity 3. Relativity 3

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Linear Algebra Math 221

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

PhysicsAndMathsTutor.com

is monotonically decreasing function of Ω, it is also called maximally flat at the

Advanced Higher Maths: Formulae

Numerical integration

Advanced Higher Maths: Formulae

T h e C S E T I P r o j e c t

Disjoint Sets { 9} { 1} { 11} Disjoint Sets (cont) Operations. Disjoint Sets (cont) Disjoint Sets (cont) n elements

AP Calculus AB AP Review

Conditional Convergence of Infinite Products

Generating Function for

PhysicsAndMathsTutor.com

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

I N A C O M P L E X W O R L D

PROGRESSION AND SERIES

Chapter 2 Transformations and Expectations

Multivector Functions

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

The Area of a Triangle

Copyright 2014 Winnebago Industries, Inc.

= y and Normed Linear Spaces

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

P a g e 3 6 of R e p o r t P B 4 / 0 9

Advanced Physical Geodesy

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x.

P a g e 5 1 of R e p o r t P B 4 / 0 9

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

A L A BA M A L A W R E V IE W

On composite conformal mapping of an annulus to a plane with two holes

Stanford University Medical Center

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

Technical Report: Bessel Filter Analysis

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

5 - Determinants. r r. r r. r r. r s r = + det det det

Lecture 24: Observability and Constructibility

Multi-Electron Atoms-Helium

Thomas Whitham Sixth Form

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

«A first lesson on Mathematical Induction»

The formulae in this booklet have been arranged according to the unit in which they are first

Chapter 1 Functions and Graphs

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan

EL2520 Control Theory and Practice

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

Chapter 8 Complex Numbers

Summary: Binomial Expansion...! r. where

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main)

Section 2.2. Matrix Multiplication

10.3 The Quadratic Formula

On a Problem of Littlewood

2 n = n=1 a n is convergent and we let. i=1

EECE 260 Electrical Circuits Prof. Mark Fowler

Features of incommensurate phases in crystals TlGaSe2 and TlInS2

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Transcription:

ALGEBA Popeties of Asote Ve Fo e mes :, + + Tige Ieqit Popeties of Itege Epoets is Assme tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fte isssio. + ( ) m m m m m m m m m m m Spei Pot Foms + A B ( A B) A B + + A+ B A AB B + A B A AB B 3 3 ( A+ B) A + 3AB+ 3AB + B 3 + 3 3 3 A B A 3A B 3AB B Ftoig Spei Biomis A B A B A B ( + ) + + + A B A B A AB B 3 3 A + B A+ B A AB B 3 3 Qti Fom Te sotios of te eqtio + + e: ± 4 Diste Fom Te iste etee to poits, Mipoit Fom + +, (, ) is: + ( ) Sope of Lie Hoizot ies ve sope. m Veti ies ve efie sope. Pe Pepei Lies Give ie it sope m: sope of pe ie m sope of pepei ie m Foms of Eqtios of Lie St Fom: + Sope-Iteept Fom: m +, ee m is te sope is te -iteept ( ) is poit o te ie () t + t Poit-Sope Fom: m, ee m is te sope, Veto Fom: v, ee is fie veto v is ietio veto Popeties of Logitms Let,,, e positive e mes it, et e e me. See Appei B fo gps fte isssio. og og og og og ( ) og ( ) og + og og og og og ( ) og og og og e eqivet ge of se fom Tigoometi Hpeoi Ftios: Defiitios, Gps, Ietities See Appei.

GEOMETY A e, imfeee, SA sfe e o te e, V vome etge ie Tige Peogm Tpezoi A A p p A A A + etg Pism Spee etg Pmi V SA + + V 4 3 π SA 4p V 3 3 V igt ie igt i ie oe Ae of Bse V p SA p + p V π SA π 3 + π + Defiitio of Limit Let f e ftio efie o ope itev otiig, eept possi t itsef. We s tt te imit of f s ppoes is L, ite im f L, if fo eve me e > tee is me > s tt f L <ε eeve stisfies < < δ. Bsi Limit Ls ± ± Sm/Diffeee L: im f g im f im g ostt Mtipe L: im kf kim f Pot L: im f g im f im g f im f Qotiet L: im, im g g povie im g Sqeeze Teoem If g f otiig, eept possi t itsef, if img im L, te im f L s e. fo i some ope itev LIMITS otiit t Poit Give ftio f efie o ope itev otiig, e s f is otios t if im f f. L Hôpit s e Sppose f g e iffeetie t poits of ope itev I otiig, tt g fo I eept possi t. Sppose fte tt eite o Te im f im g ± ± im f im g. ( ) f f im im, g g ssmig te imit o te igt is e me o o -.

Te Deivtive of Ftio Te eivtive of f, eote f, is te ftio ose ve t te poit is povie te imit eists. f + f f im, Eemet Diffeetitio es ostt e: k ostt Mtipe e: Sm/Diffeee e: Pot e: Qotiet e: Poe e: i e: kf ( ) kf f ± g f g ± f g f g f g + f f g f g g g f ( g ) f g g Deivtives of Tigoometi Ftios ( si) os ( os)si ( t) se ( s)s ot ( se) se t ( ot)s Deivtives of Ivese Tigoometi Ftios si os ( t ) + s se ( ot ) + Te Me Ve Teoem If f is otios o te ose itev, DEIVATIVES Deivtives of Epoeti Logitmi Ftios e e ( ) ( og ) Deivtives of Hpeoi Ftios ( si ) os ( os ) si ( t ) se ( s )s ot ( se )se t ( ot )s Deivtives of Ivese Hpeoi Ftios si + ( os ), > ( t ), < s + ( se ), ( ot ), > < < Te Deivtive e fo Ivese Ftios If ftio f is iffeetie o itev (, ), if f fo (, ), te f ot eists is iffeetie o te imge of te itev (, ) e f, eote s f, () i te fom eo. Fte, if,, te f f, f if f (, ), te f f f. ( ) [ ] iffeetie o (, ), te tee is t est oe poit ( ) f f f ( )., fo i

INTEGATION Popeties of te Defiite Iteg Give te itege ftios f g o te itev, ostt k, te fooig popeties o. [ ]. f. f f 3. k k 4. kf ( ) k f ± ± 5. f g f g 6. f f f +, ssmig e iteg eists 7. If f g o [, ], te f g. 8. If m mi f M m f, te m f M. Te Fmet Teoem of s Pt I Give otios ftio f o itev I fie poit I, efie te ftio F o I F f () t t. F f fo I. Te Te Sstittio e If g itev I, if f is otios o I, te is iffeetie ftio ose ge is te ( ) f g g f. Hee, if F is tieivtive of f o I, f ( g ) g ( ) F( g )+. Itegtio Pts Give iffeetie ftios f g, f g f g g f. If e et f v g, te f v g ememee iffeeti fom te eqtio tkes o te moe esi v v v. Pt II If f is otios ftio o te itev, tieivtive of f o,, [ ] te f F F. [ ] if F is Smmtio Fts Foms SEQUENES AND SEIES ostt e fo Fiite Sms: ostt Mtipe e fo Fiite Sms: Sm/Diffeee e fo Fiite Sms:,fo ostt,fo ostt ( ± ) ± i i i i i i Sm of te Fist Positive Iteges: Sm of te Fist Sqes: Sm of te Fist es: ( + ) ( + ) ( + ) 3 ( + ) i i i 6 4 Geometi Seies Fo geometi seqee { } it ommo tio : Pti Sm: s Ifiite Sm:, if,, if < Biomi Seies Fo e me m - < < : m ( + ) m ( ) mm mm m + m + +! 3! mm ( ) ( m + ) + +! 3 +

To Seies Mi Seies Give ftio f it eivtives of oes togot ope itev otiig, te poe seies f f f ( ) f + f ( ( )+ ) ( ) ( +!! 3! ) 3 ( ) + is e te To seies geete f ot. Te To seies geete f ot is so ko s te Mi seies geete f. VETO ALULUS Popeties of S Mtipitio Veto Aitio Fo vetos, v, ss : S Mtipitio Popeties ( + v) + v + + ( ) ( ),, Veto Aitio Popeties + v v + + ( v+ ) ( + v)+ + + ( ) Dot Pot Give to vetos,, 3 v v, v, v3, te ot pot v of te to vetos is te s efie v v + v + v 3 3. A simi fom efies te ot pot of to vetos i. Popeties of te Dot Pot Fo vetos, v, s : v v ( v+ ) v+ ( v) ( ) v ( v) Dot Pot te Age etee To Vetos If to ozeo vetos v e epite so tt tei iiti poits oiie, if q epesets te sme of te to ges fome v (so tt q p), te v v os θ. Pojetio of oto v Let v e ozeo vetos. Te pojetio of oto v is te veto poj v v v. v oss Pot Give,, 3 v v, v, v3, i j k v 3 v v v 3 3 3 i j+ k v v v v v v 3 v v 3 ( ) + ( ) i v v j v v k. 3 3 3 3 Popeties of te oss Pot Fo vetos, v, i 3 ss : v v ( v+ ) v+ ( + v) + v ( ) ( v) v ( v ) ( v) ( v ) ( ) v( v) ooite ovesio etiosips ii tesi Spei ii Spei tesi + + z + + z os q si j ρsiϕosθ si q q q ρsiϕsiθ z z z os j z os j Giet Veto Give ftio f,,,, f (,,, ) f,,,, f,,,,, f,,,.

(Dietio Deivtive) t te poit (, ) i te ompttio of Df Assmig te eivtive of f, ietio of te it veto, eists, D f, f,, f,, f,. Moe gee, if f,,, is iffeetie t te poit,,, if,,, is it veto, te D f ( ) f ( ). Popeties of te Giet Assme f g e ot iffeetie ftios tt k is fie e me. Te te fooig s o. Sm/Diffeee L: ( f ± g) f ± g ostt Mtipe L: ( kf ) k f Pot L: ( fg) f g + g f Qotiet L: f g f f g, povie g g g Te Fmet Teoem fo Lie Itegs (Giet Teoem) Assme tt f is iffeetie ftio ose giet f is otios og ve tt is efie te smoot veto ftio t (), t. Te, ( ) ( ) f f f. Divegee (F Desit) of Veto Fie Te ivegee, o f esit, of veto fie F( z,, ) P, Q, is te s ftio iv F P + Q + z. I gee, e eote te ivegee of veto fie F s te ot pot of te e opeto F. of Veto Fie Te of veto fie iv F F F( z,, ) P( z,, ), Q( z,, ), ( z,, ) is te veto ftio F Q P Q P,,. z z Te of veto fie F e ememee s te oss pot of te e opeto F. F F Gee s Teoem (Tgeti- Fom) Let e positive oiete, pieeise smoot, simpe ose ve i te pe, et e te egio eose. If F, P,, Q, pti eivtives o ope egio otiig, te P Q ve otios F Ts F P+ Q Q P A. sig te Eteig F to F z,, P,, Q,, ft tt Q P Q P k k F k F k, e ite tis vesio of te fom s F Ts F ka. Gee s Teoem (Nom-Divegee Fom) Let e positive oiete, pieeise smoot, simpe ose ve i te pe, et e te egio eose. If F, P,, Q, pti eivtives o ope egio otiig, te P Q ve otios F s PQ P + Q A F A. Stokes Teoem Assme F is veto fie it otios pti eivtives i ope egio of spe otiig pieeise smoot sfe S. Assme tt te o of S is simpe, ose, pieeise smoot ve, tt is positive oiete it espet to S. Te F Ts F σ. S Te Divegee Teoem Assme F is veto fie it otios pti eivtives i ope egio of spe otiig D 3, ssme D is eite simpe io o fiite io of simpe egios. Let S eote te sfe of D, et e te ot-poitig fie of it vetos om to S. Te S F σ FV. D