Chapter 13 Problem Solutions Computer Simulation Computer Simulation ma/ V 80. r I (120)(0.026)

Similar documents
V = = A = ln V

Homework Assignment 08

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Lecture 140 Simple Op Amps (2/11/02) Page 140-1

Systematic Design of Operational Amplifiers

ECE-343 Test 2: Mar 21, :00-8:00, Closed Book. Name : SOLUTION

RIB. ELECTRICAL ENGINEERING Analog Electronics. 8 Electrical Engineering RIB-R T7. Detailed Explanations. Rank Improvement Batch ANSWERS.

Microelectronic Circuit Design 4th Edition Errata - Updated 4/4/14

Class AB Output Stage

MICROELECTRONIC CIRCUIT DESIGN Second Edition

University of Toronto. Final Exam

Lecture 37: Frequency response. Context

Circle the one best answer for each question. Five points per question.

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

Dr JBO Student ID Number: Model Answer Section: 01A / 01B Lecturer: Dr. Jamaludin Bin Omar. Name:

ECE 546 Lecture 11 MOS Amplifiers

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

Errata of CMOS Analog Circuit Design 2 nd Edition By Phillip E. Allen and Douglas R. Holberg

Figure Circuit for Question 1. Figure Circuit for Question 2

Bipolar junction transistors

University of Pennsylvania Department of Electrical and Systems Engineering ESE 319 Microelectronic Circuits. Final Exam 10Dec08 SOLUTIONS

Analog Circuit Design Discrete & Integrated

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

At point G V = = = = = = RB B B. IN RB f

Circuit Theory Chapter 7 Response of First-Order RL and R Circuits

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

ECE-343 Test 1: Feb 10, :00-8:00pm, Closed Book. Name : SOLUTION

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Homework Assignment 11

Lecture 150 Simple BJT Op Amps (1/28/04) Page 150-1

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

Philadelphia University Faculty of Engineering Communication and Electronics Engineering

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

ECE 304: Design Issues for Voltage Follower as Output Stage S&S Chapter 14, pp

Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 2. Chapter (a) For. Then ( ) 06. rad 10. Also ( ) π. Now 2.

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ECE 6412, Spring Final Exam Page 1

CMOS Analog Circuits

Homework Assignment 09

Lecture 310 Open-Loop Comparators (3/28/10) Page 310-1

Feedback design for the Buck Converter

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Biasing the CE Amplifier

Amplifiers, Source followers & Cascodes

ID # NAME. EE-255 EXAM 3 April 7, Instructor (circle one) Ogborn Lundstrom

Homework 7 - Solutions

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

ECE 6412, Spring Final Exam Page 1 FINAL EXAMINATION NAME SCORE /120

ECE-342 Test 3: Nov 30, :00-8:00, Closed Book. Name : Solution

350mW, PNP Small Signal Transistor

Lecture 050 Followers (1/11/04) Page ECE Analog Integrated Circuits and Systems II P.E. Allen

V in (min) and V in (min) = (V OH -V OL ) dv out (0) dt = A p 1 V in = = 10 6 = 1V/µs

Electronics II. Midterm II

Common Base Configuration

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

General Purpose Transistors

ESE319 Introduction to Microelectronics. Feedback Basics

ECE2210 Final given: Fall 13

55:041 Electronic Circuits The University of Iowa Fall Final Exam

The BJT Differential Amplifier. Basic Circuit. DC Solution

S.E. Sem. III [ETRX] Electronic Circuits and Design I

Chapter 3 Output stages

CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE

The Common-Emitter Amplifier

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017.

Behavior of Phase-Locked Loops

EE 330 Lecture 25. Amplifier Biasing (precursor) Two-Port Amplifier Model

EE 321 Analog Electronics, Fall 2013 Homework #8 solution

Engineering 1620 Spring 2011 Answers to Homework # 4 Biasing and Small Signal Properties

IXTN200N10L2 V DSS = 100V = 178A. Linear L2 TM Power MOSFET w/ Extended FBSOA. Advance Technical Information

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

EE 434 Lecture 34. Logic Design

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

ECE137B Final Exam. Wednesday 6/8/2016, 7:30-10:30PM.

Ohm's Law and Resistance

Vidyalankar S.E. Sem. III [EXTC] Analog Electronics - I Prelim Question Paper Solution

Lecture 4: R-L-C Circuits and Resonant Circuits

Master Degree in Electronic Engineering. Analog and Telecommunication Electronics course Prof. Del Corso Dante A.Y Switched Capacitor

BJT Biasing Cont. & Small Signal Model

Chapter 2 Switched-Capacitor Circuits

The current source. The Active Current Source

BJT Biasing Cont. & Small Signal Model

IXFN140N30P. Polar TM Power MOSFET HiPerFET TM = 300V = 110A V DSS I D ns. t rr. N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

FYSE400 ANALOG ELECTRONICS

ESE319 Introduction to Microelectronics. Feedback Basics

Bipolar Junction Transistor (BJT) - Introduction

figure shows a pnp transistor biased to operate in the active mode

EE105 Fall 2014 Microelectronic Devices and Circuits

Feedback Transimpedance & Current Amplifiers

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

MAX471/MAX472 PART TEMP. RANGE PIN-PACKAGE. MAX471EPA 0 C to +70 C

You wish to measure air temperatures over the range from 0 C to 50 C using the thermistor bridge shown below. R T Thermistor R 1 V + V R 3

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

R-L-C Circuits and Resonant Circuits

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Transcription:

Chapter 3 Pblem lutions 3. Computer Simulation 3. Computer Simulation 3.3 (a) ( Ri) g 0 C m T 0.0 r 80 o MΩ C 0 r 80 o MΩ C 0 0.79 m/ Ri + ( + βn) R 7 (0)(0.0) 7 5. kω 0. BE ( on) 0. C 0.030 m R 0 (0)(0.0) 0 kω 0.030 Ri 0 + () 0 5.. MΩ 79(.) 55 R r ( β ) r β r R+ 7 R o βn( + βn) 7 ban b R + 7 Ri o βn( + βn) r o7 R v o Ri R+ 7 80 7 00 kω 0. o c7 o7 n b7 o7 n o7 c C7 (0)()(00) 0 v v 83 0 0 + 5. Overall gain v (55)( 83).59 0 (80)(0.0) (b) Ri r π an 0 kω 0.00 Ri 08 kω (c) fpd an CM (0)( + 83) 8,0 pf π R C eq M Req Ri. 0.73 MΩ fpd 7.7 Hz π (0.73 0 )(8,0 0 )

Gain-Banwith Puct (7.7)(.59 0 ).3 MHz 3. a. Q 3 acts as the ptection evice. b. Same as part (a). 3.5 f we assume BE (on) 0.7, then in 0.7 + 0.7 + 50 + 5 breakown voltage 5.. 3. 5 0. 0. ( 5) (a) REF 0.50 R5 57. kω R5 REF C0R T ln C0 0.0 0.50 R ln R. kω 0.030 0.030 5 0. 0. ( 5) (b) REF REF 0.53 m 57. 0.53 C0 (.) (0.0)ln C0 By trial an err,. μ C0 3.7 (a) REF 0.50 m 3 REF 0.50 0 ln (0.0) ln S 0 0. 5 0. 0. ( 5) R5 R5 57. kω 0.50 0.0 0.50 R ln R. kω 0.030 0.030 3 0.030 0 BE0 0.0ln BE0 0.57 0 (b) Fm Pblem 3., REF 0.5m 3 0.5 0 BE EB 0.0ln 0.09 0 5 0.09 0.09 ( 5) REF REF 57. 0.53 m 0. μ fm Pblem 3. BE T BE EB C 3.8 a. 5 0. 0. ( 5) REF REF 0 0. m REF C0R T ln C0 0. C0 (5) (0.0) ln C0

By trial an err;. μ C0 C0 C C 7.0μ 0.75 0.5 m C7 REF C7 0.5 0.055 m C3 REF C3 (b) Using Example 3. 7 3.5 kω R 50 [3.5 + (0)(0.)] 50 5. 5. kω r E π βn T C an 0.5 (0.5)(0.) + 0. C + 0.03 m 00 50 39 kω R 39 + (0)(5.) 5.5 MΩ r i π 73 kω 0.0070 0.73 m / 0.0 50 r0 7.0 MΩ 0.007 R 7.0[ + (0.73)( 73)] 8.9 MΩ act 50 r0 7.0 MΩ 0.007 7. (7.0 8.9 5.5) 0.0 7 Gain of ifferential amp stage Using Example 3.5, an neglecting the input resistance to the output stage: 50 Ract 303 kω 0.5 C3B (00)(0)(50)(303) (303) v (5500)[50 + 3.5 + (0)(0.)] v 55 Gain of secon stage 3.9 C0 9 μ Fm Equation (3.) βp + βp + (0) + (0) + C0 βp + 3βP + (0) + 3(0) + 3 3 (9) 0.5 μ C 0.8 μ

0.5 7.3 μ + + β 0 P 7.3.73 μ C9 C9 C9 B9 B9 β P 0 0.8 0.935 μ B B ( + β P ) β P 0 C (0.8) C 9.35 μ + β P 3.0 (on) + () B5 BE C5 0. + (0.0095)() 0.095 C7 C7 C8 C9 REF E3 C 0.095. μ 50 9 μ 0.7 m 0.7 m REF 38 μ + ( )[ C 7 C8 C9 REF E3 C] Power + + + + + 30[0.0 + 0.09 + 0.09 + 0.7 + 0.7 + 0.38] Power 8.8 mw + Current supplie by an + + + + + C7 C8 C9 REF E3 C.3 m 3. (a) v (min) 5 + 0. + 0. + 0. + 0.. v cm cm (max) + 5... v. cm (b) v (min) 5 + (0.). v cm cm (max) 5 0... v. cm 3. f v0 5, the base voltage of Q is pulle low, an Q 8 an Q 9 are effectively cut off. s a first appximation 0. C. m 0.07. B 0. m 00 C5 C3 B 0.8 0. 0.09 m C5 BE5 T ln 5 3 0.09 0 (0.0)ln 0 0.589

s a secon appximation 0.589 C C.8 m 0.07.8 B 0.09 m 00 an 0.8 0.09 0.07 m C5 C5 3.3 a. Neglecting base currents: D BS D BB D T ln S 3 0.5 0 (0.0) ln 0.089 BB BB / CN CP S exp T CN.089 5 0 exp (0.0) 0.5 m CP b. F v 5, v0 5 5 il.5 m s a first appximation i.5 m CN L 3.5 0 BEN (0.0)ln 0.5 5 0 Neglecting base currents,.089 BB.089 0.5 0.58 EBP 0.58 CP 0.0 s a secon appximation, i +.5 + 0.3.5 m 5 0 exp CP 0.3 m CN L CP CN 3. BB.57 R + R.8 kω (0.) 0.08 BE BS C (0.9) BS T ln (0.0) ln S S 3 0. 0 (0.0) ln 0

BE 0. R R.8 R 33.9 kω R 30.3 kω BE BB R+ R 0. (.57) 3.5 (a) ( Ri) Fm example 3. 9.5 35 μ /, 5. MΩ 0.0 5. MΩ ssuming R 8 0, we fin Ri + ( + β n) R E 39 + (0) ( 50 9.3).95 M Ω (35) ( 5. 5..95) 09 (b) Fm Equation (3.0), βn( + βn) R9 ( Ract Ri3 R07 ) v Ri{ R9 + 7 + ( + βn) Rg } F Rg 0, Ri.95 MΩ Using the results of Example 3.5 00(0)(50) ( 9. 050 9.) v v 79 (950){50 + 9.3} 3. Let C0 0 μ, then C C 0 μ. Using Example 3.5, Ri.07 MΩ (00)(0.0) 0 kω 0.00 0.00 0.79 m/ 0.0 50 r0.5 MΩ 0.0 Ract.5[ + (0.79)( 0)]. MΩ 50 r0.5 MΩ 0.0

CQ ( r0 Ract Ri ) T 0 (.5..07) 0.0 88 3.7 Fm Pblem 3.8 7.0 μ, C7 0.5 m, C3 0.055 m E7R8 + BE7 0.5 (0.5)(0.) + 0. C B 7 + + R9 00 50 0.00085 + 0.033 C 0.03 m (00)(0.0) 7 3.5 K 0.5 RE R9 [ 7 + ( + β ) R8] 50 [3.5 + (0)(0.)] 50 5. 5. K (00)(0.0) 39 K 0.03 Ri + ( + β ) RE 39 + (0)(5.) 5.50 MΩ (00)(0.0) 73 K 0.007 0.007 0.73 m/ 0.0 50 7.0 MΩ 0.007 Ract [ + ( R )] 7.0[ + (0.73)( 73)] 8.9 MΩ 50 7.0 MΩ 0.007 ( Ract Ri) 7.0 (7.0 8.9 5.5) 0.0 7 R 50 50 act 303 K R o 7 303 K 0.5 0.5 Fm Eq. (3.0), assuming Ri 3 β( + β) R9 ( Ract R07 ) v Ri { R9 + [ 7 + ( + β ) R8] } 8 (00)(0)(50)(303 303) 3.05 0 5 (5500)[50 + 3.5 + (0)(0.)] 5.588 0 55 v Overall gain v ( 7)( 55) 3,75

3.8 Using results fm 3.7 00 Ri 5.50 M Ω, Ract [ + (0.73)( 73)] 7.93 MΩ 0.007 00.08 MΩ 0.007 7.0 (.08 7.93 5.50) 0.0 885 00 00 Ract 0 K R o 7 0 K 0.5 0.5 v 5 v (00)(0)(50)(0 0).09 0 (5500)[50 + 3.5 + (0)(0.)] 5.588 0 090 Overall gain ( 885)( 090) 9, 50 v 3.9 R e r + R + β π 0 P an R0 R + R e ssume series resistance of Q 8 an Q 9 is small. R0 r03 Re + R07 r03b where Re + β P an R07 r07[ + 7 ( R8 r π 7 )] Using results fm Example 3., 7 9.3 kω 7. kω 7 0.8 m/ r07 9. kω R07 9.[ + (0.8)(0. 9.3)] 83 kω 50 r03b 9. kω 0.5 7. + 83 9. Re.5 kω 5 R0 r03 Re 78.5.50 kω (50)(0.0) r π 0.5 kω 0.5 +.50 R e 0.0 kω 5 R e. Ω R. + 7 R 9. Ω 0 0 3.0 8

Ri + + β βn 00, βp 0 (a) 9.5 μ C ( n ) 3 + β P (00)(0.0) 57 K 0.0095 (0)(0.0) 3 7. K 0.0095 (0)(7.) Ri 57+ R.095 MΩ i (b) 7.0 μ C (00)(0.0) 73 K 0.007 (0)(0.0) 3 3. K 0.007 (0)(3.) Ri 73+ R.80 MΩ i 3. We can write 0 ( f) f f + j + j fpd f 8, 0 f f + j + j 0.7 f Phase: f f φ tan tan 0.7 f F a Phase margin 70, φ 0 f f 0 tan tan 0.7 f ssuming f 0.7, we have tan f f 0 0.3 f f t this frequency, ( f ), so

8,0 f + + (0.3) 0.7 70, 37 f + 0.7 f 70,37 f.8 MHz 0.7, secon pole at f f f 5 MHz 0.3 3. a. Original g m an g m μpcox Kp Kp L (.5)(0) 5 μ / Q K p (0.5)(0) 0.09975 m/ f L is increase to 50, then K p Kp (50)(0) 500 μ / (0.5)(0.099) 0.995 m/ b. Gain of first stage ( r0 r0) (0.995)(505 505) 50 oltage gain of secon stage remains the same, v 5 v v (50)(5) 5, 75 3. a. K p (0)(0) 00 μ / 0. m / 0 SG ( 0) REF SET 00 k (.5) P SG 0 SG (0.)(00)( SG 3SG +.5) 0SG 9SG + 70 0 9 ± (9) (0)(70) SG (0) SG.7

0.7 REF REF 89. μ 00 M 5, M, M 8 matche transists so that Q D7 REF 89. μ b. Small-signal voltage gain of input stage: ( ) Kp Q r0. MΩ λ 89. PD (0.0) r0. MΩ λn D 89. (0.0) (00)(89.) (..) Small-signal voltage gain of secon stage: v 7 ( r07 r08) Kn7 (0)(0) 00 μ / 7 Kn7D7 (0.)(0.089) 0.378 m/ r08 5 kω λp D7 (0.0)(0.089) r07 kω λn D7 (0.0)(0.089) v (0.378)( 5) v overall voltage gain v v ()() v 9,88 3.5 Small-signal voltage gain of input stage: Kp Q ( ) Kp (0)(0) 00 μ / r0 000 kω Q 0. λ (0.0) P r0 000 kω Q 0. λ (0.005) n (0.)(0.) (000 000) 33 Small-signal voltage gain of secon stage: v 7 ( r07 r08 ) Kn7 (0)(0) 00 μ /

g K (0.)(0.) 0.5 m/ r m7 n7 D7 08 500 kω λ (0.0)(0.) P D7 r07 000 kω λn D7 (0.005)(0.) (0.5)(000 500) 89 v v overall voltage gain is v v (33)(89) v 5,37 3. fpd π R C eq i where Req r0 r0 an Ci C( + v ) We can fin that v 5 an r 0 r 0 5.05 MΩ R 5.05 5.05.5 MΩ eq an C i ( + 5) 30 pf f PD π (.5 0 )(30 0 ) f.0 Hz PD 3.7 fpd π R C eq i where Req r0 r0 Fm Pblem 3., r 0. M Ω, r 0. MΩ an v 8 π (..) 0 Ci 8 C. 0 C ( + ) C () i C 88 pf 3.8 R r r 0 07 08 We can fin that r07 r08.5 MΩ R 0.5.5 R 0. MΩ v

3.9 a. ( g )( r r ) 0 m gs 0 0 + gs 0 0 r0 r0 0 ( r0 r0) v + g ( r r ) ( )( ) m 0 0 + g + an X X b. X m gs gs X r0 r0 R r r 0 0 0 3.30 (a) [ ] Q Q 80 (0).737 0.7 80 μ 80 (b) D (5) ( GS 0.7 ) 5 GS 0.858 0 D7 (50) ( SG7 0.7 ) 5 SG7 0.858 Set SG8P GS 8N 0.858 0 L L 80 (0.858 0.7) 30 8P 8P 80 L L 80 (0.858 0.7) 80 3.3 8N 8N

80 ( ) GS 00 (0) GS 0.7 GS.0 Let M transists in series. Than 5.0 GS.90 80 00 (.90 0.7) 3.7 L L L B 3.3 (a) 80 ( ) Q 50 μ (5) GS8 0.7 GS 8.88.88 GS SG7 0.909 80 D D7 (5)(0.909 0.7) 3.7 μ (b) 80 50 (5) 0.577 m/ 800K ( 0.0)( 0.5) r0 533.3K ( 0.05)( 0.5) ( ) ( 0.577)( 800 533.3) 75 Secon stage:

g g ( r r ) m5 o5 o9 m5 r r 05 09 0 (80)(50).5 m/.7 K (0.05)(0.5) 00 K (0.0)(0.5) (.5)(.7 00) 0 ssume the gain of the output stage, then v (75)( 0) 35, 350 v 3.33 (a) Ro Ro8 D ( ) KnDQ (0.5)(0.05) μ / 8 (0.5)(0.05) μ / 8 0.7 MΩ λ DQ (0.05)(5).33MΩ λ ( 0.05)( 50) Ro8 8( 8 0) ()(.7)(.7) 597 MΩ Ro ( )( ) ()(.7)(.7.33) Ro 53 MΩ ()(53 597) 89, (b) Ro Ro Ro8 53 597 Ro 398 MΩ (c) fpd f 80 PD Hz π RC π 398 0 5 0 o L ( )( ) GBW (89, )(80) GBW 7. MHz 3.3 (a) 8 0 MΩ λp D (0.0)(5).7 MΩ λn D (0.05)(5).33 MΩ λn D (0.05)(50) 35 (5).8 8 L L 80 (5) 3. L L Ro Ro Ro8 [ ( )( )] [ 8( 8 0)]

Define X an X L L Ro 3.X(.7)(.33 ).8X( )( ), 539XX 3.8X 7.X 3.8X + 7.X Ro, 539XX (.8 X) 3.8 X + 7. X 0,000 X 0.7X L. L We then fin X.0 L L p an.85 L n 3.35 Let + 5, 5 P T (0) 3 T 0.3 m REF 0. m 00 μ 8 0 MΩ (0.0)(50).33 MΩ (0.05)(50) 0.7 MΩ (0.05)(00) 35 (50) 59.X 8 L where X L ssume all with-to-length ratios are the same. 80 (50) 89.X L Ro Ro Ro8 ( )( r ) o 8( 8 0) 89.X(.33)( 0.7 ) 59. X()() ( 7.X)( 59.X) [ 7.X] [ 59.X] 7.X + 59.X Ro.X Ro ( 59.X)(.X) 5,000 W that X f all transists L 3.3

(a) B 8 ( ) 8 0.7 MΩ λ (0.05)(90) DQ k n D (500)(30) 5 μ / L (3)(5)(0.7 0.7) 7 (b) R r r 8 0.7 0.7 R 37 kω o o o o f fpd 85.8 khz (37 0 )(5 0 ) (c) PD 3 πrc o π 3 GBW (7)(85.8 0 ) GBW 3.3 MHz 3.37 (a) r o r o8 0.5 MΩ (0.0)(.5)(0) 0.7 MΩ (0.05)(.5)(0) Bg r r m o o8 ( ) m ( ) 00 (.5) g 0.5 0.7 g 50 μ / m 80 50 (0) 9 L L ssume all (W/L) ratios are the same except f M5an M..5 L L 5 (b) ssume the bias voltages are + 5, 5. ssume 9 L L B 80 (9)( 0.5) Q GS 80 GS 0.70 80 REF 80 ( GSC 0.5) L C F four transists

0 0.70.35 80 L L GSC 80 (.35 0.5) 0.0 C (c) f3 B Ro 0.5 0.7 0.8 MΩ π RC f 3 B 3 3 (00)(85 0 ) 7 o 85 khz π (8 0 )(3 0 ) GBW MHz C 3.38 (a) Fm previous results, we can write Ro 0 0 ( 0 ) Ro ( 8 ) Bg R R ( ) m o0 o 0 0.5 MΩ λ ( ) (0.0)(.5)(0) PB Q/ 8 0.7 MΩ λ B (0.05)(.5)(0) n ( Q/ ) ssume all transists have the same with-to-length ratios except f M 5 an M. Let X L k p 35 0 ( DQ 0 ) X (.5)(0) L 0 83.7X k n 80 ( DQ ) X (.5)(0) L.5 X 80 X (0) 80 X Ro 0 (83.7 X)(0.5)(0.5) 0.9 X MΩ Ro (.5 X)(0.7)(0.7) 5.3 X MΩ We want 0,000 (.5)(80 X)[0.9X 5.3 X] (0.9 X)(5.3 X) 00X 308X 0.9X + 5.3X X.5 L (.5)(.5). L L 5 (b) ssume bias voltages are + 5, 5

ssume.5 L L B 80 80 Q (.5)( GS 0.5) GS.05 Nee 5 transists in series 0.05 GSC.79 5 80 REF 80 (.79 0.5).0 L L C (c) f3 B where Ro Ro 0 Ro π RC o Ro 0 0.9.5 53.5 MΩ Ro 5.3.5 MΩ Ro 53.5 39 MΩ f3 B.3 khz π (39 0 )(3 0 ) 3 GBW (0,000)(.3x0 ) GBW 7. MHz 3.39 ( M) ( M) ( Q) 0 ( M ) (5)(00) 7 μ / ( M) 500 kω λ DQ (0.0)(0.) 0 ( Q) 00 kω 0. CQ 7(0.5.) 58 3.0 C

( M) ( M) ( Q) 80 ( M ) (5)(00) 3 μ / ( M) 7 kω λ DQ (0.05)(0.) 80 ( Q) 800 kω CQ 0. (3) 0.7 0.80 30 3. (a) ( ) ( ) m o o8 REF 00 μ Kn Kp 0.5 m/ λn λp 0.05 g R R where Ro8 8( 8 0) Ro ( ) ( ) 8 KPD8 (0.5)(0.) 0.7 m/ 8 7 kω λp D8 (0.05)(0.) 0 7 kω λp D8 C 0. 3.8 m/ T 0.0 80 800 kω C 0. 333 kω λn D (0.05)(0.) 7 kω λp D (0.05)(0.) g K (0.5)(0.) 0.7 m/ m P D Ro8 (0.7)(7)(7) 98.9 MΩ Ro (3.8)(800)(333 7) 83. MΩ 7(98.9 83.) 8,85 3. ssume biase at + 0, 0. P 3 REF (0) 0 REF 7 μ ( Ro Ro8) 5, 000 k n 80 μ/, k p 35 μ/ λ 0.05, λ 0.0 n ssume. L L p p n

( ) Ro8 8 8 0 Ro ( )( ) 8 0.0 MΩ λp D8 (0.0)(83.3) 0 λp D8 0.0 MΩ g k 35 X 3.3X p m8 D8 (.) (83.3) L 8 where X L n 80 0.90 MΩ C 83.3 0.0 MΩ λn D (0.05)(7) 0.0 MΩ λp D (0.0)(83.3) C 83.3 30 μ / T 0.0 k p 35 D (.) X (83.3) L 3.3X Ro (30)(0.90) 0.0 0.0 738 MΩ Ro8 (3.3 X)(0.0)(0.0) 0.8 X MΩ 5, 000 (3.3 X) 738 0.8X 30,0X (3.3 X ) 738 + 0.8 X which yiels X.8 X. L n an + (.)(.).3 L P 3.3 F v cm (max), assume CB ( Q 5) 0. S 5 0. 0. 3.8 0.3 D9 D0 0.8 m Using parameters given in Example 3. D9 0.8 SG TP +..7 KP 0.0 v (max) 3.8.7 v (max). cm cm

F v cm (min), assume SD ( M9 ) SD ( sat) SG + TP.7. 0.77 D 0 D 0 (0.5) + 0. + D 0 (0.5) 5 0.8 + 0. 5 D 0.8 vcm (min).8 + SD (sat) SG.8 + 0.77.7 5.8, common-moe voltage range 5.8 v cm. Or, assuming the input is limite to ± 5, then 5 v cm. 3. F 300 μ, SG BE + (0.3)(8) 0. +. 3.0 KP( SG + TP) 0.3 K (3.) K 0.7 m/ P P 3.5 F CB 0 f both Q an Q 7, then S 0. + 0. + SG + ( S) S.+ SG 0. + R SG + TP an KP lso KP( SG + TP) so + + SG SG SG SG + SG SG SG + 0. (0.5)(8)(.) 0. (.8.9)..5 0. ± (.) ()(.5) SG.33 () S. +.33 3.53 an.75 S 3. C5 C 300 μ Using the parameters fm Examples 3. an 3.3, we have βnt (00)(0.0) Ri 3 7.3 kω 0.3 C3 KnQ5 ( Ri) (0.)(0.3) (7.3) 0.38

g 0.3 C3 m3 T 0.0.5 m/ 50 r03 7 kω C3 0.3 v 3 r03 (.5)(7) v 97 Overall gain: v (0.38)(97) 9,895 3.7 ssuming the resistances looking into Q an into the output stage are very large, we have β R03 v 3 + ( + β ) RE3 where R03 r 03 + 3 ( RE3 r π 3 ) 50 C3 300 μ,r03 7 kω 0.3 0.3 3.5 m / 0.0 (00)(0.0) r π 3 7.3 kω 0.3 R03 (7) + (.5)( 7.3).98 MΩ (00)(980) v 8 7.3 + (0)() Ci C( + v ) [ + 8] C,780 pf fpd π ReqCi R R r r eq i i 0 00 Neglecting R, 3 r00 333 kω λ D0 (0.0)(0.5) Neglecting R 5, 50 r0 333 kω 0.5 Ri 3 + ( + β ) RE3 7.3 + (0)() 8 kω f PD π 8 333 333 0 (, 780) 0 f PD 77. Hz Unity-Gain Banwith Gain of first stage: 3

K ( R r r ) n Qs o o0 (0.)(0.3) (8 333 333) (0.)(8 333 333) 5. Overall gain: v (5.)(8) 0,7 unity-gain banwith (77.)(0,7) 7.95 MHz 3.8 Since GS 0 in, 0.8 m 3.9 DSS J REF DSS a. R r + ( + β) [ r + ( + β) R ] i π5 π (00)(0.0) 3 kω 0. C 00 μ C5 μ β 00 (00)(0.0) r π 5 300 kω 0.00 R i 300 + (0) 3 + (0)(0.3) R i 5.7 MΩ [ ] b. v ( r0 r0 Ri) D DSS (0.)(0.) P 3 0.093 m / r0 500 kω λ D (0.0)(0.) 5.0 r0 500 kω C 0. v (0.093)[500 500 570]. v 3.50 a. Nee SD ( QE ) SD ( sat) P F minimum bias ± 3 Set 3 an 3 P ZK ZK D REF R3 3 0. so that R3 R3 kω 0. Set bias in QE REF + Z 0.+ 0. 0. m Therefe, E

DSS 0. m b. Neglecting base currents 0. 0 REF 0.5 m R so that R.8 kω 3.5 a. We have D DSS (0.5)() P 0.35 m/ r0 00 kω λ D (0.0)(0.5) 00 r0 00 kω D 0.5 0.5 9.3 m/ 0.0 (00)(0.0) r π 0. kω 0.5 R0 r 0 + ( r R ) π 00 + ( 9.3)( 0. 0.5) 035 kω ( ) r0 R0 RL F RL 0.35( 00 035) 33.7 With these parameter values, gain can never reach 500. b. Similarly f this part, gain can never reach 700.