Astronomy 101 Lab: Hunt for Alien Worlds

Similar documents
Extrasolar planets. Lecture 23, 4/22/14

Detecting Extra Solar Planets

18 An Eclipsing Extrasolar Planet

TPS. How many Exoplanets have been discovered to date? A B C D

Planet Detection. AST 105 Intro Astronomy The Solar System

Key Ideas: The Search for New Planets. Scientific Questions. Are we alone in the Universe? Direct Imaging. Searches for Extrasolar Planets

Lab #5. Searching for Extrasolar Planets

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

III The properties of extrasolar planets

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Planets are plentiful

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

Searching for Other Worlds

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Why is it hard to detect planets around other stars?

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

2010 Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

NASA's Kepler telescope uncovers a treasure trove of planets

ASTRO 1050 Extrasolar Planets

PLANETARY SYSTEM: FROM GALILEO TO EXOPLANETS

The Discovery of Planets beyond the Solar System. Luis A. Aguilar Instituto de Astronomía, UNAM. México

EXOPLANET DISCOVERY. Daniel Steigerwald

Planets Around Other Stars Extrasolar Planet Detection Methods. February, 2006

The Problem. Until 1995, we only knew of one Solar System - our own

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk ascension.html

13 - EXTRASOLAR PLANETS

Extrasolar Planet Detection Methods. Tom Koonce September, 2005

What makes a planet habitable?

Young Solar-like Systems

Activity 2 MODELING LAB

Exo-planets. Introduction. Detection Methods. Teacher s Notes. Radial Velocity or Doppler Method. 1. Download these notes at

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Activities: The transit method, exploring distant solar systems, the chemistry of life.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

Astronomy 101 Lab: Spectra

ASTRO Fall 2012 LAB #6: Extrasolar Planets

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

Patterns in the Solar System (Chapter 18)

Planets and Brown Dwarfs

Observations of Extrasolar Planets

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Patterns in the Solar System (Chapter 18)

AST2000 Lecture Notes

Exoplanets. Saturday Physics for Everyone. Jon Thaler October 27, Credit: NASA/Kepler Mission/Dana Berry

Notes 9: Extrasolar Planets and Exo-biology

Lab 5: Searching for Extra-Solar Planets

II Planet Finding.

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Attendance Quiz. Are you here today? (a) yes (b) no (c) Captain, the sensors indicate a class M planet orbiting this star. Here!

Extrasolar Planets. Materials Light source to mimic star Ball to mimic planet Light meter Interface

Unit 5 Gravitation. Newton s Law of Universal Gravitation Kepler s Laws of Planetary Motion

The Revolution of the Moons of Jupiter

Exoplanet Mass, Radius, and the Search for Habitable Worlds

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

NSCI EXTRASOLAR PLANETS (CONTINUED) AND THE DRAKE EQUATION. Dr. Karen Kolehmainen Department of Physics, CSUSB

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

Probing the Galactic Planetary Census

The Mass of Jupiter Student Guide

Wobbling Stars: The Search for Extra Terrestrial Planets

Science Olympiad Astronomy C Division Event National Exam

Lecture 8. October 25, 2017 Lab 5

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

The Kepler Mission: 20% of all Stars in the Milky Way Have Earth like Planets!

Extrasolar Planets = Exoplanets III.

RING DISCOVERED AROUND DWARF PLANET

Other planetary systems

Class 15 Formation of the Solar System

ASTB01 Exoplanets Lab

9. Formation of the Solar System

Name. Satellite Motion Lab

Earth 110 Exploration of the Solar System Assignment 6: Exoplanets Due in class Tuesday, March 3, 2015

Astronomy 102 Lab: Stellar Parallax and Proper Motion

Chapter 15: The Origin of the Solar System

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Activity 95, Universal Gravitation! Issues & Earth Science: Student Book!!

Is there life outside of Earth? Activity 2: Moving Stars and Their Planets

DATA LAB. Data Lab Page 1

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lesson 1 The Structure of the Solar System

Mysterious Ceres may hold clues about our solar system By Los Angeles Times, adapted by Newsela staff Jan. 29, :00 AM

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara

AST101: Our Corner of the Universe Lab 8: Measuring the Mass of Jupiter

Searching for planets around other stars. Searching for planets around other stars. Searching for other planetary systems this is a hard problem!

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

AST101IN Final Exam. 1.) Arrange the objects below from smallest to largest. (3 points)

Hunting for Planets. Overview. Directions. Content Created by. Activitydevelop. How can you use star brightness to find planets?

5. How did Copernicus s model solve the problem of some planets moving backwards?

Kepler, a Planet Hunting Mission

Transcription:

Name: Astronomy 101 Lab: Hunt for Alien Worlds Be prepared to make calculations in today s lab. Laptops will also be used for part of the lab, but you aren t required to bring your own. Pre-Lab Assignment: In class, we've talked a little about planets around other stars. In this lab, you'll use the tools that astronomers use to look for planets orbiting around other stars. Answer the following questions before coming to lab. A) Explain the Doppler effect for light. B) As an object moves toward you, does the wavelength of the light received increase or decrease? C) How can Doppler shift be used to find planets around other stars? D) Recall that the force of gravity is proportional to the product of the two masses attracting each other and inversely proportional to the square of the distance between the objects. Is it easier to detect high mass planets or low mass planets using the Doppler shift? E) Is it easier to detect planets close to the star or far from the star using the Doppler shift? Introduction: Since ancient times, humans have wondered if we are alone in the Universe and if there are other places in our universe where other life could arise. In more recent times, we've identified Earth as just one of many planets that reside within the Solar System. But we quickly discovered that the other planets in the Solar System are quite different than Earth and are not friendly to our kind of life. Thus, the search for life was extended outward to look for Earth-like worlds that reside beyond the Solar System. For many years, the question of whether there were planets orbiting around other stars remained unanswered. All of this changed in 1992 when astronomer Alexander Wolszczan announced the discovery of several planets orbiting around a neutron star. Only three years later, astronomers Michel Mayor and Didier Queloz announced the discovery of a planet orbiting around a star like the Sun. In the intervening years, hundreds of planets have been detected. In this lab, you'll take a look at the current state of the planet search and you'll employ some of the same techniques that the astronomers have used to detect planets orbiting around other stars.

Procedure: Much of this lab involves you accessing the catalog of extrasolar planets located at exoplanet.eu. Find the date of the last update. 1. How many total exoplanets have been discovered and on what date was the catalog last updated? A. Doppler shift (radial velocity) detection method: We'll start with using the radial velocity section of the catalog. Click "Catalog" to see the list. Select the confirmed exoplanets which were "detected by radial velocity or astrometry" in the filter. 2. What percentage of the current total extrasolar planets has been detected using this method? (Hint: Find the number of planets detected by radial velocity or astrometry, divide it by the total number of planets, and multiply that number by 100.) You will now analyze five plots labeled "Doppler Shift Star A" through "Doppler Shift Star E". These are plots of the velocity for the star as a function of time. Remember that positive velocities mean the star is moving away from Earth, so the distance increases. Accordingly, negative velocities mean the star is moving toward Earth. They can found on the table or at the links below. 3. Based on what you've discussed in class and in the pre-lab, explain how the velocity curves of these stars prove that there are planets orbiting around them. How are the planets causing the stars to move? Analyze the plots to fill in the information in Table 1 on the next page. Use a ruler to make precise measurements. A. Find the maximum speed for the star by looking for the peak of the star's curve. B. We need to determine how long it takes for the light curve of the star to complete one cycle of motion. Measure the period of the oscillations in the following manner: i) If you can see two peaks or two troughs, find the time between those two points. You may have more than two, but pick two adjacent peaks or troughs. ii) If you have one peak and one trough, find the time between them and multiply it by two. iii) If you have only one peak or trough, find the time between it and the zero point and multiply it by four. C. Consult the chart provided on your table called "Period versus orbital size" to determine the size of the exoplanet's orbit in astronomical units that corresponds to the period you just measured. D. Calculate the exoplanet's speed by using the following formula: Planet speed (km/s) = 10,908 Orbital size period E. Calculate the mass of the exoplanet by using the following formula: Planet Mass (M J ) = 1.05 Star speed Planet speed If you hadn't already guessed, MJ stands for Jupiter masses and the stars that you've just analyzed came from the Extrasolar Planet catalog.

Table 1 Star Star Speed (m/s) Period (days) Orbital Size (AU) Planet Speed (km/s) Planet Mass (MJ) A B C D E Click on "period" to sort the catalog with increasing period. 4. Find out the actual name of the exoplanet orbiting around Star A by matching both the period and the mass. Now take a closer look at the exoplanets that have been discovered so far. Sort the catalog with increasing mass. Remember that Jovian planets are massive planets and Terrestrial planets are low-mass planets. 5. Jovian planets are greater than 0.03 MJ or 10 ME (Earth masses) and Terrestrial planets are less than 0.03 MJ. Based on these mass ranges, are most of the extrasolar planets in the Extrasolar Planet catalog Jovian planets or Terrestrial planets? Explain your answer. Our Solar System formation model predicts that Terrestrial planets should form near the Sun (orbital size, a, of less than 5 AU) and Jovian planets should form far from the Sun (orbital size of greater than 5 AU). 6. Do the five planetary systems you've analyzed agree or disagree with this prediction of the Solar System formation model? Explain your answer. Expand the list to every confirmed exoplanet by selecting "all planets" in the filter. 7. Which planet in the Extrasolar Planet catalog is most like Jupiter, considering both mass and orbital size (MJ = 1, orbital size = 5.2 AU)? (I recommend sorting by orbital size.) 8. When considering mass, which planet in the Extrasolar Planet catalog is most like Earth (0.003 MJ)? Consider now that these exoplanets were detected by the Doppler effect, measuring the gravitational pull of the planet on its parent star. With this in mind, answer the following questions. 9. What sizes of planetary orbits are harder to detect? (If you aren't sure, check your pre-lab.)

10. What sizes of exoplanets are harder to detect? (If you aren't sure, check your pre-lab.) B. Transit detection method: In March 2009, the Kepler spacecraft was launched. This mission was designed to use the transit method for finding planets orbiting around other stars. When the planet passes in front of the star, it will block some of the star's light. Kepler monitors the amount of light coming from the stars as a function of time, something that astronomers call the "light curve." From this information, they can determine the period of the orbit and estimate the mass of the planet. In the figure above, you can see a planet passing in front of its star and making the star appear dimmer for a short period. The brightness will decrease as the planet moves in front of the star, it will stay dimmer while the planet crosses the face of the star, and then the brightness will increase as the planet moves from in front of the star. The amount by which the star dims and the time it takes to go from maximum to minimum brightness tells us about the size of the planet. The time between the start of one eclipse and the start of the next one tells us the period of the planet's orbit. You will now analyze five plots labeled "Transit Star A" to "Transit Star E". These are plots of the brightness of the star as a function of time. They are on your table. Use them to fill in Table 2 on the next page. A. In the top frame for each star, measure the period using the time between when the planet begins to eclipse the star to when it begins to eclipse the star the next time. B. Use the chart to convert period to orbital size. C. Use the equation given in the Doppler effect section to calculate the planet's speed. D. In the bottom frame for each star, measure the amount of time it takes for the star to go from full brightness to minimum brightness as the planet begins to eclipse it. (Crossing Time) E. Use the following equation to calculate the size (compared to Jupiter's radius) of the planet: Planet Size (R J ) = Planet Speed Crossing Time 142,984

Table 2 Star Period (days) Orbital Size (AU) Planet Speed (km/s) Crossing Time (s) Planet Size (RJ) A B C D E As you can see, we get slightly different information from the transit method than from the Doppler effect method. Rather than directly obtaining the mass of the planet, we obtain the size of the planet instead. From there, if we want to know how massive the planet is, we need to make an assumption about the planet's composition. For the next few questions, use the planet in Table 2 with the smallest planet size. If we assume that the smallest planet is a Jovian world with Jupiter's density of 1,330 kg/m 3, we can convert the planet size to a mass in Jovian masses (MJ). 11. Find the mass of the planet in Jovian masses by calculating 1.07 (planet size) 3. If we assume that the smallest planet is a Terrestrial world with Earth's density of 5,500 kg/m 3, we can convert the planet size to a mass in Earth masses (ME). 12. Find the mass of the planet in Earth masses by calculating 1,403 (planet size) 3 13. Recall that the mass division between Terrestrial and Jovian worlds is roughly 0.03 MJ or 10 ME. Based on your answers to questions 11 and 12, do you think that this world is more likely a rocky Terrestrial world or a gaseous Jovian world? Explain your answer. 14. If you could get the spectrum of this planet's atmosphere, which gases would tell you if it was a Terrestrial world or a Jovian world? What type of spectrum would show evidence of this? 15. In a paragraph with no less than 5 sentences, make an educated guess about the future of the search for extrasolar planets. How many planets will be discovered by the year 2040? Will more planets ultimately be detected by the Doppler shift method or by the Transit method? What are the odds of finding a planet that has both a similar mass and orbit to Earth? Put your response on the next page.