Many-Body Calculations of the Isotope Shift

Similar documents
4. Eccentric axial loading, cross-section core

ψ ij has the eigenvalue

Lecture 4: Piecewise Cubic Interpolation

The Schur-Cohn Algorithm

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

INTRODUCTION TO COMPLEX NUMBERS

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Effects of polarization on the reflected wave

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Quiz: Experimental Physics Lab-I

Review of linear algebra. Nuno Vasconcelos UCSD

Poisson brackets and canonical transformations

Symmetries and Conservation Laws in Classical Mechanics

Investigation phase in case of Bragg coupling

Two Coefficients of the Dyson Product

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

References: 1. Introduction to Solid State Physics, Kittel 2. Solid State Physics, Ashcroft and Mermin

Note on the Electron EDM

The Number of Rows which Equal Certain Row

PROBLEM SET #2 SOLUTIONS by Robert A. DiStasio Jr.

The Study of Lawson Criterion in Fusion Systems for the

Mechanical resonance theory and applications

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

Prof. Dr. I. Nasser Phys 630, T Aug-15 One_dimensional_Ising_Model

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

NUMERICAL DIFFERENTIATION

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

6 Roots of Equations: Open Methods

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Definition of Tracking

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

Applied Statistics Qualifier Examination

PES 1120 Spring 2014, Spendier Lecture 6/Page 1

PHYS 705: Classical Mechanics. Newtonian Mechanics

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Chemical Reaction Engineering

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

CHAPTER 31. Answer to Checkpoint Questions

PHYS 215C: Quantum Mechanics (Spring 2017) Problem Set 3 Solutions

6. Chemical Potential and the Grand Partition Function

COMPLEX NUMBERS INDEX

More metrics on cartesian products

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

= z 20 z n. (k 20) + 4 z k = 4

PHYS 705: Classical Mechanics. Calculus of Variations II

Problem Set 3 Solutions

Torsion, Thermal Effects and Indeterminacy

Finite-system statistical mechanics for nucleons, hadrons and partons Scott Pratt, Michigan State University

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

First day August 1, Problems and Solutions

Inelastic electron tunneling through a vibrational modulated barrier in STM

An Introduction to Morita Theory

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Katholieke Universiteit Leuven Department of Computer Science

Homework & Solution. Contributors. Prof. Lee, Hyun Min. Particle Physics Winter School. Park, Ye

Digital Signal Processing

Name: SID: Discussion Session:

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

Inductance Calculation for Conductors of Arbitrary Shape

Non-interacting Spin-1/2 Particles in Non-commuting External Magnetic Fields

Haddow s Experiment:

Remember: Project Proposals are due April 11.

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

ragsdale (zdr82) HW2 ditmire (58335) 1

Strong Gravity and the BKL Conjecture

Physics 5153 Classical Mechanics. Principle of Virtual Work-1

Quantum SU(2 1) supersymmetric Calogero Moser spinning systems

CENTROID (AĞIRLIK MERKEZİ )

Lecture 7: Boltzmann distribution & Thermodynamics of mixing

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

Canonical transformations

Math 426: Probability MWF 1pm, Gasson 310 Homework 4 Selected Solutions

Quantum Mechanics for Scientists and Engineers. David Miller

The Feynman path integral

Feynman parameter integrals

24. Atomic Spectra, Term Symbols and Hund s Rules

PHYS 705: Classical Mechanics. Canonical Transformation II

Lecture 4: Universal Hash Functions/Streaming Cont d

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

Electrical double layer: revisit based on boundary conditions

Principle Component Analysis

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

The classical spin-rotation coupling

A Theoretical Study on the Rank of the Integral Operators for Large- Scale Electrodynamic Analysis

Lecture 17 : Stochastic Processes II

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Chemical Reaction Engineering

MATH 241B FUNCTIONAL ANALYSIS - NOTES EXAMPLES OF C ALGEBRAS

4. More general extremum principles and thermodynamic potentials

Electromagnetic modeling of a lightning rod

Introduction to Numerical Integration Part II

Statistics 423 Midterm Examination Winter 2009

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

8.6 The Complex Number System

Transcription:

Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels ssocted wth fnte nucler mss. These correctons re referred to s sotope shfts. We evlute sotope shfts usng mny-body perturbton theory (MBPT), followng the poneerng work by Mårtensson-Pendrll et l. [1,,3,4,5,6,7,8,9]. We frst gve bref dscusson of contrbutons to the sotope shft, then go on to specfc exmples. For smplcty, the exmples dscussed here re lmted to sotope shfts n toms wth sngle vlence electron. We consder nonreltvstc tom wth N electrons of mss m e t ( r 1, r, ) nd nucleus of mss M A t r. The Hmltonn for the N + 1 prtcle tom my be wrtten H( r, r 1, r,, p, p 1, p, )= p + M A m e + V e N ( r r )+ V e e ( r r j ). (1) j Let us trnsform to reltve coordntes: ρ = r r () R = M A r + m e r, (3) M T where M T = M A + Nm e. The generlzed moment conjugte to ρ nd R re: We fnd usng the four prevous equtons: π = 1 ρ (4) p P = 1 R (5) p = π + m e M T P (6) p = π + M A M T P (7) 1

The knetc energy term n the orgnl Hmltonn cn be rewrtten [ ] K. E. = π + m e π m e M P + Nm e T M P T ( ) + π M A π M A M P + M A T MT P = m e + M A π + π π j + 1 P (8) m e M A M A M T The wve functon for the tom s therefore fctorzble nto product of plne wve descrbng the center of mss moton nd n N-electron wve functon descrbng the moton reltve to the nucleus. The Hmltonn for the reltve moton s H( ρ 1, ρ,, π 1, π, ) = π µ + V e N ( ρ )+ V e e ( ρ ρ j ) j + π π j. (9) M A where the reduced mss µ s gven by j j 1.1 Norml nd Specfc Mss Shfts We wrte the Hmltonn s sum µ = M A m e M A + m e. (1) H( ρ 1, ρ,, π 1, π, ) = H µ + H (11) H µ ( ρ 1, ρ,, π 1, π, ) = µ + V e N ( ρ ) + V e e ( ρ ρ j ) (1) H( π 1, π, ) = j π π π j. (13) M A Norml Mss Shft The effect of the fnte nucler mss on the frst term s to scle the nfnte mss Rydberg constnt by the rto µ/m e = M A /(M A +m e ). The correspondng shft of the energy from the nfnte-mss vlue s s referred to s the norml mss shft. The vlue of the norml mss shft s ( ) MA δe NMS = E µ E me = 1 E me = m e E me m e E µ. M A + m e M A + m e M A (14) j

Here E me s the vlue of the energy n tomc unts (clculted wth the nfntemss Rydberg constnt). We my use the bove expresson wth E µ replced by the expermentl energy to evlute the norml mss shft to obtn n ccurte pproxmton to the norml mss shft. Specfc Mss Shft The correcton to the energy from H s referred to s the specfc mss shft. The vlue of the specfc mss shft s δe SMS = π π j. (15) M A The energy s proportonl to the mss (µ for H µ )or(m e for H me )nthe denomntor of the knetc energy. It follows tht lengths scle nversely wth mss nd tht knetc energy scles drectly s mss. The sclng of knetc energy mples tht momentum scles drectly wth mss. Wth the d of these sclng reltons, one my rewrte M A δe SMS = (M A + m e ) p p j, (16) n the center of mss system. The sclng s requred snce we evlute the SMS mtrx element usng nfnte nucler mss wve functons. The prescrpton s s follows: () Express ll nswers n terms of the R, the nfnte mss Rydberg constnt. (b) Multply the totl energy by m e /(M A + m e ) to obtn the the norml mss shft. (c) Multply the mtrx element of p p j by M A /(M A + m e ) to fnd the spectfc mss shft. Alterntvely, we my use expermentl energes for E µ nd evlute the norml mss shft s δe NMS = m e M A E expt. (17) 1. Feld Shft In ddton to the norml nd specfc mss shfts, we hve n ddtonl shft from the chnge n nucler sze s we shft from one sotope to the next. Ths shft s referred to s the feld shft nd s prmeterzed s j j δe = Fδ r, (18) where δ r s the chnge n the root-men-squre rdus f the nucleus. Assumng tht the nucleus cn be descrbed s unformly chrged bll of rdus 3

R, the nucler potentl s { [ (Z/R) 3 r /R ], r < R V (r, R) = Z/r, r R (19) The chnge n V (r, R) nduced by chnge δr n the rdus s δv = 3Z ] [1 R r R δr, r R. () Usng the the fct tht r =3R /5 for unform dstrbuton, one my rewrte the bove equton n the form δv = 5Z ] [1 4R 3 r R δ r, r R. (1) Wth ths result n mnd, we cn ntroduce the sngle-prtcle opertor h nuc (r) h nuc = 5Z ] [1 4R 3 r R, r R () nd fnd the feld-shft prmeter s MBPT Clcultons of SMS The opertor F = h nuc. (3) T = j p p j cn be expressed n second quntzton s the sum of one- nd two-prtcle opertors t jkl : j l k :+ t j : j :, j where jkl t jkl = j p 1 p kl (4) t j = p 1 p j p 1 p j. (5) The drect prt of the one-prtcle opertor t j vnshes by resons of symmetry. 4

.1 Angulr Decomposton The two-prtcle opertor t jkl my be decomposed n n ngulr-momentum bss s t jkl = ( 1) λ p λ k j p λ l, (6) λ whch, n turn, cn be expressed dgrmtclly s 1 t jkl = + j T 1 (jkl), (7) k where T 1 (jkl) = C 1 k j C 1 l P (c) P (bd). (8) In Eq. (8), the qunttes P (k) re rdl mtrx elements of the momentum opertor. We gve explct forms for these reduced mtrx elements n the followng subsecton.. Mtrx elements of momentum Let us dgress to gve explct forms for the mtrx elements of the momentum opertor. We frst consder the nonreltvstc cse...1 Nonreltvstc cse: We wrte p = 1 nd note tht n the nonreltvstc cse b = d 3 r 1 ( ) r P b(r) Yl 1 b m b r P (r) Y lm ( dp = dr P b (r) dr 1 ) r P (r) dω Yl b m b ˆrY lm + dr P b (r)p (r) dω Yl b m b Ylm (9) Note tht we cn rewrte the opertors on sphercl hrmoncs n terms of vector sphercl hrmoncs s l ˆrY lm (ˆr) = Y ( 1) lm (ˆr) (3) l(l +1) Y lm (ˆr) = Y (1) lm (ˆr) (31) r Usng the expnson of vector sphercl hrmoncs n terms of Y JLM (ˆr), we esly estblsh tht l b m b l m = { (l +1) l b m b ˆr l m for l b = l 1, l l b m b ˆr l m for l b = l +1. (3) 5

Wth the d of ths expresson, We fnd ( b dp = l b m b ˆr l m drp b (r) dr + l ) r P, l b = l 1, (33) nd b = l b m b ˆr l m We my therefore wrte, s n Eq. (8), ( dp drp b (r) dr l ) +1 P, l b = l +1. (34) r b p λ = l b m b C 1 λ l m P (b), where the rdl mtrx element P (b) s P (b) = 1 ( dp drp b (r) dr + l ) r P, l b = l 1, = 1 ( dp drp b (r) dr l ) +1 P, l b = l +1. (35) r.. Reltvstc cse I: It s smple to generlze the prevous nonreltvstc mtrx element to the reltvstc cse. We my wrte b p λ = κ b m b C 1 λ κ m P (b), where the reltvstc rdl mtrx elements P (b) s P (b) = 1 [ ( dg dr G b (r) dr + η ) ( r G df + F b (r) dr + ζ )] r F, (36) wth η = l or l 1, for l b = l 1orl b = l + 1, respectvely; nd ζ = l or l 1forl b = l 1orl b = l + 1, respectvely. Here l = l( κ). Ths s the proper form for the mtrx element of the momentum opertor...3 Reltvstc cse II: An lterntve form tht s equvlent to the bove n the nonreltvstc lmt s obtned by replcng p m e c α. Ths form leds to [ b p λ = m e c dr G b (r) F (r) κ b m b σ λ κ m ] F b (r) G (r) κ b m b σ λ κ m. (37) Wth the d of the dentty κ b m b σ λ κ m =(κ b + κ 1) κ b m b C 1 λ κ m, (38) 6

we my wrte the mtrx element n Eq. (37) s b p λ = m e c κ b m b C 1 λ κ m dr [ (κ b κ 1)G b (r) F (r) +(κ b κ +1)F b (r) G (r) ]. (39) From ths expresson, one obtns the lterntve expresson P (b) = m e c dr [ (κ b κ 1)G b (r) F (r)+(κ b κ +1)F b (r) G (r) ]. (4) for the rdl ntegrl of the momentum opertor. In the Pul pproxmton, we my replce F (r) 1 ( dg m e c dr + κ ) r G, ledng to P (b) = [ ( dg dr (κ b κ 1) G b (r) dr + κ ) r G ( dgb +(κ b κ +1)G (r) dr + κ )] b r G b = 1 ( dg dr G b (r) dr (κ ) b κ )(κ b + κ +1) G. (41) r By enumertng the sx possble combntons, one cn show tht { (κ l b κ )(κ b + κ +1) r l b = l 1 = r l, (4) +1 r l b = l +1 whch s just the nonreltvstc expresson for the rdl mtrx element. We wll use Eq. (4) n our clcultons becuse of ts reltve smplcty..3 Lowest-order clculton Consder n tom wth sngle vlence electron descrbed by n HF wve functon. The lowest-order mtrx element of T n stte v s gven by v T v (1) = t vv = t vv = v 1 + v T 1 (vv). We cn crry out the sum over mgnetc substtes usng stndrd grphcl rules to fnd: v T v (1) = 1 [v] v C1 P (v). (43) where we hve used the fct tht P (b) =P (b). 7

Tble 1: Lowest-order mtrx elements of the specfc-mss-shft opertor T for vlence sttes of L nd N. Lthum Z = 3 Sodum Z =3 Stte E HF v T v Stte E HF v T v s -.1963. 3s -.183 -.615 p 1/ -.1864 -.416 3p 1/ -.1949 -.31 p 3/ -.1864 -.416 3p 3/ -.194 -.3199 References [1] A. M. Mårtensson nd S. Slomonson, J. Phys. B15, 115 (198). [] E. Lndroth nd A. M. Mårtensson-Pendrll, Z. Phys. A39, 77 (1983). [3] S. Hörbäck, A. M. Pendrll, L. Pendrll, nd M. Pettersson, Z. Phys. A318, 85 (1984). [4] E. Lndroth, A. M. Mårtensson-Pendrll, nd S. Slomonson, Phys. Rev. A31, 58 (1985). [5] A. M. Mårtensson-Pendrll, L. Pendrll, S. Slomonson, A. Ynnermn, nd H. Wrston, J. Phys. B3, 1749 (199). [6] A. C. Hrtley nd A. M. Mårtensson-Pendrll, J. Phys. B4, 11193 (1991). [7] A. M. Mårtensson-Pendrll, A. Ynneremn, H. Wrston, L. Vermeeren, R. E. Slverns, A. Klen, R. Neugrt, C. Schulz, P. Levens, nd The ISOLDE Collborton, Phys. Rev. A45, 4675 (199). [8] A. M. Mårtensson-Pendrll, D. S. Gough, nd P. Hnnford, Phys. Rev. A49, 3351 (1994). [9] F. Kurth, T. Gudjons, R. Hlbert, T. Resnger, G. Werth, nd A. M. Mårtensson-Pendrll, Z. Phys. D34, 7 (1995). 8