SOLUTION SET. Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition. By William T.

Similar documents
SOLUTION SET. Chapter 8 LASER OSCILLATION ABOVE THRESHOLD "LASER FUNDAMENTALS" Second Edition

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

APPH 4200 Physics of Fluids

K E L LY T H O M P S O N

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

A L A BA M A L A W R E V IE W

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

rhtre PAID U.S. POSTAGE Can't attend? Pass this on to a friend. Cleveland, Ohio Permit No. 799 First Class

S U E K E AY S S H A R O N T IM B E R W IN D M A R T Z -PA U L L IN. Carlisle Franklin Springboro. Clearcreek TWP. Middletown. Turtlecreek TWP.

P a g e 5 1 of R e p o r t P B 4 / 0 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

T h e C S E T I P r o j e c t

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

BROOKLYN COLLEGE Department of Chemistry. Chemistry 1 Second Lecture Exam Nov. 27, Name Page 1 of 5

Using the Rational Root Theorem to Find Real and Imaginary Roots Real roots can be one of two types: ra...-\; 0 or - l (- - ONLl --

Integrated II: Unit 2 Study Guide 2. Find the value of s. (s - 2) 2 = 200. ~ :-!:[Uost. ~-~::~~n. '!JJori. s: ~ &:Ll()J~

Keep this exam closed until you are told to begin.

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Beechwood Music Department Staff

2.' -4-5 I fo. - /30 + ;3, x + G: ~ / ~ ) ~ ov. Fd'r evt.'i') cutckf' ()y\e.._o OYLt dtt:vl. t'"'i ~ _) y =.5_21/2-+. 8"'- 2.

Chapter II TRIANGULAR NUMBERS

SOLUTION SET. Chapter 6 RADIATION AND THERMAL EQUILIBRIUM - ABSORPTION AND STIMULATED EMISSION "LASER FUNDAMENTALS" Second Edition

If anything confuses you or is not clear, raise your hand and ask!

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

r(j) -::::.- --X U.;,..;...-h_D_Vl_5_ :;;2.. Name: ~s'~o--=-i Class; Date: ID: A

Solutions and Ions. Pure Substances

Laser Spectroscopy on Bunched Radioactive Ion Beams

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

8. Relax and do well.

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

STEEL PIPE NIPPLE BLACK AND GALVANIZED

ORBITAL DIAGRAM - A graphical representation of the quantum number "map" of electrons around an atom.

Lecture10: Plasma Physics 1. APPH E6101x Columbia University

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

MANY ELECTRON ATOMS Chapter 15

NAME: FIRST EXAMINATION

,. *â â > V>V. â ND * 828.

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

VIIIA H PREDICTING CHARGE

ECE430 Name 5 () ( '-'1-+/~ Or"- f w.s. Section: (Circle One) 10 MWF 12:30 TuTh (Sauer) (Liu) TOTAL: USEFUL INFORMATION

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

necessita d'interrogare il cielo

CHEM 10113, Quiz 5 October 26, 2011

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.


R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

Atomic Emission Spectra. and. Flame Tests. Burlingame High School Chemistry

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis.

8. Relax and do well.

Ranking accounting, banking and finance journals: A note

I N A C O M P L E X W O R L D

CHEMICAL COMPOUNDS MOLECULAR COMPOUNDS

Chapter 12 The Atom & Periodic Table- part 2

INSTRUCTIONS: Exam III. November 10, 1999 Lab Section

Element Cube Project (x2)

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

Le Chatelier's Principle. 2. How changes in each factor affect equilibrium (Le Chatelier's Principle)

CHEMICAL COMPOUNDS. - Dalton's theory does not mention this, but there is more than one way for atoms to come together to make chemical compounds!

828.^ 2 F r, Br n, nd t h. n, v n lth h th n l nd h d n r d t n v l l n th f v r x t p th l ft. n ll n n n f lt ll th t p n nt r f d pp nt nt nd, th t

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

Radiometric Dating (tap anywhere)

A/P Warrants. June 15, To Approve. To Ratify. Authorize the City Manager to approve such expenditures as are legally due and

Circle the letters only. NO ANSWERS in the Columns!

Chemistry 1 First Lecture Exam Fall Abbasi Khajo Levine Mathias Mathias/Ortiz Metlitsky Rahi Sanchez-Delgado Vasserman

Atomic weight: This is a decimal number, but for radioactive elements it is replaced with a number in parenthesis.

Ch. 9 NOTES ~ Chemical Bonding NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

THIS PAGE DECLASSIFIED IAW E

Atoms and the Periodic Table

-"l" also contributes ENERGY. Higher values for "l" mean the electron has higher energy.

INSTRUCTIONS: CHEM Exam I. September 13, 1994 Lab Section

Grilled it ems are prepared over real mesquit e wood CREATE A COMBO STEAKS. Onion Brewski Sirloin * Our signature USDA Choice 12 oz. Sirloin.

Lab Day and Time: Instructions. 1. Do not open the exam until you are told to start.

HANDOUT SET GENERAL CHEMISTRY II

- Atomic line spectra are UNIQUE to each element. They're like atomic "fingerprints".

Use precise language and domain-specific vocabulary to inform about or explain the topic. CCSS.ELA-LITERACY.WHST D

7. Relax and do well.

POLYTECHNIC OF NAMIBIA

IONIC COMPOUNDS. - USUALLY form from metals combining with nonmetals, or from metals combining with metalloids

CHEM 130 Exp. 8: Molecular Models

single-layer transition metal dichalcogenides MC2

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

The Periodic Table of the Elements

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy

,\ I. . <- c}. " C:-)' ) I- p od--- -;::: 'J.--- d, cl cr -- I. ( I) Cl c,\. c. 1\'0\ ~ '~O'-_. e ~.\~\S

CHEM 10123/10125, Exam 2

Transcription:

SOLUTION SET Chapter 9 REQUIREMENTS FOR OBTAINING POPULATION INVERSIONS "LASER FUNDAMENTALS" Second Edition By William T. Silfvast

C.11 q 1. Using the equations (9.8), (9.9), and (9.10) that were developed to describe changes in the populations of a three-level system, obtain expressions for the populations in the upper and lower laser levels, the inversion ratio, and the minimum pumping requirements given in (9.11), (9.12), (9.13), and (9.14). ol /\Ii _ d.a - _ ol - N '< c:ud /\./,/ - vgt f rd~ ('1.q) '?{(.f '~ N Ii. "=-,,;CA N; (I) f r-o ~ (Cf. 11>) lit /\l_e -:. c ~../tt + YA,i) '''" ( 2 ) (~8) (tt' 9 J ( 1, ID) (1) - '(UL N'1 - - (2) -. 1-;,i N.t T"~ (~IJ) r, ~ t, f (ou; + o,,1u)n" + v. >.. / -=.,, "'" N 011 ~ I'~ o.,; tt Nt :: c.t' ( o:.u +- 'lt) /Y Lf. re; ( '( 1tP- + Cl';;") f\/., + ~ ( 'OJ" + ~- e) N i.r. :: '.;" N I 2.l!"114. '";, '7~- 'O,t' ~,_ u N r;; ( '( tt-d- +-- ~ u) + 'tfa,t ( 'ttt'"' + 'oi.o.) (C/,/Z) f''1.e -=, tte ( """'..;.. '(.ft) ' r;.( 'ta'!,,( ' ' ' ~~ N,A.IA fl; I~ ( w.+-'6~ t.t)+ u.tcl~+t.d) Np. ::: 0 "' ( Y" u + a,.'j!. - {\/ ft, \ l) t;,; ( '("" ;-~.tti.) + ~.t (tit ~ t ~~)

Cll C/ 2. Referring to the example in Section 9.3 on the threshold pumping requirements for : a ruby laser, estimate the number of pumping photons and the power required to. pump the laser rod to the threshold value for a 6-mm-diameter, 0.1-m-long ruby laser rod doped to the concentration given in the example during a pumping cycle that lasts for the duration of the upper laser level lifetime of 3 ms. Assume that the laser is pumped by photons of wavelength 550 nm. Remember that Nofli represents the number of ground-state Cr 3 + ions pumped per cubic meter every second into the upper laser level. =: /, t;"'/ X /D 2. 2. p/a...ofd"'-4 /':, #- pft...,ot'o "~-:.. (1.~1 x10'- 2 ph.c!dia<l/s.)(s ><la-)s) -= l/. ~2. x 11J t&r p LT;;~. J s: '-IS-x 10 ~

CH C/ 3. Beginning with the rate equations given in (9.16) and (9.17), obtain the threshold inversion requirements for a three-level atomic laser as given in (9.21). ('f,16) (1,/7) (~,I~ J f'i A r +!'-{ t.{ 'tup u f)j_ - R.o V I' f'f I' + I o "" t{l-/j 0 0 ~ OUL + 'tuc 10 No [!~~ -r (\<~:!-i'~j i-;j,,,. I t

Cf! t!f. I 4. Refer to the energy-level diagram, Figure 10-S(b), of the argon ion with the rele-. vant energy levels for the 488.0-nm laser transition. Assuming that it operates as a three-level laser when considering only the single-ion energy levels, what would be the maximum ratio of excitation from the ground state to the lower laser level 1 u -:: <.. (9,.) + I -:::-. G. 1.t =- { (!ILJ+I::: L/ 1--; '-. < r f-'ott!u.~ _J_ L Au.e. t.~- bj' Att.o : 2 3 :<' 10 f(lc +- '-/, f")< It> ~.s. +- A IJ..J_ - 7. g x I 0 7 / $ ' I t < ----

Cli 1 5. Given the rate equations (9.25), (9.26), (9.27), and (9.28), obtain the expressions / for Nu, Nz, and I'oi for a four~level laser system given in (9.29), (9.30), and (9.33).. : cyj.t-= Y ot. Nb - ~b NL -i. ifu.1 Ni., ::. CJ ( 9, Z-.>) i~" "" - Y t.t.t /\I" +.t" N; -= o daf.i ~ ":. "'~ {'1, 'J.? ) (&/, l E?) S ~ ~ $ t; rfa, ti Frtn-- ( 'i, 2 7) '"'. ~ A 1'. Ne. t)a Y.. itt,-&.t ~ (_'1, 2,) /\{ u ~,./l.( l\f~ Or '" tt ::,_,... - 'G(Ay IJ,,i No 1.-t..I;. 0 4>1;2. '6J4 (];A /'Va Yu'-,, ' f:j_y. - N.1_ - Ni. = 4"o.e 1'-lo + (ft,.q IV11 ':::!:E~ "!~ +- ~_, ~ /V~ 'ts't~ ~ o ~o Ytr..t '= ( o.1. + ~... ) Na ~l> f'oa ~0,,u_( Yot t- r;.a.) - ~~?l.t(;)) tr~' -.,,... - A/E.,o~ r ~ ::= e rllt. ){.qt)... Aff.e~ or- 17,A > e 'l!:f Au~

C II 'if. 6. Determine the single-pass gain of a 0.1-m-long Nd:YAG laser rod operating at f 1.06 µ,mat room temperature. Assume the following:. 1 (a) Auz = 4 x 10 3 s- 1, no significant collisional or phonon broadening occurs on that transition, and there exist no radiative decay routes from level u other than to level l; (b) the pumping level i decays primarily to the upper laser level u, and the lower laser level l decays to the ground state 0, at a rate of 10 12 s- 1 ; (c) the lower laser level l is 0.27 ev above the ground state; (d) the pumping rate to the intermediate level i is 100 times the minimum value given in (9.33); and (e) the doping concentration of the Nd:YAG rod is 10 26 m- 3. _ ceto_ar A-s~u.. ~ r"- =-i.t ~.. <-.::. I DO e?(,,~ T _"'- 300 Jc.. r I -~1. (-, I oo -i.,~-r!'/xto l/x. fl\ l/s o~.::::. e v = //, $? ~ I -,. {),( I\/ - -- 110..._ 0 t.<-t_ F~ (J.3 o) ~ N 2, 97 X/O l / -:: 2.97X.IO- t> = H.. 2) 'l Fvo~ T~ IS '-) CJUA = 2,~ XI O k-t ~ 1 == (ti.. - N.L) i.t:f ::-(t.&/?)(to 21-2.rtx10~~2.txrr/t 3.., -=- ~. l~ /tm. r: ~,is. (.1) o.92~ r o "il.> - r L:::J - L e - e.... 2, "-) {')I> - 6 c;;;.. - \ 4:..- 0 v ~ t ~ -

L-fl 1 7. Beginning with the differential rate equations (9.35) and (9.36), solve for the expressions for Nu and Nz as a function of time as given in (9.37) and (9.38). ~'f :: No (ID'< - N"' Aw d..:: ::: N D 1-;.e + /\/ ~ A l{.q_ (q, 3ft;) A-ss UiMe No = tap---rr~-:t (o_ ~et. sc~-bte o_t;.t;v. A --r;r;~) fr.-, 1 ( -A411.:r) ~ a...ss~ ec 50 lt..(_tt/f'\ fv"- /\II.{_~ lvtt::::.c. 1 t-e c, :.. ~!7t>N-1,.,. I ( r;;, ) A r - (,_ e-a"'~ :r\ -n- +- I tu. ) I bt.t

{_JI q. 8. Referring to the energy-level diagram of the lead vapor laser of Problem 8 in Chap- \ I ter 4, graph the time dependence of the population inversion (in real time) of the : 3 I 1 Pf ---7- D 2 722.9-nm laser transition, assuming that (a) the pumping flux to the upper laser level is twice that to the lower laser level and (b) the pumping is applied at a constant rate beginning at t = 0. Assume that radiation trapping prevents any decay to the three levels (3P 2, 3 Pi, 3 P 0 ) below the lower laser level, and assume there is essentially no decay to the higher-lying 1 S 0 level as shown in the figure., : A 1 rr.;- Ac_3,,,, 0 _..., 'i)j-:: lf. "Ix tb s Is ~ 1'-:. -::: f I - = /,I 2. X Io -lt S II\, A "3 P.f) <Z' 1 Xld'l>, - ;r/,, x 10- il s - e '' - { - e-' - N... ( ') - 0,423> ~ /, i;- - I - e- 1. 0 0

L_fl ~ 9. At what electron density would radiation trapping begin to slow down the decay of I the lower laser level of the He-Cd laser transition at 441.6 nm? Assume a plasma tube radius of 1 mm. Assume that the gas temperature is 350 C and that half of the ions in the discharge are Cd+ ions while the other half are He+ ions. Assume also that there are no other ions in the discharge and that charge neutrality exists: the total electron charge of the free electrons that provide the discharge current equals the total ion charge in the discharge. Use the energy-level diagram and the associated coefficients of Figure 9-7 for the relevant Cd+ energy levels. Hint: The Cd+ ion ground state is the state that causes radiation trapping on the decay of the lower laser level, and its population accounts for half of the free electrons that make up the electron density in the discharge (the other half are He+ ions). f(q_p(( cvfi ' IVtLpp1~ bkw,~~ st~w.;f1i."'j w ~ CJ~ Nti b -=- I, '-I~ (9, '17) CjR ":: 2{!f J t I::: Lf 1" ~ 2 (~J ti ;:_ 2- T= 3~D+2 7 3 ::,23~ b:::.ld->vv\,, (

Cll-1 10. At what population density of the argon ion ground state would radiation trapping begin to reduce the population inversion for the laser transition of Problem 4? Assume a discharge tube diameter of 2 mm and a gas temperature of 600 K. ~ it.e -:-- '-I!6 ~. o ""- vv... "'R.o -= 7'2. 3 vi~ lo :::. I lm \,/IA. (Yf N ::.. '-( D (:::- fa 60 (<. f.e = 2~)+ I :: lf 1 D := "2 ( 3/i ) + I :; L( ("-{ 0 ::: /,'-I~ -

II(~,) I{- w~ \~L l~~ /\l.t ~ Sott:.e f()r & t..t.a.-1,,,.jro~s 4./-j. ~ lflff'e. td~.._,e;uej '(l..l.e. ~ Aut_::: 2. '7 rx /()I~ 'I H '610 ~ l+.to-= 2: A.1,, -: '5'1 L/.'l'XIO<i-:: 2.~'"/XI0 11 r, ' N.e = I. s x1a~r1.1~x1b" '-J ;;._, 1'-/'>( J{) II r, I.,.. f '[ 7 u 'l." It I. 2.SXJ0 1 q7 -=.., S'I XI i /. ~ --, XI D - e _j :::: I "'' 3 I VV\

Cl-/ 1 11. For the H-like n = 3 --+ n = 2 transition of the B 4 + ion, what is the maximum electron density at which a population inversion could occur for an electron and ion temperature of 300 ev? What would the gain be on that transition under those conditions, assuming that the pumping flux to the lower laser levels (other than radiative decay from the n = 3 level) is negligible? Assume that the population in the upper laser level is io- 5 ne. Note that the transition probabilities for H-like ions scale as Z 4 compared to hydrogen and that A 32 = 4.4 x 10 7 s- 1 for hydrogen. n~)( = o, I 3> {T; Te (I<) 'A~,, '>- ( t.-\ll*'-) ~-= ~ ~ p/!+ ~ ti ~:,--,,3 l S")'- -- Vl e ~ ::: (), /J {?..'f'i'xio" -;::. /, ')'f)(io "l'l/.m.) (2 ~,2~ X ID-~ ) 3

12. For a discharge-pumped gas laser medium, assume that the electron pumping flux is twice as great to the upper laser level as to the lower laser level. Also assume! that the decay rate from the lower laser level is twice as great as that from the upper laser level. The decay from the upper laser level goes only to the lower laser level and there is no other source of excitation to either the upper or lower laser levels than those just described. What is the ratio of Nu to Nz under these conditions? What would the value of the trapping factor Fzo (see eqn. 9.45) have to be in order to equalize the populations of the levels? Assume that the statistical weights of both laser levels are the same. c ti.) 1)1 -- d ta_ /\I 4 t!".j l'\/.e CVR - -;u. (' + '~){- r:)ia ) A,o Avi bj ~~:::. tl< ~p _J - Gu - '- A1.o :: 2.. A t.<..t r I 2 - t,3'3 (. ~ -_.., c ; r I f=jc-=: I ) l It :;- ) - "L...