The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell

Similar documents
An Example file... log.txt

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce


A Study on the Analysis of Measurement Errors of Specific Gravity Meter

Framework for functional tree simulation applied to 'golden delicious' apple trees

ETIKA V PROFESII PSYCHOLÓGA

OC330C. Wiring Diagram. Recommended PKH- P35 / P50 GALH PKA- RP35 / RP50. Remarks (Drawing No.) No. Parts No. Parts Name Specifications

General Neoclassical Closure Theory: Diagonalizing the Drift Kinetic Operator

Estimation of Retention Factors of Nucleotides by Buffer Concentrations in RP-HPLC

Planning for Reactive Behaviors in Hide and Seek

An Introduction to Optimal Control Applied to Disease Models

Optimal Control of PDEs

A Study on Dental Health Awareness of High School Students

The Effect of Deposition Parameter on Electrical Resistivity of TiAlN Thin Film

The University of Bath School of Management is one of the oldest established management schools in Britain. It enjoys an international reputation for

" #$ P UTS W U X [ZY \ Z _ `a \ dfe ih j mlk n p q sr t u s q e ps s t x q s y i_z { U U z W } y ~ y x t i e l US T { d ƒ ƒ ƒ j s q e uˆ ps i ˆ p q y

This document has been prepared by Sunder Kidambi with the blessings of

New method for solving nonlinear sum of ratios problem based on simplicial bisection

Vectors. Teaching Learning Point. Ç, where OP. l m n

Max. Input Power (W) Input Current (Arms) Dimming. Enclosure

Relation Between the Growth Twin and the Morphology of a Czochralski Silicon Single Crystal

Books. Book Collection Editor. Editor. Name Name Company. Title "SA" A tree pattern. A database instance

4.3 Laplace Transform in Linear System Analysis

Examination paper for TFY4240 Electromagnetic theory

Symbols and dingbats. A 41 Α a 61 α À K cb ➋ à esc. Á g e7 á esc. Â e e5 â. Ã L cc ➌ ã esc ~ Ä esc : ä esc : Å esc * å esc *

Principal Secretary to Government Haryana, Town & Country Planning Department, Haryana, Chandigarh.

cº " 6 >IJV 5 l i u $

QUESTIONS ON QUARKONIUM PRODUCTION IN NUCLEAR COLLISIONS

Front-end. Organization of a Modern Compiler. Middle1. Middle2. Back-end. converted to control flow) Representation

Dimethyl Ether Production using a Reactive Distillation Process

Pharmacological and genomic profiling identifies NF-κB targeted treatment strategies for mantle cell lymphoma

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

ALTER TABLE Employee ADD ( Mname VARCHAR2(20), Birthday DATE );

TELEMATICS LINK LEADS

PART IV LIVESTOCK, POULTRY AND FISH PRODUCTION

Matrices and Determinants

Jeong-Ah Bang, Chui Im Choi, Wonho Choi, *, and Dae Hong Jeong*

The Effect of Reaction Conditions on Particle Size and Size Distribution in the Synthesis of SiO 2 Nanoparticles from W/O Microemulsion Method

!!"# $% &" ( )

The Synthesis of Zeolite Using Fly Ash and its Investigate Adsorption Character

AN IDENTIFICATION ALGORITHM FOR ARMAX SYSTEMS

Plasma diagnostics and abundance determinations for planetary nebulae current status. Xiaowei Liu Department of Astronomy, Peking University

B œ c " " ã B œ c 8 8. such that substituting these values for the B 3 's will make all the equations true

Harlean. User s Guide

Damping Ring Requirements for 3 TeV CLIC

F O R SOCI AL WORK RESE ARCH

Complex Analysis. PH 503 Course TM. Charudatt Kadolkar Indian Institute of Technology, Guwahati

R for beginners. 2 The few things to know before st. 8 Index 31

Research of Application the Virtual Reality Technology in Chemistry Education

UNIQUE FJORDS AND THE ROYAL CAPITALS UNIQUE FJORDS & THE NORTH CAPE & UNIQUE NORTHERN CAPITALS

Preparation of Hydrophilic Inorganic-Organic Hybrid Coating Solutions by Sol-Gel Method

â, Đ (Very Long Baseline Interferometry, VLBI)

Redoing the Foundations of Decision Theory

OVER 150 J-HOP To Q JCATS S(MJ) BY NOON TUESDAY CO-ED S LEAGUE HOLDS MEETING

SOLAR MORTEC INDUSTRIES.

February 17, 2015 REQUEST FOR PROPOSALS. For Columbus Metropolitan Library. Issued by: Purchasing Division 96 S. Grant Ave. Columbus, OH 43215

Emphases of Calculus Infinite Sequences and Series Page 1. , then {a n } converges. lim a n = L. form í8 v «à L Hôpital Rule JjZ lim

Thermal Conductivity of Electric Molding Composites Filled with β-si 3 N 4

ADVANCES IN MATHEMATICS(CHINA)

Obtain from theory/experiment a value for the absorbtion cross-section. Calculate the number of atoms/ions/molecules giving rise to the line.

THE ANALYSIS OF THE CONVECTIVE-CONDUCTIVE HEAT TRANSFER IN THE BUILDING CONSTRUCTIONS. Zbynek Svoboda

Some emission processes are intrinsically polarised e.g. synchrotron radiation.

* +(,-/.$0 0,132(45(46 2(47839$:;$<(=

Connection equations with stream variables are generated in a model when using the # $ % () operator or the & ' %


Winsome Winsome W Wins e ins e WUin ser some s Guide

Loop parallelization using compiler analysis

APPH 4200 Physics of Fluids

Constructive Decision Theory

. ffflffluary 7, 1855.

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL

Modeling of the Thermal Behavior of an Electric-Vehicle Battery

On principal eigenpair of temporal-joined adjacency matrix for spreading phenomenon Abstract. Keywords: 1 Introduction

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

New BaBar Results on Rare Leptonic B Decays

SCOTT PLUMMER ASHTON ANTONETTI

I118 Graphs and Automata

Vector analysis. 1 Scalars and vectors. Fields. Coordinate systems 1. 2 The operator The gradient, divergence, curl, and Laplacian...

APPH 4200 Physics of Fluids

Oxygen Transfer Characterization in Aeration Tank for Oxidation Treatment of Water Pollutants

UBI External Keyboard Technical Manual

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING

Unit 3. Digital encoding

MARKET AREA UPDATE Report as of: 1Q 2Q 3Q 4Q

ACS AKK R0125 REV B 3AKK R0125 REV B 3AKK R0125 REV C KR Effective : Asea Brown Boveri Ltd.

Glasgow eprints Service

Klour Q» m i o r L l V I* , tr a d itim i rvpf tr.j UiC lin» tv'ilit* m in 's *** O.hi nf Iiir i * ii, B.lly Q t " '

- (II) ( , )

Implicit in the definition of orthogonal arrays is a projection propertyþ

Synopsis of Numerical Linear Algebra

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS

A Functional Quantum Programming Language

LEAD IN DRINKING WATER REPORT

ISO/IEC JTC1/SC2/WG2 N2

Advanced Treatment of Sewage Using a Magnetic Fluid Separation

Computer Systems Organization. Plan for Today

Soil-Water Characteristics of Huai-an Expensive Soil

h : sh +i F J a n W i m +i F D eh, 1 ; 5 i A cl m i n i sh» si N «q a : 1? ek ser P t r \. e a & im a n alaa p ( M Scanned by CamScanner

DISSIPATIVE SYSTEMS. Lectures by. Jan C. Willems. K.U. Leuven

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X.

Transcription:

HWAHAK KONGHAK Vol. 38, No. 5, October, 2000, pp. 719-724 (Journal of the Korean Institute of Chemical Engineers) (1999 5 31, 2000 8 1 ) The Effect of Temperature and Space Velocity on the Performance of Plate Reformer for Molten Carbonate Fuel Cell Sang Deuk Lee, Inchul Hwang, Byung Gwon Lee, Inseok Seo, Tae Hoon Lim and Seong-Ahn Hong Environment & Process Technology Division, Korea Institute of Science and Technology, 39-1, Hawolkok-dong, Sungbuk-ku, Seoul 136-791, Korea (Received 31 May 1999; accepted 1 August 2000) MCFC.!"# "$ %& '( )*!!+,,-.+ / 01 2 '34 5 %&6 78 9& :; < = >. 80%$?@A <BC DE; 2FG $ *H HI <? J 99%?H$!!+# 98%?H$,-.+ K LG kwm$! 0N OP. < Q )*R %& '( STG U VW XY Z[ \ HI ]4^C endotherm? _>BP. Abstract The plate reformer consisting of combustion chamber and reforming chamber, which can be integrated in the MCFC fuel cell system, has been prepared and the performance test was carried out. In order to study the effect of initial temperature and space velocity on the performance of reformer, the temperature profiles were measured and the conversion of hydrogen and methane and the composition of products were analyzed. Upon the operating condition based on fuel cell stack having fuel utilization of 80%, the reformer was able to generate hydrogen for several kw fuel cell stack, maintaining the hydrogen conversion of above 99% and methane conversion of 98%. The temperature profile recorded during the test showed the endotherm representing the operating state of reformer. Key words: Plate Reformer, MCFC, Methane Reforming, Hydrogen E-mail: sdlee@kist.re.kr 1. MCFC. Fig. 1 MCFC!" # $% &' ( )* " +,-. /0 1 2, 32$% 456 +789 :; < = :. / anode >( +?@ AB89 (+ C A D +?E. F anode >( +,G( HI +?J K( LE. +?@ +?E ( cathode CO 2 ABM$% NL8O & +?1 @% -P89 QR 1M$% L E. @ AB8 ST0 3 ;0 U Q R0 VW QR D =?X CO% -YE ; anode =? AB M$% NLE[1]. QR: CH 4 + Ο 3 +CO, ZH=49.2 Kcal/mole VW QR: CO+ O +CO 2, ZH= 9.8 Kcal/mole X U MCFCL +,-. / anodex cathode =? [ CO 2 AB \] ^_] ` Iab c d1e(500 Kcal/ Nm 3 ) anode >( QR 1M$% NL Ff / Vg hi6 jr] = : k= l2 Rmn 8 O, 1-P o p9.?q rs t (.u :9v. w nxy MCFCL ( gza{ NL8 } ~, }} -8 s =?AB X ƒ8 O uˆdv] Št E. Œ Ž. MCFCL$% d8u : j 2" % Hitachi N 2s+?, ChiyodaN 1 Y, IHIN y = : [2]. 3(. c d1e anode >( +? WD JK +? /u :$O, +,G( t š- +? œ +? JK ž% u :. nÿ, 1 Y +? ( I }{L$% K8 JK N L] = $ % 1 JK d 2 0 ( 8 u :. sw _ -1q2 Ff +? ( HI }{L JK 5 NL] = :u c( % 719

720 Fig. 1. Simplified flow diagram of a MCFC system. ª] = :. t2$% 2«( % /0 /- ª] = :9 3(. ( ±u :[3]. ² + MCFC % ³ (. : µu, d W s % = kwb L ¹Tº» +,-.L X ¼L ½, ª³ @¼ @¾. 2. [ ¼ ½ WD +,-. +,L 80% % ³ MCFC N¾. N 70 À$% X ¼ ½ ªu Á, @¼ @¾. @¼ Â, ArÃ( C) Ä t{ V=y ST -YÅ, +?Å, Æ3 t, +?@0 @ C Ç È ÉÊ tn¾. 2-1. 2-1-1. Fig. 2 ² + ª!¾. SUS316, Ës cover plate dimension 544 mm(length)ì414 mm(width)ì60 mm(height)o, @(Íj Q R 2: 2.4 liter), +?@(Íj QR 2: 2 liter)0 +,Cº@ Ä 6 3C$% 89 :. +?@0 +, Cº@ 20.0 mm r Î$% 0.5 mm slit : $% CÏ8O +,( +, Cº@ Ðѳ slit D +?@ ui6 Cº8Ò ¾. ( +, Cº@, +?@, @ Ó 6 CÇ WD ÔÕÖ CØ(manifolds) ¾u, +?(X ( % Qj Ê iò ¾. @0 +?@ JKX +? JK ÙÚ¾. @ Û+( =Ü A N L8 Haldor TopsoeN }{L JK( ÝÞ: R-67-7H) Ð 5 mm % ob 1,874 g(4: 1 g/cm 3 ) ÙÚ¾. JK ³ ß : @àá JK% Ni âbã ^. ^.89:. +?@ Nikki-UniversalN Honeycomb(200 CPI) Pd ^. JK( ÝÞ: NHX) 1,146 g(4: 0.673 g/cm 3 ) +? @ ä6 ob ÙÚ¾. NLE +? JK åd Ñ 3 æï JK +? % NL8O NL 250-700 o Cu 2 Ar à 30,000-40,000 Hr 1. CÇ ç WD @0 +?@ è 28 1-j(Thermocouple Type K) ¾. 14 1 -j ( Ê éb 65 mm rî$% @0 +? @ rµ}(fig. 2 ê), ë 14 1-j @0 +?@ ì½ Ê 1/4 µ}(fig. 2 í) ê W 1-jX î6 ¾. &Ïu @0 +?@ Ô8u >Ö8 ( ç WD ( CØ ï = 1-j ¾. ðïñ % ò@8 1!} W Fig. 2. A drawing of plate reformer. 38 5 2000 10

721 Fig. 3. A schematic diagram of apparatus for plate reformer test. ³ W, Ió 1kW Le (1 ô¾$o,(1,u (( i Ø s1 (ceramic wool) %! ³ 1 ò@ Íj õ = :Ò ¾. 2-1-2. ¼ ½ Fig. 3 kwb ¼ W ½ ö. &'! X U ¼ ½ M, [ +, AB, 1,, Á æï [ ( Cø% 89 :. M, [ +, AB [ +? ž ( 3 e AB] = :Ò ( @àá, e Ñe tù, e úû ¾. 1 M, [ +, AB üe ( 3 500 o C }$% 1³ % AB C$% (1%X 1 ¾. Furnace 5kW Le LindbergN ý NL¾u, 1 (1% µ$% þ SUS316Ø Inconel 600 Ø ÿ9 NL¾. 1% NLE (Ø & M, 1L 6m, +, 1L 6m, A 1L 4m% ¾. QR0 +? QR =î WD B X U @, +?@, +, Cº@% E, 1 kw(220 V) Le (1 2, ( Ô [ >Ö >Ø ¾. ÁæÏ [ ( Cø reformate =C R W Ø ¾u, reformate [ +?( 180 cm Carbosphere(Alltech Co) column ôe gas chromatography(gow-mac Instrument Com. Series 580)% Cø¾$O, reformate [ +?( Ñe ç W wet gas meter(sinagawa Co.) ¾. 2-2. (1) JKX +? JK =? [?(30% / N 2 ) ( 10 l/min% Ïq 700 o C 6rl in-situ% - æï. (2) JK - æï Á, 1 ñ u N 2 X =Ü @, CO, CO 2 X? +, Cº@, A +?@ +Ã$% AB³ ðà. F AB ( & Ñe ¼t Ñe0 l 6 8 ST0 =??% j u, 1 ( Ö 700 o C 8Ò tù ( ôe (1%% (1. ô89 : ( 1 100 V(2.2A)-110 V(2.4A) - (³ Ñ. ž 1e!Ù³ ( 700 o C } $% Ñ.8Ò. ( 1r } 5 o C W Ñ.8q CÇ Ò % Òu QR - } (Temp. A )% /. (3) QR - } ( 6 Ñ.8q, @0 +?@ AB8? ST0 =?% l j³ Q R0 +? QR l 8Ò. QR @0 +? @ Vg Ò % ç³ ( 1r } 5 o C W Ñ.8q }} t P #$% ru, &F QR (Temp. B )% /. (4) +?@ >ÖE +?( &j% j% Öu, @ >ÖE reformate Ø 0 =C RÕ ñ Á j% >Ö. >Ö ( gas chromatography% Cø u,>ö ( Ë0 RE 3 Ë wet gas meterx c% ç. 3. 3-1. +? [ QR ( À Ñe [ t Table 10 U u, QR éë +?Å, ST-YÅ, Vg n tn ¾. À Ñe 80% +, L % -8 1kWB MCFC N³ 7 O, QR (1 110 V (2.4A) 100 V(2.2A) (³ CÇ Ò ¾. 3-1-1. CÇ n Fig. 4 110 V(2.4A) - (1 ( Á +? HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

722 Table 1. Operating condition for reformer test(load: 1 kw) Flow rate(l/min) Composition(mol%) Fuel 02.72 09.0 CO 00.55 01.8 CO 2 12.44 41.4 Air 14.37 47.8 Total 30.08 100.00 Feed CH 4 02.99 23.5 O 09.73 76.4 Total 12.72 100.00 330 mm. (+)$% l¾. 70 QR @ 300 mm ñ š78u Le 1kWB! # < = :. @ *(ê) T ( 1/4W(í) T! ª!¾. 70 @ 0 ( Ê = Ê$% Ó 6 Cº8! *? 8u QR! 9u :; < = :. +?@ T [ @ T 2C( ( )!¾. #$% +, ABe ³ +? QR d1 e QR ž 1e! 2u,  } X U6 Ñ. WD anode >(!t +,( ž # < = :. +?@ CÇ @ ÐkX i6 ( Ê$%!. u :$O ( = Ê$% ÑN y!u :. +? @ @0 PÏ QR3y +?Cº@ ³ Ó 6 Cº, -P$% +? QR +?@ - É\ Úî!³À. & @ -Q( W +?@ ÁQ @% 1-P p9 (? þ?!". Fig. 5-100 V(2.2A) CÇ!" #. @ T 100 mmx 200 mmn ( ) Í?! Fig. 4!³Ú 110 V(2.4A) Ðk! ª u, ÁQ Kk š!6 Ü(³ 370 mm " (+)$% l¾. 110 V(2.4A) Ðk(330 mm)! (+)$% l. @ #C$% l¾;!³u :. # @ ( HI QRÃ( $9.q QR! % É\ Úî8 # È #$% CÇ JK( Íj Fig. 4. Temperature distribution in plate reformer(load: 1 kw). (voltage: 110 V; space velocity: 1,060 hr 1, Combustion cat.; 407 hr 1, reforming cat.; T( o C)=Temp. A -Temp. B.;, : reforming chamber;, : combustion chamber; closed symbols: Temp. at shown in Fig. 2; open symbols : Temp. at shown in Fig. 2.) @0 @ QR - } (Temp. A ) CÇ, QR (Temp. B ) C Ç, &Ïu ( T) ( Ê éb ¾. Ô8 (? ST0 =?% j QR0 +? QR ª Á r Ð0³ @0 +?@ ( QR (Temp. B ) CÇ!³Ú #0 U }} Ñ. "¾. +?@ dæ +?1 @% -P8u QR =89 1=.( p9.u :;!³À. 1=.( p9ú Â} X QR CÇ% T º¾u ( Ê éb ¾. @ M, Ô À $% ] F, +?@ T -Q (-)! Ü(³ ÁQ (+)$% Ü(¾u. @ -Q 100 mmx 200 mmn BΟ þ?³ 107 mm. T( ( ) Í?!" Á, ÁQ Ÿ }³ 38 5 2000 10 Fig. 5. Temperature distribution in plate reformer(load: 1 kw). (voltage: 100 V; space velocity: 1,060 hr 1, combustion cat.; 407 hr 1, reforming cat.; T( o C)=Temp. A -Temp. B.;, : reforming chamber;, : combustion chamber; closed symbols: Temp. at shown in Fig. 2; open symbols : Temp. at shown in Fig. 2.)

Table 2. Test results of plate reformer: combustion reaction(load: 1 kw) Average combustion temp.( o C) 735 684 Space velocity(hr 1 ) 1,060 1,060 Conversion(%) >99.9 99.6 Fuel inlet temperature( o C) 577 572 Oxidant inlet temperature( o C) 546 546 Outlet temperature( o C) 677 618 Combustion temperature( o C) Maximum 764 700 Minimum 701 652 723 Table 3. Test results of plate reformer: reforming reaction(load: 1 kw) Average reforming temp.( o C) 707 649 Space velocity(hr 1 ) 407 407 CH 4 conversion(%) 99.2(98.0) 99.6(92.0) Dry composition of products(%) CH 4 00.2(0.4)0 00.4(1.9)0 78.1(77.2) 78.6(76.4) CO 13.0(12.5) 10.0(10.4) CO 2 08.7(09.9) 11.0(11.3) Total flow rate of dry outlet gases(l/min) 11.7 11.0 Inlet temperature( o C) 532 532 Outlet temperature( o C) 640 607 Reforming Maximum 749 692 Temperature( o C) Minimum 612 576 [( ): Equilibrium composition and conversion on methane steam reforming at average reformer temperature.] & Ñ.. ' < = :. 3-1-2. +?Å [ ST -YÅ ¼ +? QR 70X QR 70 ϳ Table 20 3. QR +?@0 @ CÇ ( 1e éb i6 Ñ.8$O & CÇ Íu, Í c &Ïu Ó % ¾. (1-110 V(2.4A)% Ñ. Ðk, +?@ Ó 735 o C¾$O =? š- +? QR p9(u, 100 V 684 o C Ó X 99.6% =? -YÅ!¾. +?@ +?E ( cathode% AB8 % =? G À% Ñ. v. 1)Å Íj% WD ( Ë +, +?v % +?@ Í? 700 o C}$% Ñ. v < = :. QR 70 Ó ST -YÅ0 Æ3 t ST-=Ü QR 0 ½ ³ ¾. (1 ( - 110 V(2.4A)X 100 V(2.2A) ST -YÅ 99% }$% @ Ó ( 707 o C 649 o C% þ?¾; * u ST-YÅ þ? + }j2$% 2u & y - YÅ!,. =? t t! Šr!¾$ COX CO 2 t½ - "5¾. 3-2. ABÑe( Ar Ã) À Ñe 1.5>(1.5 kw -œ ƺ }_8 (e)x 2>(2 kw -œ ƺ }_8 (e)% Ü( Arà Vg éë. @¼ =î¾. F (1 110 V(2.4A) - (¾. 3-2-1. CÇ n Fig. 60 7 1.5 kwx 2kW D_ Arà j +? @0 @ CÇ!¾. ( Ñe }Ø Fig. 6. Temperature distribution in plate reformer(load: 1.5 kw). (space velocity: 1,590 hr 1, Combustion cat.; 606 hr 1, reforming cat. votage: 110 V. T( o C)=Temp. A -Temp. B.;, : reforming chamber;, : combustion chamber; closed symbols: Temp. at shown in Fig. 2; open symbols : Temp. at shown in Fig. 2.) }} CÇ( Ñ. "] = :. Fig. 6 Ðk, @ T @ Ô% 172 mmw Í?!³u :. Fig. 4!³Ú 1kW Ðk 107 mm! @ ÁQ% l. þ? + 1kW ÐkX ÑN 125 o C¾. T } š!³ 370 mm. (+)$% Q-¾. Fig. 7 Ðk Vg( T) Í? á/ ÁQ% l³ @ * C W6 8u T } á/ š!d Ö 0 FŽ. T ( )!¾. & þ? + Íu 125 o C " Ñ.8. 70 M, Ñe Ü( éb QR 1³ JK É\ @ ÁQ% º!³À. & JK _ QR à Ar à 6 ÉÊ ±.,. ( = Ê CÇ Ar à Ü( éb êwx íw ( þ?¾. 70% QR3 Ñe Ü( éb @ ( Cº * C V$% Üj8u :; < = :. nÿ, 2 kw D_ Arà @ 2 JK( QR 1³¾ # 3] = :. +? @ CÇ 1kWB ÐkX U, 42$% BÎ Vg!. I +? QR Ar à }Ø +?@ - É \ Ó 6 p9.u :;!u :. & +?@ T Vg% < = :5, Ar Ã( Ü( éb +?@ @% -P 9 É\ @ QR É\ 6³ @ ÁQ ~ +?@ -Q% lu :. 3-2-2. +?Å [ ST -YÅ HWAHAK KONGHAK Vol. 38, No. 5, October, 2000

724 Table 5. Test results of plate reformer: reforming reaction(load: 1.5 kw and 2 kw) Space velocity(hr 1 ) 606 810 CH 4 conversion(%) 99.5(95.8) 98.3(93.8) Dry composition of products(%) CH 4 00.1(0.96) 00.5(01.4) 79.1(76.9) 78.5(76.7) CO 10.4(11.5) 10.9(10.9) CO 2 10.4(10.6) 10.1(11.0) Total flow rate of dry outlet gases(l/min) 18.4 22.3 Inlet temperature( o C) 559 587 Outlet temperature( o C) 669 660 Reforming temperature( o C) Maximum 727 701 Minimum 603 610 Average 676 660 [( ): Equilibrium composition and conversion on methane steam reforming at average reformer temperature.] Fig. 7. Temperature distribution in plate reformer(load: 2 kw). (space velocity: 2,120 hr 1, combustion cat.; 810 hr 1, reforming cat.; voltage: 110 V. T( o C)=Temp. A -Temp. B.;, : reforming chamber;, : combustion chamber; closed symbols: Temp. at shown in Fig. 2; open symbols : Temp. at shown in Fig. 2.) Table 4. Test results of plate reformer: reforming reaction(load: 1 kw) Average reforming temp.( o C) 707 649 Space velocity(hr 1 ) 407 407 CH 4 conversion(%) 99.2(98.0) 99.6(92.0) Dry composition of products(%) CH 4 0.2(0.4) 0.4(1.9) 78.1(77.2) 78.6(76.4) CO 13.0(12.5) 10.0(10.4) CO 2 8.7(9.9) 11.0(11.3) Total flow rate of dry outlet gases(l/min) 11.7 11.0 Inlet temperature( o C) 532 532 Outlet temperature( o C) 640 607 Reforming temperature( o C) Maximum 749 692 Minimum 612 576 [( ): Equilubrium composition and conversion on methane steam reforming at average reformer temperature.] ¼ 70 Table 4X 5. Table 4!" +? QR Ðk, =? -YÅ Ar à }Ø 99.9% } Ñ.8. F Ó +? Ar à 1590 hr 1 }R1.5 kwb 721 o C¾u Ar à 2120 h 1 }R 2kWB 717 o C¾. QR Ar à Ü( ³ ST -YÅ? þ? ÐÊ!¾. & Ar à 810 hr 1 }R 2kWB & 98% }7³ Ó -YÅ (93.8%) }$% ST QR¾. @¼ NL Le 1kWB +,-. À$% +? (X ( Ë 2 > } =L] = :;!³À. 4. kwb L¹Tº» +, -.L ªu N anode >(X ST L³ ¼ =î¾. @¼70 89 70, ;0 U 7- :. (1) % ST -YÅ 98% } Ñ.q 2kWB } =? ƺ] = :. F Ar à +? JK Ðk 2,120 hr 1 ¾u JK Ðk 810 hr 1 ¾. (2) 80% +, L % -8 MCFC N³ E +? (X ( t +? QR0 QR 1=. p9 } } -] = :. (3) ª % ª ( O % -1 q2 Ò E MCFC +, -. Kk 2. 1. Twigg, M. V.: Catalyst Handbook, Wolfe Publishing Ltd.(1989). 2. Lim, T. H., Lim, H. C. and Hong, S.: Chemical Industry and Technology, 16, 407(1998). 3. Hirata, T., Mizusawa, M., Koga, M. and Hatori, S.: IHI Engineering Review, 29, 53(1996). 38 5 2000 10