Digital logic signals

Similar documents
Digital logic signals

Simultaneous equations for circuit analysis

Active loads in amplifier circuits

Nonlinear opamp circuits

Parallel DC circuits

Algebraic substitution for electric circuits

Algebraic substitution for electric circuits

EE301 RESISTANCE AND OHM S LAW

Algebraic equation manipulation for electric circuits

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

Superposition theorem

Logarithms for analog circuits

Logarithms for analog circuits

Voltage, Current, and Resistance

Basic algebra and graphing for electric circuits

Specific resistance of conductors

Capacitance. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC metrology. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Decibel measurements

DC Circuits Analysis

Binary addition (1-bit) P Q Y = P + Q Comments Carry = Carry = Carry = Carry = 1 P Q

Kirchhoff s Laws. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Basic electromagnetism and electromagnetic induction

Lecture 7: Transistors and Amplifiers

Magnetism. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Homework 6 Solutions and Rubric

Materials Needed 1 D-Cell battery 6 6-inch pieces of wire 3 flashlight light bulbs 3 light bulb holders (optional)

PHYS225 Lecture 9. Electronic Circuits

They keep the voltage the same and use this circuit to measure the current. Variable resistor. Reading on ammeter in amps

(Refer Slide Time: 1:49)

INTRODUCTION TO ELECTRONICS

E40M. Binary Numbers. M. Horowitz, J. Plummer, R. Howe 1

AC "POLARITY" Complex numbers are useful for AC circuit analysis because they provide a

Circuit Analysis and Ohm s Law

ENGG 1203 Tutorial. Op Amps 10 Oct Learning Objectives. News. Ack.: MIT OCW Analyze circuits with ideal operational amplifiers

Combinational logic systems

Examination paper for TFY4185 Measurement Technique/ Måleteknikk

ENGG 1203 Tutorial_9 - Review. Boolean Algebra. Simplifying Logic Circuits. Combinational Logic. 1. Combinational & Sequential Logic

Name Date Time to Complete

Lab 08 Capacitors 2. Figure 2 Series RC circuit with SPDT switch to charge and discharge capacitor.

Review of Ohm's Law: The potential drop across a resistor is given by Ohm's Law: V= IR where I is the current and R is the resistance.

Digital Electronics Final Examination. Part A

Electrical Circuits. Winchester College Physics. makptb. c D. Common Time man. 3rd year Revision Test

1.1. Unit 1. Circuit Basics KVL, KCL, Ohm's Law LED Outputs Buttons/Switch Inputs

EXPERIMENT 12 OHM S LAW


Lecture 6: Time-Dependent Behaviour of Digital Circuits

STATEWIDE CAREER/TECHNICAL EDUCATION COURSE ARTICULATION REVIEW MINUTES

MA 3260 Lecture 10 - Boolean Algebras (cont.) Friday, October 19, 2018.

The Karnaugh Map COE 202. Digital Logic Design. Dr. Muhamed Mudawar King Fahd University of Petroleum and Minerals

RECALL?? Electricity concepts in Grade 9. Sources of electrical energy Current Voltage Resistance Power Circuits : Series and Parallel

Designing Information Devices and Systems II Fall 2017 Miki Lustig and Michel Maharbiz Homework 1. This homework is due September 5, 2017, at 11:59AM.

Ohm s Law. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Ohm s Law. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Electron Theory. Elements of an Atom

Design Engineering MEng EXAMINATIONS 2016

CSC258: Computer Organization. Digital Logic: Transistors and Gates

P1: Basics - Things you now know that you didn t know you knew (25 pts)

Diode. A diode is an semiconductor component that, in general, will pass current in only one direction

Exercise 1: Thermocouple Characteristics

Experiment 5 Voltage Divider Rule for Series Circuits

Calculus for electric circuits

R 2, R 3, and R 4 are in parallel, R T = R 1 + (R 2 //R 3 //R 4 ) + R 5. C-C Tsai

PN junctions. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

II/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC-2017

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Resistive Touchscreen - expanding the model

1.10 (a) Function of AND, OR, NOT, NAND & NOR Logic gates and their input/output.

Lab 4.1 Electrostatics and Practical Electricity

Chapter 1: Logic systems

Experiment 7: Magnitude comparators

DEPARTMENT OF COMPUTER ENGINEERING UNIVERSITY OF LAHORE

Unit 6 Current Electricity and Circuits

What to Add Next time you update?

Up/down binary counter with separate up/down clocks

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

ECE 220 Laboratory 4 Volt Meter, Comparators, and Timer

SC125MS. Data Sheet and Instruction Manual. ! Warning! Salem Controls Inc. Stepper Motor Driver. Last Updated 12/14/2004

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015

Chapter 02. Voltage and Current. Atomic Theory Review. Atomic Theory Review. Atomic Theory Review. Electrical Charge.

Read this before starting!

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

Atomic structure. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

HIGH SPEED-10 MBit/s LOGIC GATE OPTOCOUPLERS

INTEGRATED CIRCUITS. 74ALS30A 8-Input NAND gate. Product specification 1991 Feb 08 IC05 Data Handbook

Solutions For the problem setup, please refer to the student worksheet that follows this section.

STEP-UP 2011 Lesson Plan: Capacitance Brian Heglund Etowah High School Advisor: Phil First

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 4 DC BIASING BJTS (CONT D II )

Lab 2: Kirchoff s Laws

INSPIRE GK12 Lesson Plan

In this lecture, we will consider how to analyse an electrical circuit by applying KVL and KCL. As a result, we can predict the voltages and currents

Lab 3. Ohm s Law. Goals. Introduction

The principles of conservation of energy and charge apply to electrical circuits. Properties of magnetic fields apply in nature and technology.

Static electricity. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Analog Integrated Circuit Design Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Unit 2. ET Unit 2. Voltage, Current, and Resistance. Electronics Fundamentals Circuits, Devices and Applications - Floyd. Copyright 2009 Pearson

Industrial Electricity

of Digital Electronics

Georgia Institute of Technology School of Electrical and Computer Engineering. Midterm-1 Exam (Solution)

Transcription:

Digital logic signals This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/, or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. Resources and methods for learning about these subjects (list a few here, in preparation for your research): 1

Question 1 A rheostat (variable resistor) and a switch are both examples of electric components exhibiting different degrees of conductivity: Rheostat Switch Which of these devices would be considered discrete and which would be considered continuous in terms of their electrical conductivity? What do each of these words mean, and how might they apply to variables in electric s other than conductivity? file 02753 Answer 1 A continuous quantity is one that may be smoothly varied from one extreme value to another, while a discrete quantity is one that can only assume a finite (limited) number of distinct states. Here, the rheostat exhibits a continuously adjustable electrical continuity while the switch is discrete because it can only be conducting or non-conducting. Notes 1 Follow-up question: what is the difference between a continuous voltage versus a discrete voltage? The purpose of this question is to get students thinking in terms of digital quantities, which by their very nature are non-continuous. Since most electronics curricula focus on continuous quantities before discrete, it is good to have students reflect on the inherent simplicity of discrete ry and components after having studied continuous (analog) ry. 2

Question 2 Identify whether each of these quantities is continuous or discrete: Resistance of a rheostat: Resistance of a switch: Time represented by an analog clock: Time represented by a digital clock: Quantity of money in a billfold (bills and coins): Number of pebbles held in a hand: A person s weight, in pounds or kilograms: Voltage output by a comparator: Voltage output by an operational amplifier: Electrical conductivity of a thyristor: file 02754 Answer 2 Resistance of a rheostat: continuous Resistance of a switch: discrete Time represented by an analog clock: continuous Time represented by a digital clock: discrete Quantity of money in a billfold (bills and coins): discrete Number of pebbles held in a hand: discrete A person s weight, in pounds or kilograms: continuous Voltage output by a comparator: discrete Voltage output by an operational amplifier: continuous (if negative feedback is applied) Electrical conductivity of a thyristor: discrete Notes 2 The purpose of this question is to get students thinking in terms of digital quantities, which by their very nature are non-continuous. It is important to note that the concepts of continuous and discrete quantities are not limited to electronics, but are found in a variety of places in every-day life. It should be noted that some of these determinations are subjective. The voltage output by a comparator may be considered discrete on a large time scale, but there is a measurable transition from high voltage to low voltage in which the output voltage is somewhere between full saturation limits. 3

Question 3 Two computational aids of antiquity are the abacus and the slide rule. Which of these mathematical instruments would be considered analog and which would be considered digital? Explain your answer. file 02757 Answer 3 Notes 3 Slide rules are analog, while abaci (abacuses?) are digital. One challenge to answering this question is for (young) students to figure out what a slide rule is! 4

Question 4 Digital logic ry makes use of discrete voltage levels: each logic gate sub- inputs and outputs voltages that are either considered high or low. Define what both of these terms means in a digital logic powered by 5 volts DC. file 02755 Answer 4 Notes 4 High = (nearly) 5 volts between the gate input/output and ground. Low = (nearly) 0 volts between the gate input/output and ground. This is a very simple concept, but worthwhile to cover in its own question just to be sure no students misunderstand when the concept is later applied. 5

Question 5 In digital electronic ry, binary bit values of 0 or 1 are represented in the form of voltages: low and high logic states, respectively. Suppose you need to manually input a logic state to one of the pins of a logic. In the following illustration, the logic (shown as an indistinct, shaded rectangle) is already supplied with DC power ( and ground), and its output is indicated by an LED. All it requires is an input from you: Input Logic Output Complete this schematic diagram by including a switch in the drawing, such that in each of its two positions, a definite low or high logic state will be sensed by the s input terminal. file 01251 Answer 5 Input Logic Output Notes 5 While this may seem to be a very elementary question, it is important to get students to realize just what logic states are, in their physical representations. Too often I read textbooks and other digital logic tutorials that leap the student immediately into a boolean analysis of gate s, with everything operating off of abstract 0 s and 1 s (or low s and high s ), without properly introducing the electrical nature of these states to students. Remember, your students should be quite familiar with electrical s, including analog transistor and op-amp s, by now, so beginning their study of gates from an electrical perspective should be natural for them. Only after they realize how logic states are represented by voltages do I recommend discussing gates and truth tables. 6

Question 6 Determine the logic levels (either high or low ) at each of the test points in this with the toggle switch in the open position, as well as the status of the transistor and LED: V CC V CC V CC TP2 TP4 TP1 TP3 V TP1 = (high or low?) V TP2 = (high or low?) V TP3 = (high or low?) V TP4 = (high or low?) Transistor = (on or off?) LED = (on or off?) file 02756 Answer 6 V TP1 = high V TP2 = high V TP3 = low V TP4 = high Transistor = off LED = off Notes 6 Follow-up question: show how you would calculate reasonable values for the two resistors in this. This question applies the concepts of high and low voltage signals to a simple transistor, reviewing transistor operation in the process. 7

Question 7 If we need to produce a discrete logic signal ( high or low ) from a mechanical switch, the most direct way of doing so is to use a single-pole, double-throw switch (SPDT) like this: High input Low In the High position, the switch directly connects the signal line to, ensuring a high logic state; in the Low position, the switch directly connects the signal line to ground, ensuring a low logic state. What could be simpler? However, often a SPDT switch is not feasible and we must use a SPST (single-pole, single-throw) switch instead: Creates a "high" logic state when closed Creates a "low" logic state when closed A problem often arises with such configurations because in the open position there is neither a connection to nor ground. In other words, these two SPST configurations produce the exact same indeterminate logic state ( floating ) when their respective switches are open. To remedy this, resistors are often added to such s: Low High R pullup High Low R pulldown Explain what functions the pulldown and pullup resistors serve, and also why they are referred to by those names. file 03001 8

Answer 7 The pulldown and pullup resistors do exactly what their names imply: they pull the logic state of the wire in the direction opposite what the switch does when closed. Follow-up question: to better understand the purpose of these resistors, examine the following s without pulldown and pullup resistors to determine what the logic states of the wires will be in both switch positions. Then, add either pulldown or pullup resistors and re-examine the s: Challenge question: how does one calculate the proper resistance (in ohms) for a pulldown or pullup resistor? Will any size work, or is there such a thing as too large or too small? High Load Low Load Notes 7 If students do not understand the purpose of these resistors after reading the question and researching their texts, they should when they see the follow-up question. Discuss this question with your students, for the concept of pulldown and pullup resistors is one that confuses some students. 9

Question 8 A common mistake made by students new to digital s is to misplace the pullup or pulldown resistors in schematic diagrams, and also in the s they build. Study the following schematics and determine whether the resistor in each one is a properly-placed pullup or pulldown resistor, or if it is improperly placed: file 03181 10

Answer 8 Improper Pullup resistor Pulldown resistor Improper Improper Pullup resistor Notes 8 Follow-up question: specifically identify what would be wrong with each of the improper s. This is one concept I have found many students have difficulty grasping, essentially because it involves the determination of a voltage drop between two points (the arrow wire and ground). It is a spatialrelations problem, similar to Kirchhoff s Voltage Law problems where students need to figure out how much voltage is between two specified points given voltage drops across several other pairs of points. Spend time with your students discussing these s, because several of your students will probably not understand this concept the first, second, or even third time through. I strongly recommend students take the approach of a thought experiment in determining the efficacy of each shown here: analyze the output voltage (logic state) for each of the switch s two positions. This simple approach usually helps clarify what each does and why the improper s do not work. 11

Question 9 A logic probe is a very useful tool for working with digital logic s. It indicates high and low logic states by means of LED s, giving visual indication only if the voltage levels are appropriate for each state. Here is a schematic diagram for a logic probe built using comparators. Each comparator has a threshold adjustment potentiometer, so that it may be set to indicate its respective logic state only if the signal voltage is well within the range stated by the logic manufacturer: To Logic probe TP1 + 3 "High" 1 / 4 LM339 Test probe "Low" + 1 / 4 LM339 TP2 12 To Gnd Explain how this functions. file 02758 Answer 9 I ll let you and your classmates figure out how this functions! Follow-up question #1: explain how you could use a voltmeter as a logic probe to do troubleshooting in a digital. Follow-up question #2: write a formula for calculating appropriate current-limiting resistor sizes for the two LEDs in this, given the value of and the LED forward voltage and current values. Notes 9 It is important for students to understand that there is a certain range of voltage between a guaranteed high state and a guaranteed low state that is indeterminate, and that this logic probe is designed to indicate this range of voltage by turning neither LED on. If time permits, discuss some of the benefits and drawbacks to using a voltmeter as a logic probe (especially a digital voltmeter where the display update time may be relatively long). 12