RT9403. I 2 C Programmable High Precision Reference Voltage Generator. Features. General Description. Ordering Information.

Similar documents
RT9166B. 600mA, Ultra-Fast Transient Response Linear Regulator. General Description. Features. Ordering Information. Applications. Pin Configurations

RP mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT9174. Triple Linear Regulator Controllers. Features. General Description. Applications. Ordering Information RT9174. Pin Configurations

RT9166/A. 300/600mA, Ultra-Fast Transient Response LDO Regulator. Features. General Description. Applications

RT9166/A. 300/600mA, Ultra-Fast Transient Response LDO Regulator. General Description. Features. Applications. Ordering Information

RT9166/A. 300/600mA, Ultra-Fast Transient Response LDO Regulator. General Description. Features. Applications. Ordering Information

RT9184A. Dual, Ultra-Fast Transient Response, 500mA LDO Regulator. General Description. Features. Pin Configuration. Applications

CM1117F 1A LOW DROPOUT VOLTAGE REGULATOR

5-V Low Drop Fixed Voltage Regulator TLE

SGM802 Low-Power, SC70/SOT µp Reset Circuit with Capacitor-Adjustable Reset Timeout Delay

SGM48000/1/2 High Speed, Dual Power MOSFET Drivers

TLE Data Sheet. Automotive Power. Low Dropout Fixed Voltage Regulator TLE42644G. Rev. 1.1,

Low Voltage 2-1 Mux, Level Translator ADG3232

General Description V IN C IN VOUT 1 VIN GND 2 VIN 3

FPF1003A / FPF1004 IntelliMAX Advanced Load Management Products

SGM800 Low-Power, SOT µp Reset Circuit with Capacitor-Adjustable Reset Timeout Delay

IFX8117. Data Sheet. Standard Power. 1A Low-Dropout Linear Voltage Regulator IFX8117MEV IFX8117MEV33 IFX8117MEV50. Rev. 1.

TLE42344G. Data Sheet. Automotive Power. Low Dropout Linear Voltage Regulator. Rev. 1.0,

AME. High PSRR, Low Noise, 600mA CMOS Regulator AME8855. n General Description. n Typical Application. n Features. n Functional Block Diagram

Understanding Thermal Characteristic of SOT-223 Package

5-V Low Drop Fixed Voltage Regulator TLE 4275

Data Sheet, Rev. 1.1, February 2008 TLE4294GV50. Low Drop Out Voltage Regulator. Automotive Power

AME 1.5A CMOS LDO AME8815. n General Description. n Functional Block Diagram. n Features. n Typical Application. n Applications

DESCRIPTIO. LTC SMBus/I 2 C Accelerator* FEATURES APPLICATIO S TYPICAL APPLICATIO

SERIALLY PROGRAMMABLE CLOCK SOURCE. Features

PRODUCTION DATA SHEET

GM4275 GM4275 V2.03. Features. Description. Applications. Block Diagram WIDE INPUT RANGE 5V LOW DROPOUT REGULATOR WITH RESET FLAG

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

FAN ma, Low-IQ, Low-Noise, LDO Regulator

PART TEMP RANGE PIN-PACKAGE

5-V Low Drop Voltage Regulator TLE 4290

1A Ultra Low Dropout Linear Regulator

3-TERMINAL POSITIVE LINEAR REGULATOR General Description. Features. Applications

1.2 V to 5.5 V, Slew Rate Controlled Load Switch in TSOT23-6

SGM48753 CMOS Analog Switch

AME. High PSRR, Low Noise, 600mA CMOS Regulator AME8855. General Description. Typical Application. Features. Functional Block Diagram.

SGM nA, Single Rail-to-Rail I/O Operational Amplifier

MAX14753 V DD INA0 INA1 INA2 INA3 OUT INB0 INB1 INB2 INB3

PI4GTL bit bidirectional low voltage translator


Alfa-MOS Technology. AF V / 50mA Linear LED Driver

AME. High PSRR, Low Noise, 300mA CMOS Regulator AME8853. n General Description. n Typical Application. n Features. n Functional Block Diagram

MCP9700/9700A MCP9701/9701A


CM1117 1A LOW DROPOUT VOLTAGE REGULATOR

DS0026 Dual High-Speed MOS Driver

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

5 V/10 V Low Drop Voltage Regulator TLE 4266

PT5108. High-PSRR 500mA LDO GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATIONS. Ripple Rejection vs Frequency. Ripple Rejection (db)

AME. µprocessor Supervisory AME8501. n General Description. n Application. n Typical Application. n Features. n Functional Block Diagram

S-1000 Series ULTRA-SMALL PACKAGE HIGH-PRECISION VOLTAGE DETECTOR. Features. Applications. Packages. Seiko Instruments Inc. 1.

Maxim Integrated Products 1

SGM nA, Non-Unity Gain, Dual Rail-to-Rail Input/Output Operational Amplifier

Low Drop Voltage Regulator TLE 4295

Features. Pinout. PART NUMBER PART MARKING TAPE & REEL PKG PKG. DWG. # EL7156CNZ (Note) (No longer available, recommended replacement: EL7156CSZ)

AME, Inc. 5A Low Dropout AME1084 Positive Voltage Regulator General Description Functional Block Diagram Input Current Limiting

SGM nA, Dual Rail-to-Rail I/O Operational Amplifier

OBSOLETE - PART DISCONTINUED

5-V Low Drop Fixed Voltage Regulator TLE 4279

AOZ1336DI. Single Channel Smart Load Switch. Features. General Description. Applications. Typical Application AOZ1336DI

SC1301A/B. 2A High Speed Low-Side MOSFET Driver in SOT-23 POWER MANAGEMENT. Applications. Typical Application Circuit

UNISONIC TECHNOLOGIES CO., LTD L16B45 Preliminary CMOS IC

Dual Low-Drop Voltage Regulator TLE 4470

28V, 100mA, Low-Quiescent-Current LDO with Reset and Power-Fail Input/Output

Data Sheet, Rev. 1.5, Sept TLE4209G. Automotive Power

Low Drop Voltage Regulator TLE 4296

5.0 V 256 K 16 CMOS SRAM

V DET1(S) to V DET3(S) = 10.5 V to 21.5 V (0.1 V step)

Preliminary Datasheet

SGM nA, Non-Unity Gain, Quad Rail-to-Rail Input/Output Operational Amplifier

S-5841 Series TEMPERATURE SWITCH IC (THERMOSTAT IC) Features. Applications. Packages. Seiko Instruments Inc. 1.

3.3 V 256 K 16 CMOS SRAM

SY10/100EL11V. General Description. Precision Edge. Features. Pin Names. 5V/3.3V 1:2 Differential Fanout Buffer. Revision 10.0

SGM7SZ00 Small Logic Two-Input NAND Gate

LE Ω SECOND SOURCE BLEED RESISTORS PART. Maxim Integrated Products 1 MAX4800A MAX4802A. TQFP 7mm x 7mm ; Rev 0; 5/08 N.C. (RGND) TOP VIEW GND

AZ1117C. Description. Features. Applications. Pin Assignments. A Product Line of. Diodes Incorporated LOW DROPOUT LINEAR REGULATOR AZ1117C

Low Drop Voltage Regulator TLE

TC ma, Tiny CMOS LDO With Shutdown. General Description. Features. Applications. Package Types SOT-23 SC-70

5-V Low Drop Fixed Voltage Regulator TLE

LP mA Linear Voltage Regulator for Digital Applications

SC1462. High Output Current Charge Pump Doubler. POWER MANAGEMENT Description. Features. Applications. Typical Application Circuit

FPF2498 Adjustable OVP with 28 V Input OVT Load Switch

A I DM. W/ C V GS Gate-to-Source Voltage ± 16. Thermal Resistance Symbol Parameter Typ. Max. Units

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting

Switched-Capacitor Voltage Doublers

*1. Attention should be paid to the power dissipation of the package when the output current is large.

MAS Output LDO Voltage Regulator IC

PART. Maxim Integrated Products 1

2-input AND gate with open-drain output. The 74AHC1G09 is a high-speed Si-gate CMOS device.

60 V, 0.3 A N-channel Trench MOSFET

Dual 3-channel analog multiplexer/demultiplexer with supplementary switches

FPF1007-FPF1009 IntelliMAX Advanced Load Products

1μA Ultra-Tiny Shunt Voltage Reference

INTEGRATED CIRCUITS. PCK2002P 533 MHz PCI-X clock buffer. Product data Supersedes data of 2001 May Dec 13. Philips Semiconductors

Ultra-Low-Noise, High PSRR, Low-Dropout, 300mA Linear Regulator VOUT V OUT GND

SGM8707 Micro-Power, CMOS Input, RRIO, 1.4V, Push-Pull Output Comparator

Dual Low Dropout Voltage Regulator

Low Input Voltage, Low-Dropout 200mA Linear Regulator

DISCRETE SEMICONDUCTORS DATA SHEET. BLF245 VHF power MOS transistor

DATASHEET. Features. Applications EL7155. High Performance Pin Driver. FN7279 Rev 3.00 Page 1 of 10. October 24, FN7279 Rev 3.

Transcription:

I 2 C Programmable High Precision Reference Voltage Generator General Description The RT9403 is a high precision reference voltage generating console consisting of three I 2 C programmable DACs. Each DAC output voltage is controlled by 7 digital bits that are programmed by the I 2 C interface. The RT9403 features adjustable output slew rate, low switching glitch and adequate driving capability. The RT9403 is available in SOT-23-8 package. Ordering Information RT9403 Package Type V8 : SOT-23-8 Lead Plating System G : Green (Halogen Free and Pb Free) Note : Richtek products are : RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020. Suitable for use in SnPb or Pb-free soldering processes. Features 5V Supply Voltage Provide 3 Precise Voltage DACs RT9403 I 2 C Programmable 128-Steps Output Voltage Output Range and Resolution DAC1 & DAC2 : 0.6V to 2.1875V, 12.5mV/Step DAC3 : 1.2V to 3.375V, 12.5mV (or 25mV)/Step for Different Segments High Output Accuracy Up to 1% (V OUT 1V) Low External Component Count Small Footprint SOT-23-8 Package RoHS Compliant and Halogen Free Applications Power Supply Adjustment for Motherboard and Graphic Card Low Voltage, High Accuracy Reference Voltage Circuit Pin Configurations (TOP VIEW) Marking Information For marking information, contact our sales representative directly or through a Richtek distributor located in your area. Typical Application Circuit S3/EN 8 VDD GND VOUT3 7 2 VOUT2 VOUT1 6 5 3 4 SCL SDA SOT-23-8 V IN1 Data Bus Line Clock Bus Line 3.3V/5V 5V S3/EN C IN 1 4 3 8 VDD SDA SCL S3/EN RT9403 VOUT1 VOUT2 VOUT3 GND 5 6 7 2 C OUT1 C OUT2 C OUT3 REFIN REFIN REFIN DC/DC Converter V IN2 DC/DC Converter V IN3 DC/DC Converter V1 V2 V3 1

Functional Pin Description Pin No. Pin Name Pin Function 1 VDD Power Supply Input. Default connected to 5V. 2 GND Ground. 3 SCL Serial Clock Input. This pin receives I 2 C serial bus clock signal. 4 SDA Serial Data Input. This pin is input or output of I 2 C serial bus data signal. 5 VOUT1 I 2 C Programmed VTT Output Voltage. Default = 1.1V 6 VOUT2 I 2 C Programmed PCH_CORE Output Voltage. Default = 1.05V 7 VOUT3 I 2 C Programmed DDR Output Voltage. Default = 1.5V 8 S3/EN ACPI S3 State/Enable. Active low for entering ACPI S3 State(suspend to RAM), VOUT1/VOUT2 are internally pulled down to zero, only VOUT3 is active. Function Block Diagram VDD POR DAC1 7 bit VOUT1 I 2 C Interface S3/EN SCL SDA Control and Monitoring Unit DAC2 7 bit VOUT2 GND DAC3 7 bit VOUT3 2

Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 0 0 0 0 0 0 2.1875 0 0 0 0 0 0 1 2.1750 0 0 0 0 0 1 0 2.1625 0 0 0 0 0 1 1 2.1500 0 0 0 0 1 0 0 2.1375 0 0 0 0 1 0 1 2.1250 0 0 0 0 1 1 0 2.1125 0 0 0 0 1 1 1 2.1000 0 0 0 1 0 0 0 2.0875 0 0 0 1 0 0 1 2.0750 0 0 0 1 0 1 0 2.0625 0 0 0 1 0 1 1 2.0500 0 0 0 1 1 0 0 2.0375 0 0 0 1 1 0 1 2.0250 0 0 0 1 1 1 0 2.0125 0 0 0 1 1 1 1 2.0000 0 0 1 0 0 0 0 1.9875 0 0 1 0 0 0 1 1.9750 0 0 1 0 0 1 0 1.9625 0 0 1 0 0 1 1 1.9500 0 0 1 0 1 0 0 1.9375 0 0 1 0 1 0 1 1.9250 0 0 1 0 1 1 0 1.9125 0 0 1 0 1 1 1 1.9000 0 0 1 1 0 0 0 1.8875 0 0 1 1 0 0 1 1.8750 0 0 1 1 0 1 0 1.8625 0 0 1 1 0 1 1 1.8500 0 0 1 1 1 0 0 1.8375 0 0 1 1 1 0 1 1.8250 0 0 1 1 1 1 0 1.8125 0 0 1 1 1 1 1 1.8000 0 1 0 0 0 0 0 1.7875 0 1 0 0 0 0 1 1.7750 0 1 0 0 0 1 0 1.7625 0 1 0 0 0 1 1 1.7500 0 1 0 0 1 0 0 1.7375 0 1 0 0 1 0 1 1.7250 0 1 0 0 1 1 0 1.7125 0 1 0 0 1 1 1 1.7000 To be continued 3

Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 1 0 1 0 0 0 1.6875 0 1 0 1 0 0 1 1.6750 0 1 0 1 0 1 0 1.6625 0 1 0 1 0 1 1 1.6500 0 1 0 1 1 0 0 1.6375 0 1 0 1 1 0 1 1.6250 0 1 0 1 1 1 0 1.6125 0 1 0 1 1 1 1 1.6000 0 1 1 0 0 0 0 1.5875 0 1 1 0 0 0 1 1.5750 0 1 1 0 0 1 0 1.5625 0 1 1 0 0 1 1 1.5500 0 1 1 0 1 0 0 1.5375 0 1 1 0 1 0 1 1.5250 0 1 1 0 1 1 0 1.5125 0 1 1 0 1 1 1 1.5000 0 1 1 1 0 0 0 1.4875 0 1 1 1 0 0 1 1.4750 0 1 1 1 0 1 0 1.4625 0 1 1 1 0 1 1 1.4500 0 1 1 1 1 0 0 1.4375 0 1 1 1 1 0 1 1.4250 0 1 1 1 1 1 0 1.4125 0 1 1 1 1 1 1 1.4000 1 0 0 0 0 0 0 1.3875 1 0 0 0 0 0 1 1.3750 1 0 0 0 0 1 0 1.3625 1 0 0 0 0 1 1 1.3500 1 0 0 0 1 0 0 1.3375 1 0 0 0 1 0 1 1.3250 1 0 0 0 1 1 0 1.3125 1 0 0 0 1 1 1 1.3000 1 0 0 1 0 0 0 1.2875 1 0 0 1 0 0 1 1.2750 1 0 0 1 0 1 0 1.2625 1 0 0 1 0 1 1 1.2500 1 0 0 1 1 0 0 1.2375 1 0 0 1 1 0 1 1.2250 1 0 0 1 1 1 0 1.2125 1 0 0 1 1 1 1 1.2000 To be continued 4

Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 0 1 0 0 0 0 1.1875 1 0 1 0 0 0 1 1.1750 1 0 1 0 0 1 0 1.1625 1 0 1 0 0 1 1 1.1500 1 0 1 0 1 0 0 1.1375 1 0 1 0 1 0 1 1.1250 1 0 1 0 1 1 0 1.1125 1 0 1 0 1 1 1 1.1000 1 0 1 1 0 0 0 1.0875 1 0 1 1 0 0 1 1.0750 1 0 1 1 0 1 0 1.0625 1 0 1 1 0 1 1 1.0500 1 0 1 1 1 0 0 1.0375 1 0 1 1 1 0 1 1.0250 1 0 1 1 1 1 0 1.0125 1 0 1 1 1 1 1 1.0000 1 1 0 0 0 0 0 0.9875 1 1 0 0 0 0 1 0.9750 1 1 0 0 0 1 0 0.9625 1 1 0 0 0 1 1 0.9500 1 1 0 0 1 0 0 0.9375 1 1 0 0 1 0 1 0.9250 1 1 0 0 1 1 0 0.9125 1 1 0 0 1 1 1 0.9000 1 1 0 1 0 0 0 0.8875 1 1 0 1 0 0 1 0.8750 1 1 0 1 0 1 0 0.8625 1 1 0 1 0 1 1 0.8500 1 1 0 1 1 0 0 0.8375 1 1 0 1 1 0 1 0.8250 1 1 0 1 1 1 0 0.8125 1 1 0 1 1 1 1 0.8000 1 1 1 0 0 0 0 0.7875 1 1 1 0 0 0 1 0.7750 1 1 1 0 0 1 0 0.7625 1 1 1 0 0 1 1 0.7500 1 1 1 0 1 0 0 0.7375 1 1 1 0 1 0 1 0.7250 1 1 1 0 1 1 0 0.7125 1 1 1 0 1 1 1 0.7000 To be continued 5

Table 1. DAC1/DAC2 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 1 1 1 0 0 0 0.6875 1 1 1 1 0 0 1 0.6750 1 1 1 1 0 1 0 0.6625 1 1 1 1 0 1 1 0.6500 1 1 1 1 1 0 0 0.6375 1 1 1 1 1 0 1 0.6250 1 1 1 1 1 1 0 0.6125 1 1 1 1 1 1 1 0.6000 Note: (1) 0 : Pull Low to GND (2) 1 : Open 6

Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 0 0 0 0 0 0 3.3750 0 0 0 0 0 0 1 3.3500 0 0 0 0 0 1 0 3.3250 0 0 0 0 0 1 1 3.3000 0 0 0 0 1 0 0 3.2750 0 0 0 0 1 0 1 3.2500 0 0 0 0 1 1 0 3.2250 0 0 0 0 1 1 1 3.2000 0 0 0 1 0 0 0 3.1750 0 0 0 1 0 0 1 3.1500 0 0 0 1 0 1 0 3.1250 0 0 0 1 0 1 1 3.1000 0 0 0 1 1 0 0 3.0750 0 0 0 1 1 0 1 3.0500 0 0 0 1 1 1 0 3.0250 0 0 0 1 1 1 1 3.0000 0 0 1 0 0 0 0 2.9750 0 0 1 0 0 0 1 2.9500 0 0 1 0 0 1 0 2.9250 0 0 1 0 0 1 1 2.9000 0 0 1 0 1 0 0 2.8750 0 0 1 0 1 0 1 2.8500 0 0 1 0 1 1 0 2.8250 0 0 1 0 1 1 1 2.8000 0 0 1 1 0 0 0 2.7750 0 0 1 1 0 0 1 2.7500 0 0 1 1 0 1 0 2.7250 0 0 1 1 0 1 1 2.7000 0 0 1 1 1 0 0 2.6750 0 0 1 1 1 0 1 2.6500 0 0 1 1 1 1 0 2.6250 0 0 1 1 1 1 1 2.6000 0 1 0 0 0 0 0 2.5750 0 1 0 0 0 0 1 2.5500 0 1 0 0 0 1 0 2.5250 0 1 0 0 0 1 1 2.5000 0 1 0 0 1 0 0 2.4750 0 1 0 0 1 0 1 2.4500 0 1 0 0 1 1 0 2.4250 0 1 0 0 1 1 1 2.4000 To be continued 7

Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 0 1 0 1 0 0 0 2.3750 0 1 0 1 0 0 1 2.3625 0 1 0 1 0 1 0 2.3500 0 1 0 1 0 1 1 2.3375 0 1 0 1 1 0 0 2.3250 0 1 0 1 1 0 1 2.3125 0 1 0 1 1 1 0 2.3000 0 1 0 1 1 1 1 2.2875 0 1 1 0 0 0 0 2.2750 0 1 1 0 0 0 1 2.2625 0 1 1 0 0 1 0 2.2500 0 1 1 0 0 1 1 2.2375 0 1 1 0 1 0 0 2.2250 0 1 1 0 1 0 1 2.2125 0 1 1 0 1 1 0 2.2000 0 1 1 0 1 1 1 2.1875 0 1 1 1 0 0 0 2.1750 0 1 1 1 0 0 1 2.1625 0 1 1 1 0 1 0 2.1500 0 1 1 1 0 1 1 2.1375 0 1 1 1 1 0 0 2.1250 0 1 1 1 1 0 1 2.1125 0 1 1 1 1 1 0 2.1000 0 1 1 1 1 1 1 2.0875 1 0 0 0 0 0 0 2.0750 1 0 0 0 0 0 1 2.0625 1 0 0 0 0 1 0 2.0500 1 0 0 0 0 1 1 2.0375 1 0 0 0 1 0 0 2.0250 1 0 0 0 1 0 1 2.0125 1 0 0 0 1 1 0 2.0000 1 0 0 0 1 1 1 1.9875 1 0 0 1 0 0 0 1.9750 1 0 0 1 0 0 1 1.9625 1 0 0 1 0 1 0 1.9500 1 0 0 1 0 1 1 1.9375 1 0 0 1 1 0 0 1.9250 1 0 0 1 1 0 1 1.9125 1 0 0 1 1 1 0 1.9000 1 0 0 1 1 1 1 1.8875 To be continued 8

Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 0 1 0 0 0 0 1.8750 1 0 1 0 0 0 1 1.8625 1 0 1 0 0 1 0 1.8500 1 0 1 0 0 1 1 1.8375 1 0 1 0 1 0 0 1.8250 1 0 1 0 1 0 1 1.8125 1 0 1 0 1 1 0 1.8000 1 0 1 0 1 1 1 1.7875 1 0 1 1 0 0 0 1.7750 1 0 1 1 0 0 1 1.7625 1 0 1 1 0 1 0 1.7500 1 0 1 1 0 1 1 1.7375 1 0 1 1 1 0 0 1.7250 1 0 1 1 1 0 1 1.7125 1 0 1 1 1 1 0 1.7000 1 0 1 1 1 1 1 1.6875 1 1 0 0 0 0 0 1.6750 1 1 0 0 0 0 1 1.6625 1 1 0 0 0 1 0 1.6500 1 1 0 0 0 1 1 1.6375 1 1 0 0 1 0 0 1.6250 1 1 0 0 1 0 1 1.6125 1 1 0 0 1 1 0 1.6000 1 1 0 0 1 1 1 1.5875 1 1 0 1 0 0 0 1.5750 1 1 0 1 0 0 1 1.5625 1 1 0 1 0 1 0 1.5500 1 1 0 1 0 1 1 1.5375 1 1 0 1 1 0 0 1.5250 1 1 0 1 1 0 1 1.5125 1 1 0 1 1 1 0 1.5000 1 1 0 1 1 1 1 1.4875 1 1 1 0 0 0 0 1.4750 1 1 1 0 0 0 1 1.4625 1 1 1 0 0 1 0 1.4500 1 1 1 0 0 1 1 1.4375 1 1 1 0 1 0 0 1.4250 1 1 1 0 1 0 1 1.4125 1 1 1 0 1 1 0 1.4000 1 1 1 0 1 1 1 1.3875 To be continued 9

Table 2. DAC3 Serial Code Table SVID6 SVID5 SVID4 SVID3 SVID2 SVID1 SVID0 Output Voltage ( V ) 1 1 1 1 0 0 0 1.3750 1 1 1 1 0 0 1 1.3500 1 1 1 1 0 1 0 1.3250 1 1 1 1 0 1 1 1.3000 1 1 1 1 1 0 0 1.2750 1 1 1 1 1 0 1 1.2500 1 1 1 1 1 1 0 1.2250 1 1 1 1 1 1 1 1.2000 Note : (1) VOUT = 1.2V to 1.375V and VOUT = 2.375V to 3.375V, Step = 25mV. (2) VOUT = 1.375V to 2.375V, Step = 12.5mV. 10

Absolute Maximum Ratings (Note 1) Supply Voltage, V DD ------------------------------------------------------------------------------------------------------ 6.5V Input Voltage, SCL, SDA, S3/EN -------------------------------------------------------------------------------------- 6.5V Output Voltage, V OUT1, V OUT2, V OUT3 --------------------------------------------------------------------------------------------------------------------- 4V Power Dissipation, P D @ T A = 25 C SOT-23-8 -------------------------------------------------------------------------------------------------------------------- 0.4W Recommended Operating Conditions (Note 4) Electrical Characteristics RT9403 Package Thermal Resistance (Note 2) SOT-23-8, θ JA --------------------------------------------------------------------------------------------------------------- 250 C/W Junction Temperature ----------------------------------------------------------------------------------------------------- 150 C Lead Temperature (Soldering, 10 sec.) ------------------------------------------------------------------------------- 260 C Storage Temperature Range -------------------------------------------------------------------------------------------- 65 C to 150 C ESD Susceptibility (Note 3) HBM (Human Body Mode) ---------------------------------------------------------------------------------------------- 2kV MM (Machine Mode) ------------------------------------------------------------------------------------------------------ 200V Supply Voltage, V DD ------------------------------------------------------------------------------------------------------ 5V ± 5% Junction Temperature Range -------------------------------------------------------------------------------------------- 40 C to 125 C Ambient Temperature Range -------------------------------------------------------------------------------------------- 40 C to 85 C (V DD = 5V, T A = 25 C, unless otherwise specification) Parameter Symbol Test Conditions Min Typ Max Unit Supply Input Voltage V DD 4.75 5 5.25 V POR Threshold V POR_TH 4 4.25 4.4 V POR Hysteresis V POR_HYS -- 250 -- mv Supply Input Current I VDD -- 0.65 -- ma V REF & DAC DAC Output Accuracy V OUT 1V, I OUT = 0A 1 -- +1 % Under Voltage Lockout Hysteresis V OUT < 1V, I OUT = 0A 10 -- +10 mv Output Buffer DC Gain Capacitive Load Only -- 70 -- db Bandwidth GBW C L = 1nF -- 1.64 -- MHz Slew Rate SR C L = 0.1μF -- 11 -- mv/μs Impedance R OUT -- 90 -- Ω Output Driving Capability I OUT -- 1.1 -- ma Loading Effect Regulation 0.002 -- 0.002 %/μa I 2 C Signal Input High Threshold V IH 2.4 -- -- V Input Low Threshold V IL -- -- 0.8 V SCL Clock Speed -- -- 400 k/bit/s EN High Threshold V EN_H V DD 0.3 -- -- V EN Low Threshold V EN_L -- -- 0.3 V 11

Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability. Note 2. θ JA is measured in the natural convection at T A = 25 C on a low effective single layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Note 3. Devices are ESD sensitive. Handling precaution is recommended. Note 4. The device is not guaranteed to function outside its operating conditions. 12

Typical Operating Characteristics 1.112 V OUT1 vs. Temperature 1.062 V OUT2 vs. Temperature 1.110 1.060 1.108 1.058 1.106 1.056 VOUT1 (V) 1.104 1.102 1.100 1.098 VOUT2 (V) 1.054 1.052 1.050 1.048 1.096 1.046 1.094 1.044 1.092 VDD = 5V, S3/EN = H, SDA = SCL = H 1.090-50 -25 0 25 50 75 100 125 Temperature ( C) 1.042 VDD = 5V. S3/EN = H, SDA = SCL = H 1.040-50 -25 0 25 50 75 100 125 Temperature ( C) 1.514 V OUT3 vs. Temperature Star Up from V DD 1.512 1.510 1.508 VDD (5V/Div) VOUT3 (V) 1.506 1.504 1.502 1.500 1.498 VOUT1 V OUT2 1.496 1.494 VDD = 5V, S3/EN = H, SDA = SCL = H 1.492-50 -25 0 25 50 75 100 125 Temperature ( C) VOUT3 Time (40μs/Div) COUT = 0.1μF Power Off from V DD S3 State V DD (5V/Div) S3/EN (5V/Div) VOUT1 V OUT1 VOUT2 V OUT2 V OUT3 COUT = 0.1μF V OUT3 COUT = 0.1μF, S3/EN = H to L Time (4μs/Div) Time (4μs/Div) 13

V OUT1 Ramp-Up by VID V OUT1 Ramp-Down by VID V OUT1 VOUT1 VOUT1 = 1 to 1.325V, COUT = 0.1μF Time (10μs/Div) VOUT1 = 1.325 to 1V, COUT = 0.1μF Time (10μs/Div) V OUT2 Ramp-Up by VID V OUT2 Ramp-Down by VID V OUT2 V OUT2 VOUT2 = 0.925 to 1.25V, COUT = 0.1μF Time (10μs/Div) VOUT2 = 1.25 to 0.925V, COUT = 0.1μF Time (10μs/Div) V OUT3 Ramp-Up by VID V OUT3 Ramp-Down by VID VOUT3 VOUT3 VOUT3 = 1.5 to 1.825V, COUT = 0.1μF Time (10μs/Div) VOUT3 = 1.825 to 1.5V, COUT = 0.1μF Time (10μs/Div) 14

Applications Information Output Capacitor The output capacitance value determines the slew rate of output voltage during voltage transition. For example, if C OUT = 0.1μF and the voltage step is 1.1V, the rising slew rate can be calculated as the following. I Slew Rate = C OUT OUT 1.1 10 = 0.1 10 = 11mV/ μs For stability consideration, the recommended minimum output capacitance is 10nF. This capacitor should be located as close to the output pin as possible to minimize the PCB trace parasitic inductance and resistance. I 2 C Interface The RT9403 receives and decodes the SCL and SDA inputs from the master using the standard I 2 C 2-wire interface to program each output voltage. SCL and SDA must be pulled-up to typically 3.3V or 5V by external pull-up resistors with value is between 10kΩ and 20kΩ. Figure 1 shows the data format of the RT9403. After the START bit, the I 2 C master sends an address byte. This address byte includes a 7-bits long address code followed by an eighth bit which is a data direction bit (R/W).The RT9403's address is 01100xx and is a write-only (slave) device. After the address byte, the following 1st Data byte determines which DAC's output voltage will be programmed. Then, the 2nd Data byte is written to set the target output voltage of that selected DAC according to the VID table1 and table2. After the STOP bit, the output voltage of the selected DAC ramps up/down to the programmed target level. 3 6 S3/EN Function The RT9403 can be enabled or set to S3 state by the voltage of S3/EN pin. If the applied voltage of S3/EN pin is greater than enable threshold, the RT9403 will be enabled and all outputs ramp up to its own default preset voltage (V OUT1 = 1.1V, V OUT2 = 1.05V, V OUT3 = 1.5V). Then the RT9403 is available to decode the SCL and SDA inputs to determine the programmed voltage for each output. Pulling down this pin below the enable threshold will set the RT9403 in S3 state. In the S3 state, both V OUT1 and V OUT2 will be turned off, only V OUT3 is active. If S3/EN goes high again, V OUT1 and V OUT2 will return to its previous active level. Table 3 shows the S3/EN state and output status. Table 3. S3/EN State and Output Status S3/EN VOUT1 VOUT2 VOUT3 H (Enable) Active Active Active L (S3 State) OFF OFF Active Address Byte The 1st Data Byte The 2nd Data Byte START 0 1 1 0 0 X X 0 AC K 0 0 0 X X X G1 G0 ACK X E06E05 E04 E03 E02 E01E00 ACK Stop Fixed for Write G1 G0 Rail to be Programmed 0 0 VOUT1 0 1 VOUT2 1 0 VOUT3 1 1 None Note : 1. X = Don't Care 2. E [6:0] : Follow Serial Code Table Figure 1. RT9403 Data Transfer Format 15

Thermal Considerations For continuous operation, do not exceed absolute maximum operation junction temperature. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surroundings airflow and temperature difference between junction to ambient. The maximum power dissipation can be calculated by following formula : P D(MAX) = (T J(MAX) T A ) / θ JA Where T J(MAX) is the maximum operation junction temperature, T A is the ambient temperature and the θ JA is the junction to ambient thermal resistance. For recommended operating conditions specification of RT9403, the maximum junction temperature is 125 C and T A is the maximum ambient temperature. The junction to ambient thermal resistance θ JA is layout dependent. For SOT-23-8 package, the thermal resistance θ JA is 250 C/W on the standard JEDEC 51-3 single layer thermal test board. The maximum power dissipation at T A = 25 C can be calculated by following formula: Layout Considerations For best performance of the RT9403, the following layout guideline should be strictly followed The input capacitor should be placed as close to VDD pin as possible. The output capacitor should be placed as close to VOUT pin as possible. 5V 3.3V5V Place the input and output capacitors as close to the IC possible VDD C IN C OUT3 GND SCL SDA 1 3 4 8 2 7 6 5 S3/EN VOUT3 VOUT2 VOUT1 Figure 3. PCB Layout Guide GND C OUT1 GND C OUT2 P D(MAX) = (125 C 25 C ) / (250 C/W) = 0.4W for SOT-23-8 package The maximum power dissipation depends on operating ambient temperature for fixed T J(MAX) and thermal resistance θ JA. For RT9403 package, the Figure 2 of derating curve allows the designer to see the effect of rising ambient temperature on the maximum power dissipation allowed. Maximum Power Dissipation (W) 0.50 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 Single Layer PCB SOT-23-8 0 25 50 75 100 125 Ambient Temperature ( C) Figure 2. Derating Curve for RT9403 Package 16

Outline Dimension D H L C B b A e A1 Symbol Dimensions In Millimeters Dimensions In Inches Min Max Min Max A 1.000 1.450 0.039 0.057 A1 0.000 0.150 0.000 0.006 B 1.500 1.700 0.059 0.067 b 0.220 0.500 0.009 0.020 C 2.600 3.000 0.102 0.118 D 2.800 3.000 0.110 0.118 e 0.585 0.715 0.023 0.028 H 0.100 0.220 0.004 0.009 L 0.300 0.600 0.012 0.024 SOT-23-8 Surface Mount Package Richtek Technology Corporation Headquarter 5F, No. 20, Taiyuen Street, Chupei City Hsinchu, Taiwan, R.O.C. Tel: (8863)5526789 Fax: (8863)5526611 Richtek Technology Corporation Taipei Office (Marketing) 5F, No. 95, Minchiuan Road, Hsintien City Taipei County, Taiwan, R.O.C. Tel: (8862)86672399 Fax: (8862)86672377 Email: marketing@richtek.com Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek. 17