On superalgebras. Ajda Fo²ner University of Primorska Faculty of Management Cankarjeva 5 SI-6104 Koper Slovenia

Similar documents
Jordan isomorphisms of triangular matrix algebras over a connected commutative ring

Group Gradings on Finite Dimensional Lie Algebras

Pacific Journal of Mathematics

On (θ, θ)-derivations in Semiprime Rings

On generalized -derivations in -rings

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS

Group Theory. 1. Show that Φ maps a conjugacy class of G into a conjugacy class of G.

ON 3-PRIME NEAR-RINGS WITH GENERALIZED DERIVATIONS

Linear and Multilinear Algebra. Linear maps preserving rank of tensor products of matrices

Móstoles, Madrid. Spain. Universidad de Málaga. Málaga. Spain

Math 250: Higher Algebra Representations of finite groups

MAPS PRESERVING ZERO JORDAN PRODUCTS ON HERMITIAN OPERATORS

Math 594. Solutions 5

Semiprime, prime and simple Jordan superpairs covered by grids

Automorphisms and twisted forms of Lie conformal superalgebras

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

Algebra Homework, Edition 2 9 September 2010

A Crash Course in Central Simple Algebras

Problems in Linear Algebra and Representation Theory

Binomial Exercises A = 1 1 and 1

Simplicity of Jordan Superalgebras and Relations with Lie Structures

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication.

A review on root system of Lie superalgebras and some partial results on splints of A(m,n)

Math 216A. A gluing construction of Proj(S)

SEMI-INVARIANTS AND WEIGHTS OF GROUP ALGEBRAS OF FINITE GROUPS. D. S. Passman P. Wauters University of Wisconsin-Madison Limburgs Universitair Centrum

Math 120 HW 9 Solutions

On Commutativity of Completely Prime Gamma-Rings

Algebra Exam Syllabus

arxiv: v1 [math.ra] 10 Nov 2018

Some simple modular Lie superalgebras

A NOTE ON JORDAN DERIVATIONS IN SEMIPRIME RINGS WITH INVOLUTION 1

A CHARACTERIZATION OF THE MOONSHINE VERTEX OPERATOR ALGEBRA BY MEANS OF VIRASORO FRAMES. 1. Introduction

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

Subrings and Ideals 2.1 INTRODUCTION 2.2 SUBRING

REPRESENTATION THEORY, LECTURE 0. BASICS

Lie Superalgebras Graded by the Root System

On quasi-reduced rings

On Representability of a Finite Local Ring

DESCRIPTION OF SIMPLE MODULES FOR SCHUR SUPERALGEBRA S(2j2)

ADVANCED COMMUTATIVE ALGEBRA: PROBLEM SETS

OTTO H. KEGEL. A remark on maximal subrings. Sonderdrucke aus der Albert-Ludwigs-Universität Freiburg

Left Multipliers Satisfying Certain Algebraic Identities on Lie Ideals of Rings With Involution

January 2016 Qualifying Examination

NORMAL SMASH PRODUCTS

On Unit-Central Rings

On R-Strong Jordan Ideals

Division Algebras. Konrad Voelkel

Chapter 1. Vectors, Matrices, and Linear Spaces

The Erwin Schrodinger International Boltzmanngasse 9. Institute for Mathematical Physics A-1090 Wien, Austria

Chan Huh, Sung Hee Jang, Chol On Kim, and Yang Lee

On the Rothenberg Steenrod spectral sequence for the mod 3 cohomology of the classifying space of the exceptional Lie group E 8

Math 3013 Problem Set 4

Course of algebra. Introduction and Problems

The Cartan Decomposition of a Complex Semisimple Lie Algebra

ON (m, n) JORDAN CENTRALIZERS IN RINGS AND ALGEBRAS. Joso Vukman University of Maribor, Slovenia

CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS

Algebraic Number Theory and Representation Theory

Quiz 2 Practice Problems

Ideals of Endomorphism rings 15 discrete valuation ring exists. We address this problem in x3 and obtain Baer's Theorem for vector spaces as a corolla

EXERCISES. a b = a + b l aq b = ab - (a + b) + 2. a b = a + b + 1 n0i) = oii + ii + fi. A. Examples of Rings. C. Ring of 2 x 2 Matrices

EP elements and Strongly Regular Rings

QUALIFYING EXAM IN ALGEBRA August 2011

ALGEBRA QUALIFYING EXAM SPRING 2012

Identities for algebras obtained from the Cayley- Dickson process


Simple Lie subalgebras of locally nite associative algebras

ON CERTAIN PAIRS OF AUTOMORPHISMS OF RINGS, II

SOME LIE SUPERALGEBRAS ASSOCIATED TO THE WEYL ALGEBRAS

Algebra Exam Topics. Updated August 2017

Ring Theory Problems. A σ

MAXIMAL SUBALGEBRAS AND CHIEF FACTORS OF LIE ALGEBRAS DAVID A. TOWERS

Polynomials of small degree evaluated on matrices

Strongly Nil -Clean Rings

On intersections of complete intersection ideals

On strongly prime rings, ideals and radicals

Rings and groups. Ya. Sysak

A note on Nil and Jacobson radicals in graded rings

LIE TORI OF RANK 1 B. ALLISON, J. FAULKNER, AND Y. YOSHII

INVARIANT IDEALS OF ABELIAN GROUP ALGEBRAS UNDER THE MULTIPLICATIVE ACTION OF A FIELD, II

The signed random-to-top operator on tensor space (draft)

Weeks 6 and 7. November 24, 2013

List of topics for the preliminary exam in algebra

NOTES ON LINEAR ALGEBRA OVER INTEGRAL DOMAINS. Contents. 1. Introduction 1 2. Rank and basis 1 3. The set of linear maps 4. 1.

7+(),(/'6,167,787( ABSTRACTS 1.2 )255(6($5&+,10$7+(0$7,&$/6&,(1&(6

Page Points Possible Points. Total 200

Properties of Generating Sets of Finite Groups

Generalized (α, β)-derivations on Jordan ideals in -prime rings

Properties of Linear Transformations from R n to R m

On the centralizer and the commutator subgroup of an automorphism

Family Feud Review. Linear Algebra. October 22, 2013

On the centre of the generic algebra of M 1,1

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

EXTENSIONS OF EXTENDED SYMMETRIC RINGS

Algebraic Structures Exam File Fall 2013 Exam #1

3.4 Elementary Matrices and Matrix Inverse

Algebra Exam, Spring 2017

Math 308 Spring Midterm Answers May 6, 2013

0.2 Vector spaces. J.A.Beachy 1

ASSOCIATIVE AND LIE ALGEBRAS OF QUOTIENTS

A THEOREM ON THE DERIVATIONS OF JORDAN ALGEBRAS

Transcription:

On superalgebras Ajda Fo²ner University of Primorska Faculty of Management Cankarjeva 5 SI-6104 Koper Slovenia ajda.fosner@fm-kp.si Maja Fo²ner University of Maribor Faculty of Logistics Mariborska cesta SI-3000 Celje Slovenia maja.fosner@uni-mb.si Abstract In this article we introduce the denition of associative superalgebras, basic characteristics, and give some examples. 000 Math. Subj. Class.: 17A70. 1 Introduction In the last few decades one of the most active and fertile subjects in algebra is recently developed theory of graded algebras and so called superalgebras. In [1 Kac wrote that the interest of the eld of superalgebras appeared in physic in the contest of "supersimetry". A lot of results about superalgebras and graded algebras has been written by Kac, Martinez, Zelmanov, Wall, Shestakov and others (see for example [7, 8, 9, 11, 1, 13, 14, 15). The main goal of this paper is to introduce a denition of associative superalgebras, give some examples, and present some basic properties. By an algebra we shall mean an associative algebra over the eld Φ. We will assume that the denitions of algebra, module, and ideal is well known. However we shall write some denitions and explain some basic properties of an algebra. An algebra A is simple, if A 0 and the only ideals of A are 0 and A. We say that an algebra A is prime if the product of two nonzero ideals is nonzero. This is equivalent to the following implication: if aab = 0 1

for some a, b A, it follows that either a = 0 or b = 0. The example of a prime algebra is M n (C), the algebra of all n n complex matrices. The algebra is called semiprime if it has no nonzero nilpotent ideals (an ideal I of an algebra A is called nilpotent, if I n = 0 for some number n N). This is equivalent to the property that aaa = 0 for some a A implies that a = 0. Every prime algebra is semiprime algebra. It turns out that the converse is in general not true. Namely, if 0 A is prime algebra, then A A is semiprime algebra, which is not prime. Superalgebras Dear readers, in the following chapter we invite you to the world of superalgebras. We will introduce some basic denitions and present some examples of associative superalgebras. A superalgebra is a Z -graded algebra. This means that there exist Φ- submodules A 0 and A 1 of A such that A = A 0 A 1 and A 0 A 0 A 0 (that means A 0 is a subalgebra of A), A 0 A 1 A 1, A 1 A 0 A 1 and A 1 A 1 A 0. We say that A 0 is the even, and A 1 is the odd part of A. An associative superalgebra A is an associative Z -graded algebra. We say that A is a trivial superalgebra, if A 1 = 0. If a A k, k = 0 or k = 1, then we say that a is homogeneous of degree k and we write a = k. A graded Φ-submodule B of an associative superalgebra A is such submodule of an algebra A that B = B A 0 B A 1. In this case we write B 0 = B A 0 and B 1 = B A 1. That means B= B 0 B 1. If B is a graded subalgebra of A, than B is also an associative superalgebra. A graded ideal (or superideal) I of a superalgebra A is an ideal of A, which is also a graded Φ-submodule. That is I = I A 0 I A 1 or I = I 0 I 1. Let us write something about the gradation. The natural question is how to make a decision about Z -gradation? Given an associative superalgebra A = A 0 A 1, we dene σ : A A by (a 0 +a 1 ) σ = a 0 a 1. Note that σ is an automorphism of A such that σ = id. Conversely, given an algebra A and an automorphism σ of A with σ = id, A then becomes a superalgebra by dening A 0 = {a A σ(a) = a} and A 1 = {a A σ(a) = a} (indeed,

any element a A can be written as a = a+aσ + a aσ and a+aσ A 0, a a σ A 1 ). That is to say, the Z -grading can be characterized via the automorphism with square id. A submodule B of a superalgebra A is graded if and only if B σ = B. Let the center Z(A) of a superalgebra A be the usual center of an algebra A, that is Z(A) = {a A ab = ba b A}. The center is graded, since automorphism maps the center into itself. That means Z(A) = Z(A) 0 Z(A) 1. In what follows we shall present some examples of associative superalgebras. Example.1 Let A be an algebra and let c A be an invertible element. Further, let σ be an automorphism of an algebra A, which is dened by x σ = cxc 1 for all x A. We see that σ = id if and only if c Z(A). It follows that A = A 0 A 1 is a superalgebra, where A 0 = {x A xc = cx} and A 1 = {x A xc = cx}. In particular, let A = M r+s (Φ) be an algebra of all (r + s) (r [ + s) matrices Ir 0 over Φ, r, s N. For the element c we can choose a matrix, 0 I s where I r is an identity matrix of M r (Φ) and I s is an identity matrix of M s (Φ). Then the even and odd parts are given by [ [ Mr (Φ) 0 0 M A 0 = in A 0 M s (Φ) 1 = r,s (Φ), M s,r (Φ) 0 where M r,s (Φ) is the set of r s matrices. This algebra is an associative superalgebra and it is usually written as M(r s). Example. Let A be an algebra over Φ and let A = A A. Furthermore, let σ be an automorphism on A, dened by σ(a, b) = (b, a), a, b A. Then we have A = A 0 A 1, where the even part is written in the form A 0 = {(a, a) a A} and [ the odd part in the form A 1 = {(b, b) b A}. It turns out that A C D = { C, D A}, D C A 0 = { [ C 0 0 C C A} and A 1 = { [ 0 D D 0 D A}. In this case we say that the superalgebra A is given by the exchange automorphism. 3

Example.3 Let A = Q(α, β) be a 4-dimensional algebra over Φ with a base {1, uv, u, v} and let the multiplication be dened as follows u = α Φ, v = β Φ, uv = vu. In particular A is the algebra of quaternions over R. Let us write A 0 = Φ1 + Φuv and A 1 = Φu + Φv. Then it follows that A = A 0 A 1 is an associative superalgebra which is called the superalgebra of quaternions. Let us write some basic properties of associative superalgebras. An associative superalgebra A is simple, if it has no proper nonzero graded ideals. The only graded ideals are 0 and the whole superalgebra A. Note that this does not mean that the simple superalgebra is simple as an algebra. If the product of two nonzero graded ideals of a superalgebra A is nonzero, the superalgebra A is called a prime-superalgebra. The superalgebra A is a semiprime-superalgebra, if it has no nonzero nilpotent graded ideals. As noted in [1, this is equivalent to the condition that aab = 0, where a and b are any homogeneous elements in A, implies a = 0 or b = 0. In fact, the same conclusion holds true if we assume that only one of these two elements, say b, is homogeneous. Let A be a prime-superalgebra. The natural question that appears is: are the algebras A in A 0 prime algebras as well? The next two examples show that this is not always true. Example.4 Let A be a prime algebra over Φ and let A = A A be a superalgebra with gradation dened as in the example.. This algebra is a prime-superalgebra (the product of any two nonzero graded ideals is nonzero), which is not a prime algebra, since (0 A)(A 0) = 0. Example.5 The superalgebra M(r s) is a prime-superalgebra. The sets [ [ C 0 0 0 I = { C M 0 0 r (F)} and J = { D M 0 D s (F)} are nonzero ideals of an algebra M(r s) 0 such that the product of them is zero. Thus, the algebra M(r s) 0 is not a prime algebra. The answer about the connection between prime-superalgebra (or semiprimesuperalgebra) A and prime algebras (or semiprime algebras) A and A 0 is: if A is an associative semiprime-superalgebra, then A and A 0 are also semiprime algebras. In case A is an associative prime-superalgebra, then either A is prime algebra or A 0 is prime algebra. The proof of those results we can nd in [13. 4

3 Conclusion The natural question that appears is how to generalize some classical structures. Let us briey describe the background. For example: let A be an associative algebra. Introducing a new product in A, the so called Jordan product a b = ab + ba, A becomes a Jordan algebra, usually written as A +. The question is what is the connection between the structural properties of algebras A and A + (for example, every ideal of an algebra A is an ideal of A +, is the converse true?). Such questions were considered by Herstein in the 1950's (see [10). He considered mainly simple algebras. Lately his theory was generalized. On this eld a lot of papers were written by Lanski, Martindale, McCrimmon, Miers, Montgomery and many others. In the similar way we can introduce Jordan superalgebras. Again, the natural question is: what is the connection between the structure of superalgebras and Jordan superalgebras? We refer the reader to see for example [1,, 3, 4, 5, 7, 8, 9, 13. At the end let us write that we can extent superalgebras to G-graded algebras, where G is an Abelian group. An algebra is G-graded, if there exist subspaces A g, g G, of A, such that A = g G A g and A g A h A gh for all g, h G. Superagebras are actually a special case of G-graded algebras. In that case G = Z. In the eld of G-graded algebras we can also dene structures such as modules, ideals, graded prime algebras,... And therefore new natural problems appear. References [1 K. I. Beidar, M. Bre²ar, M. A. Chebotar, Jordan superhomomorphisms, Comm. Algebra 31 (003), 633644. [ M. Bre²ar, A. Fo²ner, M. Fo²ner, Jordan ideals revisited, Monatsh. Math., 1 (005), 110. [3 M. Fo²ner, Jordan superderivations, Comm. Algebra 31 (003), 4533 4545. [4 M. Fo²ner, Jordan superderivations, II, Internat. J. Math. Math. Sci. 004 (004), 357369. [5 M. Fo²ner, On the extended centroid of prime associative superalgebras with applications to superderivations, Comm. Algebra 3 (004), 689 705. 5

[6 M. Fo²ner, Asociativne superalgebre in jordanske strukture, doktorska disertacija, Maribor 004. [7 C. Gómez-Ambrosi, J. Laliena, I. P. Shestakov, On the Lie structure of the skew elements of a prime superalgebra with superinvolution, Comm. Algebra (000), 377391. [8 C. Gómez-Ambrosi, F. Montaner, On Herstein's constructions relating Jordan and associative superalgebras, Comm. Algebra 8 (000), 3743 376. [9 C. Gómez-Ambrosi, I. P. Shestakov, On the Lie structure of the skew elements of a simple superalgebra with superinvolution, J. Algebra 08 (1998), 4371. [10 I. N. Herstein, Topics in ring theory, The University of Chicago Press, Chicago 1969. [11 V. G. Kac, Classication of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 13 (1977), 13751400. [1 V. G. Kac, Lie superalgebras, Advances in mathematics 6 (1977), 896. [13 F. Montaner, On the Lie structure of associative superalgebras, Comm. Algebra 6 (1998), 337349. [14 S. Montgomery, Constructing simple Lie superalgebras from associative graded algebras, J. Algebra 195 (1997), 558579. [15 I. P. Shestakov, Prime alternative superalgebras of arbitrary characteristic, Algebra and logic 36 (1997), 38940. 6