Analytical Raman Spectroscopy

Similar documents
INTRODUCTION TO MODERN VIBRATIONAL SPECTROSCOPY

Vibrational Spectroscopy of Molecules on Surfaces

Modern Techniques in Applied Molecular Spectroscopy

Fourier Transform Infrared Spectrometry

Particle-Induced X-Ray Emission Spectrometry (PIXE)

The vibrational spectroscopy of polymers

Spectroscopy of Polymers

Practical Surface Analysis

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

Catalytic Chemistry. Bruce C. Gates. John Wiley & Sons, Inc. New York Chichester Brisbane Toronto Singapore. University of Delaware ^.'-'.

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

requency generation spectroscopy Rahul N

Transmission Electron Microscopy

Quadrupole Storage Mass Spectrometry

Surface Analysis - The Principal Techniques

Contents. xiii. Preface v

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

DOWNLOAD OR READ : INFRARED AND RAMAN SPECTROSCOPY CONCEPTS AND APPLICATIONS PDF EBOOK EPUB MOBI

Technology, Techniques and Applications. Ric Allott Business Development Manager

Advanced Spectroscopy Laboratory

Optical Characterization of Solids

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

PRINCIPLES OF PHYSICAL OPTICS

Spectroscopy tools for PAT applications in the Pharmaceutical Industry

Fourier Transform Infrared. Spectrometry

IR Spectrography - Absorption. Raman Spectrography - Scattering. n 0 n M - Raman n 0 - Rayleigh

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Doctor of Philosophy

Graphene. Tianyu Ye November 30th, 2011

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Beam Effects, Surface Topography, and Depth Profiling in Surface Analysis

Diode Lasers and Photonic Integrated Circuits

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Modern Optical Spectroscopy

The design of an integrated XPS/Raman spectroscopy instrument for co-incident analysis

Vibrational Spectroscopies. C-874 University of Delaware

X-Rays From Laser Plasmas

INTRODUCTION TO NONLINEAR OPTICAL EFFECTS IN MOLECULES AND POLYMERS

Singlet. Fluorescence Spectroscopy * LUMO

Characterisation of vibrational modes of adsorbed species

Secondary Ion Mass Spectrometry (SIMS)

HUMUS CHEMISTRY. Genesis, Composition, Reactions. Second Edition. F. J. STEVENSON Department of Agronomy University of Illinois

Chem 524 Lecture Notes Raman (Section 17) 2013

Optics, Light and Lasers

Solid Surfaces, Interfaces and Thin Films

Raman Spectroscopy. Kalachakra Mandala of Tibetian Buddhism. Dr. Davide Ferri Paul Scherrer Institut

Spectroscopy. Practical Handbook of. J. W. Robinson, Ph.D., D.Sc, F.R.C.S. Department of Chemistry Louisiana State University Baton Rouge, Louisiana

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

FUNDAMENTALS OF POLARIZED LIGHT

Application of IR Raman Spectroscopy

Surface Analysis - The Principal Techniques

Introduction to Scanning Tunneling Microscopy

Session #1: Theoretical background and computer simulations of molecular vibrations.

CHAPTER 3. OPTICAL STUDIES ON SnS NANOPARTICLES

QUANTUM WELLS, WIRES AND DOTS

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

05 - Scintillation detectors

Answers to questions on exam in laser-based combustion diagnostics on March 10, 2006

Ultraviolet-Visible and Infrared Spectrophotometry

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

Fourier transform infrared spectroscopy (FTIR) is a method used to obtain an infrared

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

RADIATION DETECTION AND MEASUREMENT

Seminars in Nanosystems - I

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

Reference literature. (See: CHEM 2470 notes, Module 8 Textbook 6th ed., Chapters )

Electronic Processes on Semiconductor Surfaces during Chemisorption

Introduction... Theory Influence of Excitation Pulse Shape...

Ultraviolet-Visible and Infrared Spectrophotometry

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Supporting Information s for

COLOR SCIENCE. Concepts and Methods, Quantitative Data and Formulae, 2nd Edition. John Wiley & Sons New York Chichester Brisbane Toronto Singapore

Supplementary Materials

Università degli Studi di Bari "Aldo Moro"

Spectroscopy in Transmission

Principles of Physical Biochemistry

Medical Biophysics II. Final exam theoretical questions 2013.

Theory and Design for Mechanical Measurements

Radiochemistry and Nuclear Methods of Analysis

Process Analytical Technology Diagnosis, Optimization and Monitoring of Chemical Processes

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

SWOrRD. For direct detection of specific materials in a complex environment

Raman and stimulated Raman spectroscopy of chlorinated hydrocarbons

Nanoscale IR spectroscopy of organic contaminants

VISCOELASTIC PROPERTIES OF POLYMERS

Previous Faraday Discussions

THEORY OF MAGNETIC RESONANCE

phase retardance THz intensity ratio THz filling factor in air : 0.2 filling factor in si : 0.8 length of air : 4um length of si : 16um depth : 27.

MOLECULAR SPECTROSCOPY

25 Instruments for Optical Spectrometry

ORE MICROSCOPY AND ORE PETROGRAPHY

Chapter 6 Photoluminescence Spectroscopy

Supplementary Figures

Near-Field Nano/Atom Optics and Technology

Reflection = EM strikes a boundary between two media differing in η and bounces back

ADVANCED APPLICATIONS OF SYNCHROTRON RADIATION IN CLAY SCIENCE

Survey on Laser Spectroscopic Techniques for Condensed Matter

! Fiber!Laser!Intracavity!Absorption! Spectroscopy!(FLICAS)!of!CO/CO2! mixture.!!! This experiment will expose you to tools and approaches, common in

Laser Ionization Mass Analysis

Transcription:

Analytical Raman Spectroscopy Edited by JEANETTE G. GRASSELLI Department of Chemistry Ohio University Athens, Ohio and BERNARD J. BULKIN BP Research Centre Sunbury-on-Thames Middlesex, England A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. New York / Chichester / Brisbane / Toronto / Singapore

CONTENTS CHAPTER 1 THE RAMAN EFFECT: AN INTRODUCTION 1 Bernard J. Bulkin 1.1. Background 1 1.2. Classical Description of Raman Spectroscopy 4 1.3. Result of Quantum Mechanical Treatment of Raman Scattering 8 1.4. Selection Rules: Contrasting IR and Raman Spectra 9 1.5. Depolarization Ratios 12 1.6. Resonance Raman Effect 13 1.7. Nonlinear Raman Effects 15 1.8. Guide to the Literature of Raman Spectroscopy 17 18 CHAPTER 2 MODERN RAMAN INSTRUMENTATION AND TECHNIQUES D. Bruce Chase 2.1. 2.2. Introduction Components of Modern Raman Spectrometers 2.2.1. Sources 2.2.1.1. Continuous Wave Lasers 2.2.1.2. Pulsed Lasers 2.2.1.3. Lenses and Filters 2.2.2. Collection Optics 2.2.3. Dispersihg Optical Elements: Monochromators 2.2.4. Detection Systems 2.2.4.1. Single-Channel Systems 21 21 22 22 22 24 24 26 28 29 29 IX

X CONTENTS 2.2.4.2. Multichannel Systems 2.2.4.3. Computers in Detection Systems 2.3. Sample Handling 2.3.1. General 2.3.2. Microsampling 2.4. Problems: Fluorescence and Thermal Sample Degradation 2.5. Fourier Transform Raman Spectroscopy 2.5.1. Components 2.5.2. Examples of the Advantages of Fourier Transform Raman Measurements 2.5.3. Problems 2.6. Future Efforts 2.7. Addendum 2.7.1. Lasers 2.7.2. Lenses and Filters 2.7.3. Monochromators 2.7.4. Detectors 2.7.5. Microsampling 2.7.6. FT-Raman Spectroscopy 29 30 30 30 30 31 32 32 35 36 37 39 39 40 40 40 41 41 42 CHAPTER 3 EXPERIMENTAL CONSIDERATIONS FOR ACCURATE POLARIZATION MEASUREMENTS 45 James R. Scherer 3.1. Introduction 3.2. Tools for Tuning 3.3. Light Path Geometry 3.4. Sample Container 3.5. Polarization Scrambler 3.6. The Analyzer 3.7. Polarization Orientation of the Excitation Laser Beam 3.8. Standard Raman Measurement 45 46 47 53 54 56 56 57 57

CONTENTS XI CHAPTER 4 RAMAN SPECTROSCOPY OF INORGANIC SPECIES IN SOLUTION 59 Donald E. Irish and Toru Ozeki 4.1. Introduction 59 4.2. Identification of Inorganic Species in Solution 60 4.2.1. Präsentation of the Raman Spectrum 60 4.2.2. Interpretation 62 4.3. Quantitative Analysis 76 4.3.1. Correlating Raman Intensities and Species Concentrations 76 4.3.2. Spectral Analysis with Bandfitting Programs 80 4.3.3. Factor Analysis 83 4.3.4. The GAUSS-Z Program 87 4.3.5. Raman Difference Spectroscopy 90 4.4. Conclusion 90 Appendix 91 Acknowledgments 103 104 CHAPTER 5 QUANTITATIVE ANALYSIS BY RAMAN SPECTROSCOPY 107 Thomas J. Vickers and Charles K. Mann 5.1. Introduction 107 5.2. Historical Development 108 5.3. Variations in Source, Sample, and Optics: Effect on Quantitative Analyses 109 5.3.1. Ordinate Errors 110 5.3.2. Abscissa Errors 115 5.3.3. Data Treatment 116 5.3.4. Multichannel Versus Scanning Measurements 123 5.4. Fluorescence and Raman Measurements 124 5.5. Comparison of Raman and IR Measurements for Quantitative Analysis 127

Xll CONTENTS CHAPTER 6 5.5.1. Solvent Behavior 128 5.5.2. Emission Versus Absorption 128 5.5.3. Experimental Flexibility 129 5.5.4. Experimental Comparison of Sensitivity 130 Acknowledgments 132 133 CHARACTERIZATION OF SEMICONDUCTORS BY RAMAN SPECTROSCOPY 137 Fred H. Pollak 6.1. Introduction 137 6.2. General Background of Raman Scattering, Particularly Relating to Crystalline Solids 138 6.2.1. Polarizability Theory of Raman Scattering 138 6.2.2. Second-Order Raman Scattering 141 6.2.3. Lattice Polarizability Including Free Carrier Effects 142 6.2.4. Fano Effect 146 6.2.5. Polarization Selection Rules 146 6.2.5.1. Atomic Displacement Effects 147 6.2.5.2. Linear-q and Surface Electric Field-Induced Effects 150 6.2.6. Dispersion Relations for Lattice Vibrations 152 6.3. Instrumentation 154 6.4. Silicon and Other Group IV Semiconductors 157 6.4.1. Microcrystalline Geometries 157 6.4.2. Structural and Crystallization Effects in a-si, a-ge, and a-c 163 6.4.3. Ion Damage and Laser Annealing 167 6.4.4. Reactive Ion Etching 170 6.4.5. Strain Effects 172 6.4.6. The Metal/Si Interface 174 6.4.7. Laser Writing of Si Microstructures 180 6.4.8. Temperature Probe 180 6.5. Binary Zincblende Semiconductors 180

CONTENTS 6.5.1. Carrier Concentration and Space/Charge Layer Effects 6.5.2. Microcrystalline Effects 6.5.3. Symmetry-Forbidden Transverse Optical Mode Scattering 6.5.4. Ion Implantation and Annealing 6.5.5. Process-Induced Damage 6.6. Alloy Semiconductors 6.6.1. Alloy Composition 6.6.2. Alloy Potential Fluctuations 6.6.2.1. Optic Phonons 6.6.2.2. Disorder-Activated Zone-Edge Phonons 6.6.3. Ion Implantation and Annealing 6.6.4. Carrier Concentration 6.6.5. Hg^Cd^Te 6.6.6. Heterojunctions 6.6.7. Two-Phonon Raman Scattering 6.7. Surface Films Including Oxides Xlll 181 185 186 186 193 200 200 200 200 205 206 206 207 208 209 211 214 CHAPTER 7 POLYMER APPLICATIONS 223 Bernard J. Bulkin 7.1. Introduction 223 7.2. Raman Spectrum of Polyethylene terephthalate) 224 7.3. Vibrational Analysis of Polymers as a Foundation to Understanding 226 7.4. Sensitivity of the Raman Spectrum to Conformational Change 230 7.5. Low-Frequency (< 200cm" l ) Spectra 231 7.6. Features in the Spectra of Fibers 233 7.7. Considerations in Selecting Spectroscopic Parameters for Comparing Spectra 235 7.8. Orientation, Conformation, and Crystallinity 237 7.9. Amorphous Orientation and Low-Frequency Spectra 242 7.10. Derivation of Polymer Specific Heats 244

XIV CONTENTS CHAPTER 8 7.11. A Guide to Other Raman Studies of Polymers 7.12. Conclusion ANISOTROPIC SCATTERING PROPERTIES OF UNIAXIALLY ORIENTED POLYMERS: RAMAN STUDIES John F. Rabolt 8.1. Introduction 8.2. Experimental Scattering Geometry 8.3. Geometrie Considerations 8.4. Symmetry Considerations 8.5. Example: Planar Zigzag Poly(vinylidene fluoride) Acknowledgment 248 251 251 253 253 254 256 257 269 273 273 CHAPTER 9 ORGANIC AND PETROCHEMICAL APPLICATIONS OF RAMAN SPECTROSCOPY 275 Donald L. Gerrard 9.1. Introduction 275 9.2. Organic and Petrochemical Sample-Handling Techniques 277 9.2.1. Versatility and Simplicity Owing to the Scattering Process 277 9.2.2. Glass Sample Containers and Aqueous Systems 279 9.2.3. Excitation Using Visible Lasers 282 9.2.3.1. Useof Fiber Optics 283 9.3 Characterization of Nonpolar Groups 286 9.4. Quantitative Studies 288 9.4.1. Internal Standard Method 289 9.4.2. Reacting Systems 290 9.5. Spatial Resolution: Raman Microscopy 291 9.6. Methods of Signal Enhancement 295 9.6.1. Resonance-Enhanced Raman

CONTENTS XV Spectroscopy and Applications in Organic and Petrochemical Systems 295 9.6.2. Surface-Enhanced Raman Spectroscoy and Applications 301 9.6.2.1. Electrochemical Applications 303 9.6.2.2. Colloids 303 9.6.2.3. Metal-Island Films 303 9.6.2.4. General Analytical Applications for Organic Materials 304 9.7. Time-Resolved Studies: Examples of In Situ Studies of Reacting Systems 304 9.7.1. Homopolymerization of Styrene 308 9.7.2. Homopolymerization of Methyl Methacrylate 310 9.7.3. Copolymerizations and Multicomponent Polymerizations: The Use of Mathematical Deconvolution 311 9.7.4. Other Applications 312 9.8. Fluorescence in Organic Systems 312 9.8.1. Fluorescence Reduction 313 9.8.1.1. Sample Purißcation 313 9.8.1.2. "Burning Out" with the Laser Beam 313 9.8.1.3. The Use of UV and Near-IR Lasers 314 9.8.1.4. Fluorescence-Quenching Agents 315 9.8.1.5. Anti-Stokes Raman Spectroscopy 316 9.8.2. Extraction of the Raman Signal from the Fluorescence Background 316 9.8.2.1. Background Subtraction 316 9.8.2.2. Use of Picosecond Pulsing and Gating 316 9.8.2.3. Nonlinear Raman Spectroscopy 317 9.8.3. Conclusions 317 317 CHAPTER 10 RAMAN SPECTROSCOPY IN CATALYSTS 325 Mehmed Mehicic and Jeanette G. Grasselli 10.1. Introduction 325 10.1.1. Advantages of Raman Spectroscopy in Catalytic Studies 325

XVI CONTENTS 10.1.2. Miscellaneous Applications 333 10.2. Zeolites 334 10.3. Hydrodesulfurization Catalysts 339 10.3.1. Mo0 3 -Based Catalysts 342 10.3.1.1. Background and Preparation Variables 342 10.3.1.2. Promoter (Cobalt-Containing) Structures 345 10.3.1.3. Promoter (Nickel-Containing) Structures 347 10.3.1.4. Activated (Sulfided) Molybdenum-Containing Catalysts 349 10.3.1.5. Conclusion 351 10.3.2. W0 3 -Based Catalysts 352 10.4. Oxidation Catalysis 355 10.4.1. Vanadium Oxide Catalysts 355 10.4.2. Manganese Oxide Catalysts 358 10.4.3. Bismuth Molybdate Catalysts 359 10.4.4. Iron Oxide Catalysts 374 10.5. Other Systems 375 10.5.1. Metathesis Catalysis 375 10.5.2. Olefin Hydrogenation 377 10.5.3. Syngas Processes 377 10.5.3.1. Fischer-Tropsch Catalysis 378 10.5.3.2. Hydroformylation Catalysis 380 10.5.3.3. Methanation 381 10.5.4. Olefin Dehydrogenation 381 382 CHAPTER 11 RAMAN SPECTROSCOPY FOR BIOLOGICAL APPLICATIONS 397 Pham V. Huong 11.1. Introduction 397 11.2. Specific Problems in Biological Studies 398 11.2.1. Identification of Biomolecules 398

CONTENTS XV11 11.2.2. Structure in Aqueous Solutions 398 11.2.3. Dynamics and Interactions 398 11.3. Instrumentation and Procedures 398 11.4. Structures 401 11.4.1. Raman Spectra of Living Organisms/Tissues/Cells 401 11.5. 11.6. 11.7. 11.4.1.1. Eye Lens 402 11.4.1.2. Biological Membranes 402 11.4.2. Raman Spectra of Isolated Biomolecules 402 11.4.2.1. Structures and Conformations of t-rna 402 11.4.2.1.1. Structures in Solutions and Solids 11.4.2.1.2. Endo-melting (Ordered to Disordered State) 11.4.2.1.3. Conformation Transitions Between Ordered States Molecular Dynamics Interactions 11.6.1. Selective Enhancement of Raman Bands Corresponding to the Interaction Site of Hemoglobin 11.6.2. Changes in the Active Site of Hemoglobin with Interactions 11.6.3. a-helical and Random-Coil Structures in Proteins Mechanisms 11.7.1. Vision 11.7.2. Transmission in Nervo us Systems 11.7.3. Protonation of Biomolecules 11.7.4. S H/S S Conversion 11.7.5. Carcinogenesis Conclusions 11.8. Acknowledgments 402 406 407 408 409 409 410 410 412 412 413 414 415 417 421 421 421

XV111 CHAPTER 12 CONTENTS CHEMICAL APPLICATIONS OF GAS-PHASE RAMAN SPECTROSCOPY 425 William F. Murphy 12.1. 12.2. Introduction Experimental Aspects 12.2.1. Instrumentation 12.2.1.1. Source 12.2.1.2. Sample Irradiation 12.2.1.3. Sample Cells 12.2.1.4. Transfer Optics 12.2.1.5. Monochromator and Detector 12.2.2. Instrumental Calibration 12.2.2.1. Frequency Calibration 12.2.2.2. Intensity Response Calibration 12.3. Applications 12.3.1. Theoretical Background 12.3.2. Methodology 12.3.2.1. Measurement of Species Abundance 12.3.2.2. Measurement of Temperature 12.3.3. Survey of Applications 12.3.3.1. Combustion Diagnostics 12.3.3.2. Remote Sensing 12.3.3.3. Analytical Applications 12.4. Conclusions 425 426 426 426 427 427 428 429 430 430 432 434 434 437 437 438 440 440 442 443 446 447 INDEX 452