metal-organic compounds

Similar documents
Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

metal-organic compounds

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

metal-organic compounds

metal-organic compounds

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

inorganic compounds Chromous hydrazine sulfate

organic papers Malonamide: an orthorhombic polymorph Comment

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

metal-organic compounds

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Sodium 3,5-dinitrobenzoate

2-Methoxy-1-methyl-4-nitro-1H-imidazole

metal-organic compounds

metal-organic compounds

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

V = (14) Å 3 Z =8 Cu K radiation. Data collection. Refinement

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

metal-organic compounds

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

metal-organic compounds

metal-organic compounds

metal-organic compounds

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

metal-organic compounds

metal-organic compounds

4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

metal-organic compounds

metal-organic compounds

metal-organic compounds

inorganic compounds Hexagonal ammonium zinc phosphate, (NH 4 )ZnPO 4,at10K

Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

metal-organic compounds

organic compounds Comment

organic compounds Melaminium acetate acetic acid solvate monohydrate

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 155 parameters 10 restraints

organic compounds 2-(3-Nitrophenylaminocarbonyl)- benzoic acid: hydrogen-bonded sheets of R 4 4 (22) rings Comment

2. Experimental Crystal data

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 245 parameters 2 restraints

A two-dimensional Cd II coordination polymer: poly[diaqua[l 3-5,6-bis(pyridin-2-yl)pyrazine-2,3- dicarboxylato-j 5 O 2 :O 3 :O 3,N 4,N 5 ]cadmium]

Experimental. Crystal data

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

= 0.09 mm 1 T = 294 (2) K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

metal-organic compounds

metal-organic papers Di-l-pyridyl-1:2j 2 N:C 2 ;2:1j 2 N:C 2 -l-tetrahydrofuran-j magnesium(ii)] tetrahydrofuran hemisolvate

metal-organic compounds

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

organic papers Zwitterionic 2-(methylamino)ethanesulfonic acid

metal-organic compounds

electronic papers catena-poly[[bis(nitrato)(pyrimidine)copper(ii)]-l-pyrimidine-n:n 0 ] Ivonne Riggio et al.

metal-organic papers Bis[1,1,3,3-tetramethyl-1,3-bis(dichloroacetato)distannoxane]

metal-organic papers catena-[l 6-1,2,4,5-Benzenetetracarboxylatotetraaqua-dinickel(II)] Comment

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 184 parameters 1 restraint

Prakash S Nayak, B. Narayana, Jerry P. Jasinski, H. S. Yathirajan and Manpreet Kaur

Z =4 Mo K radiation = 0.17 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 205 parameters

PARTITIONING-SEPARATION OF METAL IONS USING HETEROCYCLIC LIGANDS

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G.

metal-organic compounds

organic compounds 2,4,6-Trimethylphenyl isocyanide

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 106 parameters 2 restraints

metal-organic papers Bis(acetato-O)diaqua(2,2 0 -bipyridyl-n,n 0 )cobalt(ii) (OC-13): a two-dimensional material Comment

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate.

2. Experimental Crystal data

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

= mm 1 T = 298 K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 290 parameters 9 restraints

Tarek Ben Rhaiem* and Habib Boughzala

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Data collection. (Sheldrick, 2008a)] T min = 0.191, T max = Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

research papers V 2 O 2 F 4 (H 2 O) 2 H 2 O: a new V 4+ layer structure related to VOF 3 publcif Cameron Black and Philip Lightfoot* Abstract

Tris{2-[(2,6-dimethylphenyl)amino]ethyl}amine

metal-organic compounds

b = (2) Å c = (3) Å = (10) V = (2) Å 3 Z =2 Data collection Refinement

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

organic compounds 3-Hydroxybenzaldehyde

Experimental. Crystal data. C 18 H 18 N 2 O 4 S M r = Monoclinic, P2 1 =n a = (3) Å b = (2) Å c = (5) Å = 104.

Ethylenediaminium pyridine-2,5-dicarboxylate dihydrate

Jimmy U. Franco, Marilyn M. Olmstead and Justin C. Hammons

Experimental. Crystal data. C 10 H 12 N 6 C 2 H 6 O M r = Monoclinic, C2=c a = (19) Å b = (2) Å c = (3) Å = 101.

organic compounds Hydrogen-bonding adducts of benzenepolycarboxylic acids with N,N-dimethylformamide: benzene-

N-[(Diphenylamino)methyl]acetamide

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections. C3 H3Cg1 i

2-(3-Chloro-4-hydroxylphenyl)-N-(3,4- dimethyoxyphenethyl)acetamide. Author. Published. Journal Title DOI. Copyright Statement.

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

electronic reprint Masanari Hirahara, Shigeyuki Masaoka and Ken Sakai Crystallography Journals Online is available from journals.iucr.

Transcription:

metal-organic compounds Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701 [Sm(NO 3 ) 3 (TPTZ)(H 2 O)]2H 2 O [TPTZ is 2,4,6-tris(2-pyridyl)-1,3,5-triazine] Michael G. B. Drew, a * Michael J. Hudson, a Peter B. Iveson a and Charles Madic b a Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, England, and b Commissariat aá l'energie Atomique, BaÃtiment 399, BP 171, 30207 Bagnols-sur Ceze CEDEX, France Correspondence e-mail: m.g.b.drew@reading.ac.uk Received 1 November 1999 Accepted 10 January 2000 it becomes diprotonated, cannot coordinate to the metal and also has increased solubility in the aqueous phase (HaÊ gstrom et al., 1999). However, in the presence of 2-bromopropionic acid, none of the heterocyclic N atoms in TPTZ were protonated, a fact which presumably re ects the lower basicity of the TPTZ N atoms compared with those in terpyridine. The structure of the title compound, (I), is shown in Fig. 1 and is the rst to be determined of a lanthanide(iii) nitrate/- TPTZ complex. The metal atom is ten-coordinate, being bonded to three N atoms from the TPTZ ligand, three nitrate anions and one water molecule. In addition, there are two water molecules in the asymmetric unit. The bond to the water molecule is by far the shortest at 2.420 (4) A Ê compared to 2.492 (4)±2.615 (4) A Ê for the SmÐO(nitrate) bonds. The SmÐN51 bond to the central N atom of the ligand is, at 2.571 (4) A Ê, signi cantly shorter than the other two bonds from the metal to the ligand, viz 2.644 (5) and 2.631 (4) A Ê. The title compound, aquatris(nitrato)[2,4,6-tris(2-pyridyl)- 1,3,5-triazine]samarium dihydrate, [Sm(NO 3 ) 3 (C 18 H 12 N 6 )- (H 2 O)]2H 2 O, was prepared from Sm(NO 3 ) 3 6H 2 O and 2,4,6-tris(2-pyridyl)-1,3,5-triazine. The metal atom is tencoordinate being bonded to the terdentate TPTZ ligand, three bidentate nitrates and a water molecule. Comment There is much current interest in the use of tridentate ligands such as 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ), and terpyridine and its derivatives, for the extraction and separation of metal ions (Chan et al., 1996; Byers et al., 1996). These ligands are being used in the nuclear industry as solvent extraction reagents since they are able to separate trivalent actinides An III in preference to lanthanides Ln III from nitric acid media in synergistic combination with a weak acid such as 2-bromodecanoic acid. The ligands have been found to form 1:1 complexes with lanthanides in the presence of nitric acid in which they act as an approximately planar tridentate ligand (Chan et al., 1996) and this is likely to be the mode in which they separate the metal ions. The inclusion of 2-bromopropionic acid in the complex preparation was an attempt to better replicate the conditions under which the liquid±liquid extraction experiments take place as it closely resembles the most often used synergist, 2-bromodecanoic acid. In the liquid±liquid extraction process, the ligand and synergist in hydrogenated tetrapropene are used to extract the metal ions from nitric acid media. We have shown previously that a mixture of 2-bromodecanoic acid, samarium nitrate and terpyridine (terpy) can result in the protonation of terpyridine and the formation of an ion pair of formula [(H 2 terpy)(no 3 )] + [Sm(terpy)(NO 3 ) 4 ] in which the diprotonated terpy is not coordinated to the Sm III ion (Drew, Hudson, Iveson, Russell, Liljenzin et al., 1998). The extraction performance of terpyridine has indeed been found to decrease at higher nitric acid concentrations because The angles subtended by the pyridine rings at the central triazine ring are 6.3 (2) and 4.9 (2) for the coordinated rings and 17.5 (2) for the uncoordinated ring. The metal atom is 0.05 A Ê from the plane of the central triazine ring. The structure of the TPTZ ligand has been published previously (Drew, Hudson, Iveson, Russell & Madic, 1998). Other high coordinate related structures containing this ligand include [Ce(TPTZ)(NO 3 ) 4 ] (Chan et al., 1996), in which the metal is 11-coordinate being bound to the terdentate TPTZ Figure 1 The structure of the title compound with ellipsoids scaled to 25% probability. H atoms are included with small arbitrary radii. 434 # 2000 International Union of Crystallography Printed in Great Britain ± all rights reserved Acta Cryst. (2000). C56, 434±435

metal-organic compounds and four bidentate nitrates, [Eu(TPTZ)Cl 3 (HOMe) 2 ] (Wietzke et al., 1999), in which the metal is eight-coordinate being bonded to the terdentate ligand, three chlorides and two solvent methanols, and [Pr(TPTZ)(OAc) 3 ] 2, a centrosymmetric dimer in which the metal is ten-coordinate being bonded to the terdentate ligand and three acetates, one of which bridges to the other metal (Wietzke et al., 1999). The MÐN bond lengths in the present structure are, as expected, shorter than the CeÐN and PrÐN distances [2.720 (8), 2.673 (7), 2.733 (7); 2.674 (6), 2.687 (7), 2.717 (6) A Ê ] and comparable with the EuÐN distances [2.646 (6), 2.555 (5), 2.646 (6) A Ê ] in the above TPTZ structures. It is noteworthy that in TPTZ metal complexes, the unbonded pyridine N atoms form hydrogen bonds with solvent molecules. Thus, in the above Eu and Pr structures, solvent methanol forms a bifurcated hydrogen bond to N82 and N55 (using the numbering scheme in the present structure), while in the present structure, the water molecule O300 forms a single hydrogen bond to N82 at 2.801 (6) A Ê. There is an extensive hydrogen-bond pattern in the crystal involving the three water molecules (see Table 1). Experimental The title compound was prepared by initially adding Sm(NO 3 ) 3 6H 2 O (0.0711 g, 0.16 mmol) in CH 3 CN (10 ml) dropwise to a stirred solution containing TPTZ (0.05 g, 16 mmol) in CH 3 CN (10 ml). After stirring for a few minutes, 2-bromopropionic acid (0.024 g, 0.16 mmol) was added and the solution was stirred for a further 30 min. It did not prove necessary to separate out the acid and suitable crystals were obtained after three weeks at room temperature. Crystal data [Sm(NO 3 ) 3 (C 18 H 12 N 6 )(H 2 O)]2H 2 O M r = 702.76 Triclinic, P1 a = 9.592 (12) A Ê b = 11.989 (14) A Ê c = 12.574 (14) A Ê = 115.219 (10) = 102.680 (10) = 94.734 (10) V = 1251 (3) A Ê 3 Data collection Marresearch Image Plate 95 frames at 2 intervals, counting time 2 min Absorption correction: empirical (DIFABS; Walker & Stuart, 1983) T min = 0.473, T max = 0.784 4275 measured re ections Z =2 D x = 1.866 Mg m 3 Mo K radiation Cell parameters from 4276 re ections = 1.97±25.99 = 2.428 mm 1 T = 293 (2) K Needle, colourless 0.30 0.10 0.10 mm 4275 independent re ections 4052 re ections with I > 2(I) max = 25.97 h =0! 11 k = 14! 14 l = 15! 14 Intensity decay: none Table 1 Selected hydrogen-bond geometry (A Ê ). O100O200 i 2.676 (6) O300O200 2.791 (7) O100O21 ii 2.838 (5) O300O33 iii 2.944 (6) O300O200 2.791 (7) Symmetry codes: (i) x; y; z; (ii) 1 x; 1 y; 1 z; (iii) x; 1 y; z. Re nement Re nement on F 2 R[F 2 >2(F 2 )] = 0.033 wr(f 2 ) = 0.094 S = 1.087 4275 re ections 380 parameters H atoms: see below w = 1/[ 2 (F o 2 ) + (0.0526P) 2 + 1.8862P] where P =(F o 2 +2F c 2 )/3 (/) max = 0.001 max = 0.92 e A Ê 3 min = 0.96 e A Ê 3 Extinction correction: SHELXL93 (Sheldrick, 1993) H atoms bonded to C atoms were introduced in calculated positions. H atoms bonded to the water ligand were located from a difference Fourier map, but those on the free water molecules were not located and not included. All H atoms were re ned with displacement parameters xed at values of 1.2 times that of the atom to which they were bonded. Data collection: XDS (Kabsch, 1988); cell re nement: XDS; data reduction: XDS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to re ne structure: SHELXL93 (Sheldrick, 1993); molecular graphics: PLATON (Spek, 1994). We thank EPSRC and the University of Reading for funds for the Image Plate system and the EC for support (contract F141-CT-96-0010). Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1386). Services for accessing these data are described at the back of the journal. References Byers, P., Chan, G. Y. S., Drew, M. G. B. & Hudson, M. J. (1996). Polyhedron, 15, 2845±2849. Chan, G. Y. S., Drew, M. G. B., Hudson, M. J., Isaacs, N. S. & Byers, P. (1996). Polyhedron, 15, 3385±3398. Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L., Liljenzin, J. O., SkaÊlberg, M., Spjuth, L. & Madic, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2973±2982. Drew, M. G. B., Hudson, M. J., Iveson, P. B., Russell, M. L. & Madic, C. (1998). Acta Cryst. C54, 985±987. HaÊgstrom, I., Spjuth, L., Enarsson, A., Liljenzin, J. O., SkaÊlberg, M., Hudson, M. J., Iveson, P. B., Madic, C., Cordier, P. Y., Hill, C. & Francois, N. (1999). Solv. Extract. Ion Exch. 17, 221±228. Kabsch, W. (1988). J. Appl. Cryst. 21, 916±932. Sheldrick, G. M. (1990). Acta Cryst. A46, 467±473. Sheldrick, G. M. (1993). SHELXL93. University of GoÈttingen, Germany. Spek, A. L. (1994). PLATON. University of Utrecht, The Netherlands. Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158±166. Wietzke, R., Mazzanti, M., Latour, J. M. & Pecaut, J. (1999). Inorg. Chem. 38, 3581±3585. Acta Cryst. (2000). C56, 434±435 Michael G. B. Drew et al. [Sm(NO 3 ) 3 (C 18 H 12 N 6 )(H 2 O)]2H 2 O 435

supporting information [doi:10.1107/s0108270100000615] [Sm(NO 3 ) 3 (TPTZ)(H 2 O)] 2H 2 O [TPTZ is 2,4,6-tris(2-pyridyl)-1,3,5-triazine] Michael G. B. Drew, Michael J. Hudson, Peter B. Iveson and Charles Madic Computing details Data collection: XDS (Kabsch, 1991); cell refinement: XDS; data reduction: XDS; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: PLATON (Spek,1994). (I) Crystal data [Sm(NO 3 ) 3 (C 18 H 12 N 6 )(H 2 O)] 2H 2 O M r = 702.76 Triclinic, P1 a = 9.592 (12) Å b = 11.989 (14) Å c = 12.574 (14) Å α = 115.219 (10) β = 102.68 (1) γ = 94.734 (10) V = 1251 (3) Å 3 Data collection Marresearch Image Plate diffractometer Radiation source: fine-focus sealed tube Graphite monochromator 95 frames at 2 intervals, counting time 2 min. scans Absorption correction: empirical (using intensity measurements) DIFABS (Walker & Stuart, 1983) Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.033 wr(f 2 ) = 0.094 S = 1.09 4275 reflections 380 parameters 3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Z = 2 F(000) = 694 D x = 1.866 Mg m 3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 4276 reflections θ = 2.0 26.0 µ = 2.43 mm 1 T = 293 K Needle, colourless 0.30 0.10 0.10 mm T min = 0.473, T max = 0.784 4275 measured reflections 4275 independent reflections 4052 reflections with I > 2σ(I) R int = 0.000 θ max = 26.0, θ min = 3.2 h = 0 11 k = 14 14 l = 15 14 Hydrogen site location: see text See text Calculated w = 1/[σ 2 (F o2 ) + (0.0526P) 2 + 1.8862P] where P = (F o 2 + 2F c2 )/3 (Δ/σ) max = 0.001 Δρ max = 0.92 e Å 3 Δρ min = 0.96 e Å 3 Extinction correction: SHELXL93 (Sheldrick, 1993), Fc * =kfc[1+0.001xfc 2 λ 3 /sin(2θ)] -1/4 Extinction coefficient: none sup-1

Special details Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > σ(f 2 ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq Sm 0.26660 (2) 0.341971 (17) 0.238013 (16) 0.02055 (10) O11 0.2244 (4) 0.1123 (3) 0.1788 (4) 0.0497 (10) N12 0.0877 (5) 0.0903 (4) 0.1548 (3) 0.0313 (9) O13 0.0301 (4) 0.1826 (4) 0.1646 (4) 0.0409 (9) O14 0.0166 (6) 0.0122 (4) 0.1245 (4) 0.0558 (12) O21 0.3043 (4) 0.5373 (3) 0.4331 (3) 0.0357 (8) N22 0.2169 (5) 0.4944 (4) 0.4779 (3) 0.0335 (9) O23 0.1516 (4) 0.3822 (4) 0.4118 (3) 0.0436 (9) O24 0.1984 (5) 0.5616 (5) 0.5752 (4) 0.0587 (12) O31 0.3350 (4) 0.5199 (4) 0.1934 (4) 0.0425 (9) O34 0.5164 (4) 0.4947 (4) 0.3089 (4) 0.0412 (9) N32 0.4680 (5) 0.5547 (4) 0.2546 (4) 0.0358 (9) O33 0.5434 (5) 0.6451 (4) 0.2567 (5) 0.0663 (14) O100 0.4424 (4) 0.2997 (4) 0.3794 (3) 0.0392 (9) H11 0.522 (4) 0.348 (4) 0.429 (5) 0.047* H12 0.431 (6) 0.232 (3) 0.384 (5) 0.047* N51 0.1686 (4) 0.2754 (3) 0.0079 (3) 0.0217 (7) C52 0.2427 (5) 0.2169 (4) 0.0729 (4) 0.0245 (9) N53 0.1970 (4) 0.1838 (4) 0.1920 (3) 0.0295 (8) C54 0.0703 (5) 0.2107 (4) 0.2305 (4) 0.0259 (9) N55 0.0124 (4) 0.2686 (4) 0.1578 (3) 0.0263 (8) C56 0.0433 (4) 0.3005 (4) 0.0395 (4) 0.0213 (8) C61 0.0379 (4) 0.3723 (4) 0.0463 (4) 0.0218 (8) N62 0.0264 (4) 0.4157 (3) 0.1669 (3) 0.0245 (7) C63 0.0458 (6) 0.4808 (5) 0.2448 (4) 0.0323 (10) H63 0.0033 0.5107 0.3283 0.039* C64 0.1812 (5) 0.5059 (4) 0.2067 (4) 0.0328 (10) H64 0.2278 0.5515 0.2640 0.039* C65 0.2455 (5) 0.4635 (5) 0.0852 (5) 0.0356 (10) H65 0.3367 0.4789 0.0581 0.043* C66 0.1716 (5) 0.3963 (5) 0.0018 (4) 0.0311 (10) H66 0.2112 0.3683 0.0818 0.037* C71 0.3860 (5) 0.1924 (4) 0.0252 (4) 0.0259 (9) N72 0.4334 (4) 0.2362 (4) 0.0982 (4) 0.0300 (8) C73 0.5653 (5) 0.2191 (5) 0.1437 (5) 0.0377 (11) sup-2

H73 0.6009 0.2491 0.2279 0.045* C74 0.6509 (6) 0.1581 (6) 0.0695 (6) 0.0426 (12) H74 0.7422 0.1489 0.1049 0.051* C75 0.6030 (6) 0.1119 (6) 0.0535 (6) 0.0448 (13) H75 0.6589 0.0694 0.1036 0.054* C76 0.4664 (6) 0.1304 (5) 0.1028 (5) 0.0392 (12) H76 0.4302 0.1011 0.1869 0.047* C81 0.0191 (6) 0.1813 (4) 0.3619 (4) 0.0287 (10) N82 0.1200 (5) 0.1849 (5) 0.4060 (4) 0.0398 (10) C83 0.1640 (8) 0.1658 (7) 0.5223 (5) 0.0513 (15) H83 0.2599 0.1690 0.5539 0.062* C84 0.0729 (8) 0.1416 (6) 0.5968 (5) 0.0503 (15) H84 0.1075 0.1281 0.6773 0.060* C85 0.0674 (7) 0.1376 (5) 0.5520 (5) 0.0458 (13) H85 0.1304 0.1215 0.6011 0.055* C86 0.1156 (6) 0.1578 (5) 0.4325 (4) 0.0370 (11) H86 0.2116 0.1556 0.3998 0.044* O300 0.3719 (5) 0.1569 (4) 0.3342 (4) 0.0536 (10) O200 0.4386 (7) 0.1045 (5) 0.4304 (5) 0.0800 (18) Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 Sm 0.02075 (14) 0.02083 (14) 0.01938 (13) 0.00350 (9) 0.00507 (9) 0.00896 (9) O11 0.040 (2) 0.0314 (19) 0.069 (3) 0.0069 (17) 0.0099 (19) 0.0176 (18) N12 0.042 (2) 0.0262 (19) 0.0203 (17) 0.0012 (18) 0.0081 (16) 0.0073 (14) O13 0.0292 (18) 0.0345 (19) 0.055 (2) 0.0018 (16) 0.0118 (16) 0.0180 (17) O14 0.073 (3) 0.0296 (19) 0.055 (3) 0.014 (2) 0.015 (2) 0.0156 (18) O21 0.043 (2) 0.0311 (16) 0.0287 (16) 0.0032 (15) 0.0130 (14) 0.0087 (13) N22 0.034 (2) 0.047 (2) 0.0200 (18) 0.0097 (19) 0.0086 (16) 0.0149 (17) O23 0.041 (2) 0.049 (2) 0.041 (2) 0.0008 (18) 0.0152 (16) 0.0213 (17) O24 0.057 (3) 0.082 (3) 0.032 (2) 0.019 (2) 0.0210 (18) 0.017 (2) O31 0.036 (2) 0.046 (2) 0.048 (2) 0.0008 (17) 0.0006 (16) 0.0304 (18) O34 0.0302 (18) 0.041 (2) 0.052 (2) 0.0042 (16) 0.0079 (16) 0.0229 (18) N32 0.039 (2) 0.0262 (19) 0.044 (2) 0.0038 (18) 0.0202 (19) 0.0133 (18) O33 0.053 (3) 0.041 (2) 0.115 (4) 0.002 (2) 0.037 (3) 0.040 (3) O100 0.040 (2) 0.0368 (19) 0.0346 (18) 0.0041 (16) 0.0075 (15) 0.0211 (16) N51 0.0206 (16) 0.0242 (17) 0.0193 (16) 0.0040 (14) 0.0070 (13) 0.0087 (13) C52 0.024 (2) 0.027 (2) 0.0216 (19) 0.0023 (17) 0.0096 (16) 0.0086 (16) N53 0.031 (2) 0.0303 (19) 0.0258 (18) 0.0062 (16) 0.0111 (15) 0.0104 (15) C54 0.033 (2) 0.0221 (19) 0.0191 (19) 0.0000 (18) 0.0060 (16) 0.0076 (16) N55 0.0251 (18) 0.0305 (18) 0.0228 (17) 0.0040 (15) 0.0056 (14) 0.0125 (15) C56 0.0217 (19) 0.0206 (18) 0.0208 (19) 0.0004 (16) 0.0067 (15) 0.0090 (15) C61 0.0190 (19) 0.0241 (19) 0.0234 (19) 0.0051 (16) 0.0068 (15) 0.0112 (16) N62 0.0270 (18) 0.0274 (18) 0.0222 (17) 0.0061 (15) 0.0118 (14) 0.0117 (14) C63 0.038 (3) 0.036 (2) 0.022 (2) 0.008 (2) 0.0124 (18) 0.0104 (18) C64 0.035 (2) 0.030 (2) 0.039 (3) 0.014 (2) 0.021 (2) 0.0143 (19) C65 0.029 (2) 0.039 (3) 0.039 (3) 0.012 (2) 0.009 (2) 0.017 (2) sup-3

C66 0.025 (2) 0.039 (2) 0.028 (2) 0.009 (2) 0.0063 (17) 0.0147 (19) C71 0.025 (2) 0.026 (2) 0.027 (2) 0.0043 (18) 0.0102 (17) 0.0109 (17) N72 0.0247 (19) 0.033 (2) 0.032 (2) 0.0061 (16) 0.0087 (15) 0.0149 (16) C73 0.026 (2) 0.050 (3) 0.041 (3) 0.013 (2) 0.010 (2) 0.023 (2) C74 0.027 (2) 0.052 (3) 0.057 (3) 0.015 (2) 0.013 (2) 0.030 (3) C75 0.038 (3) 0.045 (3) 0.060 (4) 0.022 (3) 0.029 (3) 0.023 (3) C76 0.035 (3) 0.042 (3) 0.038 (3) 0.012 (2) 0.016 (2) 0.012 (2) C81 0.041 (3) 0.024 (2) 0.019 (2) 0.0030 (19) 0.0094 (18) 0.0078 (16) N82 0.044 (3) 0.051 (3) 0.025 (2) 0.010 (2) 0.0083 (18) 0.0185 (19) C83 0.052 (3) 0.070 (4) 0.034 (3) 0.017 (3) 0.007 (2) 0.028 (3) C84 0.070 (4) 0.060 (4) 0.024 (2) 0.015 (3) 0.011 (2) 0.022 (2) C85 0.059 (4) 0.049 (3) 0.035 (3) 0.011 (3) 0.027 (3) 0.018 (2) C86 0.040 (3) 0.041 (3) 0.028 (2) 0.002 (2) 0.014 (2) 0.013 (2) O300 0.056 (3) 0.044 (2) 0.053 (2) 0.008 (2) 0.014 (2) 0.0151 (19) O200 0.097 (4) 0.050 (3) 0.080 (3) 0.003 (3) 0.019 (3) 0.042 (3) Geometric parameters (Å, º) Sm O100 2.420 (4) N53 C54 1.325 (7) Sm O21 2.491 (4) C54 N55 1.348 (6) Sm O11 2.497 (5) C54 C81 1.487 (6) Sm O31 2.500 (4) N55 C56 1.333 (6) Sm O23 2.544 (4) C56 C61 1.483 (6) Sm O13 2.552 (4) C61 N62 1.347 (6) Sm N51 2.571 (4) C61 C66 1.387 (7) Sm O34 2.615 (4) N62 C63 1.336 (6) Sm N72 2.632 (4) C63 C64 1.386 (7) Sm N62 2.644 (5) C64 C65 1.359 (7) O11 N12 1.258 (6) C65 C66 1.397 (7) N12 O14 1.212 (6) C71 N72 1.359 (6) N12 O13 1.249 (6) C71 C76 1.381 (7) O21 N22 1.291 (5) N72 C73 1.340 (7) N22 O24 1.206 (6) C73 C74 1.390 (8) N22 O23 1.254 (6) C74 C75 1.351 (9) O31 N32 1.265 (6) C75 C76 1.399 (8) O34 N32 1.238 (6) C81 N82 1.340 (7) N32 O33 1.239 (6) C81 C86 1.383 (7) N51 C56 1.338 (6) N82 C83 1.340 (7) N51 C52 1.349 (5) C83 C84 1.377 (9) C52 N53 1.331 (6) C84 C85 1.354 (10) C52 C71 1.480 (7) C85 C86 1.377 (8) O100 Sm O21 78.72 (15) O23 N22 O21 115.4 (4) O100 Sm O11 69.51 (14) N22 O23 Sm 96.3 (3) O21 Sm O11 134.53 (14) N32 O31 Sm 99.0 (3) O100 Sm O31 120.05 (13) N32 O34 Sm 94.1 (3) O21 Sm O31 74.27 (15) O33 N32 O34 123.3 (5) O11 Sm O31 150.36 (16) O33 N32 O31 119.2 (5) sup-4

O100 Sm O23 76.90 (17) O34 N32 O31 117.5 (4) O21 Sm O23 50.57 (13) O33 N32 Sm 175.4 (4) O11 Sm O23 90.13 (14) O34 N32 Sm 61.3 (2) O31 Sm O23 118.91 (14) O31 N32 Sm 56.2 (2) O100 Sm O13 107.45 (15) C56 N51 C52 115.3 (4) O21 Sm O13 116.66 (13) C56 N51 Sm 122.3 (3) O11 Sm O13 49.42 (14) C52 N51 Sm 122.3 (3) O31 Sm O13 132.49 (13) N53 C52 N51 123.9 (4) O23 Sm O13 69.14 (14) N53 C52 C71 118.1 (4) O100 Sm N51 141.02 (14) N51 C52 C71 118.0 (4) O21 Sm N51 136.49 (13) C54 N53 C52 116.3 (4) O11 Sm N51 86.11 (13) N53 C54 N55 124.6 (4) O31 Sm N51 69.47 (13) N53 C54 C81 117.9 (4) O23 Sm N51 134.94 (14) N55 C54 C81 117.5 (4) O13 Sm N51 74.70 (12) C56 N55 C54 115.0 (4) O100 Sm O34 70.80 (14) N55 C56 N51 124.8 (4) O21 Sm O34 65.91 (13) N55 C56 C61 117.5 (4) O11 Sm O34 127.47 (14) N51 C56 C61 117.7 (4) O31 Sm O34 49.40 (13) N62 C61 C66 122.7 (4) O23 Sm O34 112.66 (14) N62 C61 C56 117.1 (4) O13 Sm O34 176.78 (11) C66 C61 C56 120.1 (4) N51 Sm O34 104.87 (12) C63 N62 C61 117.4 (4) O100 Sm N72 80.37 (16) C63 N62 Sm 122.5 (3) O21 Sm N72 134.74 (13) C61 N62 Sm 119.4 (3) O11 Sm N72 71.23 (14) N62 C63 C64 123.0 (4) O31 Sm N72 82.45 (15) C65 C64 C63 119.7 (4) O23 Sm N72 154.59 (14) C64 C65 C66 118.6 (5) O13 Sm N72 107.76 (14) C61 C66 C65 118.6 (4) N51 Sm N72 62.77 (13) N72 C71 C76 122.8 (5) O34 Sm N72 69.42 (15) N72 C71 C52 116.1 (4) O100 Sm N62 154.48 (13) C76 C71 C52 121.2 (4) O21 Sm N62 83.53 (13) C73 N72 C71 117.0 (4) O11 Sm N62 112.75 (13) C73 N72 Sm 122.3 (3) O31 Sm N62 71.46 (13) C71 N72 Sm 120.7 (3) O23 Sm N62 77.67 (14) N72 C73 C74 122.4 (5) O13 Sm N62 64.80 (15) C75 C74 C73 120.8 (5) N51 Sm N62 62.86 (11) C74 C75 C76 117.7 (5) O34 Sm N62 117.96 (15) C71 C76 C75 119.3 (5) N72 Sm N62 124.96 (13) N82 C81 C86 122.1 (4) N12 O11 Sm 99.1 (3) N82 C81 C54 117.6 (4) O14 N12 O13 122.2 (5) C86 C81 C54 120.2 (5) O14 N12 O11 123.0 (5) C83 N82 C81 117.6 (5) O13 N12 O11 114.8 (4) N82 C83 C84 122.7 (6) N12 O13 Sm 96.7 (3) C85 C84 C83 119.5 (5) N22 O21 Sm 97.8 (3) C84 C85 C86 119.0 (5) O24 N22 O23 124.0 (5) C85 C86 C81 119.1 (5) O24 N22 O21 120.6 (5) sup-5