Chapter 5 Waveguides and Resonators

Similar documents
Waveguide Guide: A and V. Ross L. Spencer

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

Candidates must show on each answer book the type of calculator used.

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 8. Waveguides Part 5: Coaxial Cable

Homework Assignment #1 Solutions

Patch Antennas. Chapter Resonant Cavity Analysis

This final is a three hour open book, open notes exam. Do all four problems.

Summary: Method of Separation of Variables

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance

ECE Microwave Engineering

ECE 222b Applied Electromagnetics Notes Set 4b

Chapter 6 Polarization and Crystal Optics

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Light and Optics Propagation of light Electromagnetic waves (light) in vacuum and matter Reflection and refraction of light Huygens principle

Lecture Outline. Dispersion Relation Electromagnetic Wave Polarization 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3c

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points

EECS 117 Lecture 26: TE and TM Waves

POLYPHASE CIRCUITS. Introduction:

REVIEW SHEET FOR PRE-CALCULUS MIDTERM

Phys 6321 Final Exam - Solutions May 3, 2013

PHYSICS ASSIGNMENT-9

R. I. Badran Solid State Physics

Chapter 4 Reflection and Transmission of Waves

Homework Assignment 9 Solution Set

( ) 2. ( ) is the Fourier transform of! ( x). ( ) ( ) ( ) = Ae i kx"#t ( ) = 1 2" ( )"( x,t) PC 3101 Quantum Mechanics Section 1

Physics Graduate Prelim exam

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Wave Phenomena Physics 15c. Lecture 12 Multi-Dimensional Waves

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

Electromagnetism Answers to Problem Set 10 Spring 2006

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Operations with Polynomials

Reference. Vector Analysis Chapter 2

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

The Velocity Factor of an Insulated Two-Wire Transmission Line

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

fractions Let s Learn to

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2

5.2 Volumes: Disks and Washers

( β ) touches the x-axis if = 1

P 1 (x 1, y 1 ) is given by,.

#6A&B Magnetic Field Mapping

Designing Information Devices and Systems I Discussion 8B

Conducting Ellipsoid and Circular Disk

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

DIFFRACTION OF LIGHT

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University

QUADRATIC EQUATIONS OBJECTIVE PROBLEMS

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

M344 - ADVANCED ENGINEERING MATHEMATICS

ragsdale (zdr82) HW2 ditmire (58335) 1

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

5.2 Exponent Properties Involving Quotients

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

Version 001 HW#6 - Electromagnetism arts (00224) 1

Partial Differential Equations

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

Chapter 6 Notes, Larson/Hostetler 3e

Homework Assignment 5 Solution Set

Homework Assignment 6 Solution Set

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

PROPERTIES OF AREAS In general, and for an irregular shape, the definition of the centroid at position ( x, y) is given by

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 2 Total 40 Points. 1. Problem Points

LENS ANALYSIS METHODS FOR QUASIOPTICAL SYSTEMS

Physics 2135 Exam 3 April 21, 2015

1 Which of the following summarises the change in wave characteristics on going from infra-red to ultraviolet in the electromagnetic spectrum?

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

SUPPLEMENTARY INFORMATION

Math 113 Exam 2 Practice

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

Sections 1.3, 7.1, and 9.2: Properties of Exponents and Radical Notation

Problems for HW X. C. Gwinn. November 30, 2009

5.7 Improper Integrals

Diffraction. Diffraction and Polarization. Diffraction. Diffraction. Diffraction I. Angular Spread: θ ~ λ/a

Chapter 1: Fundamentals

Loudoun Valley High School Calculus Summertime Fun Packet

Optimization Lecture 1 Review of Differential Calculus for Functions of Single Variable.

Department of Electrical and Computer Engineering, Cornell University. ECE 4070: Physics of Semiconductors and Nanostructures.

Physics 202, Lecture 14

DERIVATIVES NOTES HARRIS MATH CAMP Introduction

Chapter E - Problems

13: Diffusion in 2 Energy Groups


Math 124A October 04, 2011

The Wave Equation I. MA 436 Kurt Bryan

Kai Sun. University of Michigan, Ann Arbor

Mathematics. Area under Curve.

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

Things to Memorize: A Partial List. January 27, 2017

ECE Microwave Engineering. Fall Prof. David R. Jackson Dept. of ECE. Notes 10. Waveguides Part 7: Transverse Equivalent Network (TEN)

Name Solutions to Test 3 November 8, 2017

Aike ikx Bike ikx. = 2k. solving for. A = k iκ

Transcription:

5-1 Chpter 5 Wveguides nd Resontors Dr. Sturt Long

5- Wht is wveguide (or trnsmission line)? Structure tht trnsmits electromgnetic wves in such wy tht the wve intensity is limited to finite cross-sectionl re In this chpter we will focus on three types of wveguides: Prllel-Plte Wveguides. Rectngulr Wveguides. Coil Lines.

http://cl-crete.physics.uoc.gr/vlf-sprites/imges/wveguide.jpg 5-3

5-4 Prllel Plte Wveguide www.mnogw.com/trnsmission.html

5-5 Prllel Plte Wveguide www.mnogw.com/trnsmission.html Assume both pltes to be perfect conductors. Assume wveguide to be very lrge in ŷ direction (w>>λ). Field vectors hve no y-dependence 0. y Neglect ny fringing fields t y0 nd yw. Propgtion long the ˆ + direction.

5-6 Prllel Plte Wveguide From Mwell Equtions ( E, H, H ) TE (Trnsverse Electric) E 0 y or ( H, E, E ) TM (Trnsverse Mgnetic) H 0 y (Sect. 5.1)

5-7 TE Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html (,, ) E H H B.C. t 0 nd E 0 y y Remember: 0 y The wve eqution for the TE cse derived from Mwell's Equtions is + + ω με Ey 0

5-8 TE Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html For ppg. in +ˆ direction with E E sin( k ) e y 0 jk (stisfies B.C t 0) (5.5) + ω με k k k (5.6) To stisfy B.C. ( E 0) t y k mπ ( m is ny integer ecept 0) (5.7)

5-9 TE Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html The Electric field cn be epressed in nother form by substituting in for k E with k mπ E sin e y 0 jk 1 1 mπ mλ ω με ω με 1 where λ π k

5-10 TE Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html The guided wve propgtes with the phse velocity v p ω 1 1 k με mλ 1 Note: k is imginry for k mπ < k or ω με < or λ > m If k becomes imginry, the wve will ttenute eponentilly, nd the velocity for the guided wve will lso become undefined.

5-11 TE Wves in Prllel Plte Wveguides ω c π m με www.mnogw.com/trnsmission.html f c ωc m ( cutoff frequency of TE mode) m π με frequency t which becomes imginry k eponentil ttenution when f < fc λ c m ( of TE mode) cutoff wvelength wvelength t which becomes imginry m k

5-1 Physicl Interprettion TE mode E mπ E sin e y 0 jk E y je0 e jk jk e jk jk (5.8) wve trv. in +ˆ nd +ˆ dir. coef f je 0 wve trv. in - ˆ nd +ˆ dir. coeff - je 0

5-13 Physicl Interprettion of Guided Wves k mπ 3π π k π 3.5π For this cse k so modes m 1,,3 will ppg. but for m 4, k is imginry. k k (fig 5.3) k k mπ 1 (5.9)

5-14 TM Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html - ( H y,e,e) cn find Hy H0cos k e jk E ~ H y E ~ sin k For B.C. t ( E 0) 0, k mπ

5-15 TM Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html For ppg. in +ˆ direction H H cos y 0 ( ) k e jk (stisfies B.C t 0) with + ω με k k k To stisfy B.C. ( E 0 ) t k mπ ( m is ny integer including 0 )

5-16 TM Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html The field solutions cn be epressed in nother form by substituting in for wi th k k H mπ H cos e y 0 jk 1 mπ mλ ω με ω με 1 1 where λ π k

5-17 TM Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html since E ~ H y k mπ E H0sin e jωε jk E k mπ cos e ωε H0 jk

5-18 TM Wves in Prllel Plte Wveguides www.mnogw.com/trnsmission.html Remember tht for TM wves we cn now hve m 0. For TM 0 m 0. k 0 k ω με k For this cse E nd H re both perpendiculr to the direction of propgtion ( ˆ ). We refer to this cse s TEM mode (Trnsverse Electromgnetic)

5-19 TM 0 mode www.mnogw.com/trnsmission.html The field solutions for the TM or TEM mode re given by 0 H E y 0 0 E 0 He ηh e jk jk (5.13) (5.13b) or equivlently E Ee 0 jk H y E0 e jk η

5-0 Physicl Interprettion TEM mode J s n J s n (on bottom plte) J s E nˆ H ˆ yˆ e ˆ 0 η E e η 0 jk 0 jk (5.13c) ρ nˆid ˆiεE εe e s 0 jk (5.11d) (on top plte n - ˆ ) - J s s ˆ E0 e η ρ εe e 0 jk jk

5-1 Microstrip Lines microstrip line www.mnogw.com/trnsmission.html dielectric substrte ground plne

5- Microstrip Lines The time-verge Poynting power density cn be found by: 1 S Re E H S 1 - jk E0 + jk Re Ee 0 e ( ˆ ˆ) y η S ˆ E 0 η

5-3 Microstrip Lines www.mnogw.com/trnsmission.html ε ε 0 qusi TEM-fields k ω με www.mnogw.com/trnsmission.html ε > ε 0

5-4 Rectngulr Wveguide y b

5-5 Rectngulr Wveguide MAX EQN HELMHOLTZ EQN (wve eqution) E+ ωμεe 0 H+ ωμεh 0 6 EQNS like H H H + + + ωμεh y 0

5-6 Rectngulr Wveguide For seprble solution ssume 1 X 1 Y 1 Z H ( y,, ) X( ) Y( y) Z( ) + + X Y y Z ω με ech term is constnt -k - k - k ωμε y 1 X X -k X 0 + k X

5-7 Rectngulr Wveguide X c sin k + c cos k 1 Y c sin k y+ c cos k y 3 y 4 y Z ce + ce jk + jk 5 6 H X Y Z Using M. eqns. cn solve for trnsverse fields (E, E in terms of longtitudinl one s (E,H ) y, H, H ) y

5-8 Rectngulr Wveguide jk E jωμ H jk E jωμ H E E + k k k k ; y c c y c y c jk H jωε E jk H jωε E H + H k k k k ; y c c y c y c where c + y ω με k k k k

5-9 Rectngulr Wveguide Specil cses 1) when E 0 ; H 0 Trnsverse Electric mode ( TE) ) when H 0 ; E 0 Trnsverse Mgnetic mode ( TM) If E H 0 ll comp. 0 Trnsverse ElectricMgnetic mode ( TEM) cn not eist

Rectngulr Wveguide TE-Cse (E 0) B.C. tngentil E 0 t 0, nd y 0, b H Side wlls E y ~ 0 (t 0, ) mπ E y ~ kc 1cosk kc sink c1 0 nd k H Top nd bottom wlls E ~ 0 ( t y 0, b) y E ~ kc cosky kc y 3 y y 4 nπ sin kyy c3 0 nd ky b y b 5-30 Let ccc H H 5 4 0 XYZ H H 0 mπ nπy cos cos e b jk

5-31 Rectngulr Wveguide TE-Cse (E 0) y b Propgtion constnt k k - k c where k c mπ nπ + b substituing in for k c k mπ nπ ωμε- - b (5.19) Note: propgtion ( k rel) for k > k c eponentil ttenution ( k imginry) for k < k c

5-3 Rectngulr Wveguide TE-Cse (E 0) y b f c ω 1 c mπ π + π π με b 1 n of m ( cutoff frequency TE ode) mn frequency t which k becomes imginry (5.1) eponentil ttenution when f < fc λ g π π ( of TE mode) guide wvelength k k - kc wvelength t which becomes imginry mn k (5.0) defines doubly infinite set of modes TE mn

5-33 Rectngulr Wveguide TM-Cse (H 0) y b mπ E E0sin sin nπy b e jk (5.18) Sme k, k, f, λ s c c g TE For TM m 0 ; nd n 0 lowest order (smllest f ) is TM c 11 The lowest order of ll is TE clled DOMINANT MODE for rectngulr wveguides ( no TEM possible) (there eist frequency rnge were only it cn propgte) 10

5-34 Rectngulr Wveguide TE 10 mode (m1, n0) y b H H 0 π cos e jk jωμ H jωμ H jωμ π E 0 E sin y k ; y H 0 kc kc c e jk jk H jk π jk H H sin H 0 k y jk H 0 e ; y kc c kc

5-35 Rectngulr Wveguide TE 10 mode (m1, n0) y b k π k 1 λc ; fc ; kc με π λ g π k λ λ 1 Note: these re the eqns. found in slide 5-3 nd 5-33 with m1 nd n0

Physicl Interprettion TE 10 mode (m1, n0) y b 5-36

8 1 000000 0. 7 5 k ω ω versus k grph 5-37 TM 11 ω c11 TE 11 TE 10 k ω με ω c10 v p θ ω tnθ (function of frequency ) k where c k k k nd v g ω k

5-38 Design of Prcticl Rectngulr Wveguide (Emple 5.4) y f c 1 1 mπ nπ + π με b b f f f c c c TE 10 TE 01 TE 0 1 1 με 1 1 με b 1 με

5-39 Design of Prcticl Rectngulr Wveguide (Cont. e.g 5.4) y b for b> for b< TE 01 b TE 10 TM 0 b TE10 TM0 TE 01 for b TE 10 TE TM 01 0 TE TM 11 11 1 3 f c f c TE 10

5-40 Design of Prcticl Rectngulr Wveguide ( Emple 5.3) y Trnsmitting Power in wveguide 1 S Re E H [ TE mode ] 10 b S 0 E k ˆ π sin ωμ Time-verge Poynting vector P b 00 S i ˆ ddy P E 0 bk 4ωμ Totl trnsmitted power

5-41 Design of Prcticl Rectngulr Wveguide (Cont. e.g 5.3) y b Note: Do not wnt b > for bndwith Do not wnt b smll for power hndling P 0 E bk 4ωμ Usul cse b

5-4 Design of Prcticl Rectngulr Wveguide y b X-Bnd Wveguide (8-1 GH) f c TE 10 6. 55 GH f c TE 0 13.1 GH f c TE 01 147. GH 0.9 b 0.4

5-43 Rectngulr Wveguide TE 10 mode y b H H 0 π cos e jk E jωμ H π y 0 π sin e jk jk π H H0sin π e jk

5-44 Rectngulr Wveguide TE 10 mode y b or E E y 0 π sin e jk where E jωμ H π 0 0 k π H E0sin ωμ e jk (5.3) H π E0 π cos jωμ e jk

5-45 Emple (Emple 5.5 & 5.6) Design Rectngulr wveguide with 10 GH ( λ 3cm) t Mid-Bnd nd b BW 3 10 3 10 < f < 8 8 let 1 3 10 3 10 + 8 8 9 10 10.5 cm b b 1.15 cm

5-46 Emple (Cont. e.g 5.5 & 5.6) M power hndling P E b 0 4Z TE where Z TE ωμ k [ Ω] E BD ir 10 6 V m tke E m 10 5 V m (sfety fctor of 10) Z TE 10 7 (π 10 )(4π 10 ) 505.8 Ω k ( π ) [ ]

5-47 Emple (Cont. e.g 5.5 & 5.6) note: k ( ) ( ) π 1 λ π 1 3 4.5 λ 3 k -1-1 1.561 cm 156.1 m P m 5 ( 10 ) (0.05)(0.0115) 4(505.8) 5.004 [ KW]

5-48 Coil Trnsmission Lines ε b

5-49 Cylindricl Coordintes ρ ẑ φˆ ˆρ y φ ( fig. 5.16) ˆ ρ φ ˆ ˆ

5-50 Coil Trnsmission Lines ε b Mwell Eqns. E V0 e ρ jk ˆ ρ ( 5.48) H V0 e ηρ jk ˆ φ ( 5.48b) k ω με ( 5.49) η μ ε ( 5.49b)

The Del Opertor in Cylindricl Coordintes ρ ẑ φˆ ˆρ 5-51 y φ ρˆ φ ˆ ˆ ( fig. 5.16) ia ( ρ ) ( ρ ) 1 Aρ 1 Aφ A + + ρ ρ ρ φ (5.44) ( ρ A ) 1 A A φ Aρ A ˆ 1 φ A ρ A ˆ ρ + - φ + ˆ ρ φ ρ ρ ρ φ (5.45)

5-5 Currents on Coil Lines H ε J s ˆn b J s ˆ V nˆ H ˆ ρ φ e ρ ηρ 0 jk 0 ρ ˆ V η e jk ( 5.50) I π J s 0 ρ φ πv η 0 e jk ( 5.50b)

5-53 Short-Circuited Co for < 0 both Incident Fields nd Reflected Fields eist 0 (Fig. 5.18) E V ˆ ρ e ρ V + e ρ 0 jk 1 + jk ( 5.5) H ˆ φ V e ρη V e ρη 0 jk 1 + jk ( 5.5b) B.C t 0 tngentil E 0 E 0 V V ρ 1 0

5-54 Short-Circuited Co ( 5.53) ( jk jk E ˆ ρ ) Similrly V + jv e e ˆ ρ k ρ 0 0 - sin ρ 0 (Fig. 5.18) ( 5.53b) H ˆ V φ ηρ 0 c osk To mesure stnding wve pttern cut longitudinl slot in outer conductor for moveble proble. Note: H totlly in ˆ φ direction so J s totlly in ˆ direction

5-55 Emple (Emple 5.8) ε b Clculte the trnsmitted power long coil line. V0 E e ρ V0 H e ηρ jk jk ˆ ρ ˆ φ TEM mode in coil line 1 1 V V ˆ V0 Re R ˆ ˆ e 0 jk 0 jk S E H e ρ e φ ρ ηρ ηρ P π V0 b ln η

5-56 Trnsmission Lines ε or more conductors, (TEM possible ) (long with TE nd TM) b Coil two-wire (shielded)

5-57 Trnsmission Lines or more conductors, (TEM possible ) (long with TE nd TM) www.mnogw.com/trnsmission.html Prllel Plte microstrip stripline Conductor Dielectric

5-58 Wveguides Rectngulr Ellipticl Ridged Circulr Opticl Fiber Dielectric Slb http://optics.org