Polycrystalline silicon as carrier selective contact for silicon solar cells. SPREE Seminar Talk Udo Römer

Similar documents
Quantitative Model of Unilluminated Diode part II. G.R. Tynan UC San Diego MAE 119 Lecture Notes

The pn junction: 2 Current vs Voltage (IV) characteristics

The Quantum Efficiency and Thermal Emittance of Metal Cathodes

Lecture 18 - Semiconductors - continued

Characteristics of Gliding Arc Discharge Plasma

Solid State Device Fundamentals

Quantitative Model of PV Cells The Illuminated Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Extraction of Doping Density Distributions from C-V Curves

Assignment # (1.0 %), 5.2 (0.6 %), 5.3 (1.0 %), 5.5 (0.4 %), 5.8 (1.0 %), 5.9 (0.4 %), 5.10 (0.6 %)

Evaluation of temperature characteri high-efficiency InGaP/InGaAs/Ge trip solar cells under concentration

Research Article Plasma-Induced Damage on the Reliability of Hf-Based High-k/Dual Metal-Gates Complementary Metal Oxide Semiconductor Technology

Silicon cell concepts - trends in research

Status of LAr TPC R&D (2) 2014/Dec./23 Neutrino frontier workshop 2014 Ryosuke Sasaki (Iwate U.)

λ = 2L n Electronic structure of metals = 3 = 2a Free electron model Many metals have an unpaired s-electron that is largely free

Studies of Turbulence and Transport in Alcator C-Mod Ohmic Plasmas with Phase Contrast Imaging and Comparisons with GYRO*

Physics 43 HW #9 Chapter 40 Key

Transport mechanisms of electrons and holes in dielectric films

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

Why is a E&M nature of light not sufficient to explain experiments?

Case Study 1 PHA 5127 Fall 2006 Revised 9/19/06

Analytical Modelling of conventional DMG-SOI MOSFET using Different Gate Dielectric Material

CS 152 Computer Architecture and Engineering

EE 232 Lightwave Devices Lecture 14: Quantum Well and Strained Quantum Well Laser. Quantum Well Gain

Nishioka, K; Takamoto, T; Agui, T; K Author(s) Uraoka, Y; Fuyuki, T. Solar Energy Materials and Solar Cel 57-67

Quantum transport in 2D

EE 232 Lightwave Devices Lecture 14: Quantum Well and Strained Quantum Well Laser. Quantum Well Gain

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

3-2-1 ANN Architecture

Lecture #15. Bipolar Junction Transistors (BJTs)


de/dx Effectively all charged particles except electrons

Molecular Orbitals in Inorganic Chemistry

Determination of Vibrational and Electronic Parameters From an Electronic Spectrum of I 2 and a Birge-Sponer Plot

Chapter 8: Electron Configurations and Periodicity

Chapter 3. Thin-Film Evaporation Processes. 1. Physical Vapor Deposition (PVD)

Electrochemistry L E O

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

Osmium doping of UAl 2. Department of Physics and Engineering Greenville, SC Department of Physics Gainesville, FL

PLASMA PHYSICS VIII. PROCESSING PLASMAS

Trigonometric functions

2008 AP Calculus BC Multiple Choice Exam

MEASURING HEAT FLUX FROM A COMPONENT ON A PCB

The influence of electron trap on photoelectron decay behavior in silver halide

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Electromagnetism Physics 15b

26-Sep-16. Nuclear energy production. Nuclear energy production. Nuclear energy production. Nuclear energy production

SPIN POLARIZED CHARGE CARRIER INJECTION,

Dynamic Screened Polar Optical Phonon. Scattering in Doped GaN

SP1001 Series - 8pF 15kV Unidirectional TVS Array

Atomic Physics. Final Mon. May 12, 12:25-2:25, Ingraham B10 Get prepared for the Final!

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

High resolution THz scanning for optimization of dielectric layer opening process on doped Si surfaces

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

Energy Bands, Basics of Transports and Optical Processes in Semiconductors

Physics 312 First Pledged Problem Set

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

STRESSES FROM LOADING ON RIGID PAVEMENT COURSES

PHOTOVOLTAICS Fundamentals

Solid State Theory Physics 545 Band Theory III

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

Seebeck and Peltier Effects

Research Article Heterovalent Cation Substitutional and Interstitial Doping in Semiconductor Sensitizers for Quantum Dot Cosensitized Solar Cell

4.4 Design of Sections for Flexure (Part III)

The failure of the classical mechanics

Scintillation, Afterglow and Thermoluminescence of CsI:Tl,Sm

LENR Reactions Using Clusters George H. Miley LENUCO LLC Champaign IL, ILNER 12 W&M VA

Spatial channeling of energy and momentum of energetic ions by destabilized Alfvén eigenmodes

How can I control light? (and rule the world?)

Charge Trapping in Amptek CdTe Detectors

Case Study II Single- and Multistage Micro Thermoelectric Coolers

General Physics (PHY 2140)

Electrochemical Energy Systems Spring 2014 MIT, M. Z. Bazant. Midterm Exam

Estimation of the two-photon QED background in Belle II

Compton Scattering. There are three related processes. Thomson scattering (classical) Rayleigh scattering (coherent)

Definition of Ablation testcase

Flow Switch Diaphragm Type Flow Switch IFW5 10 N Diaphragm type flow switch. Thread type. Model Body size Set flow rate

Finite Element Model of a Ferroelectric

High Energy Physics. Lecture 5 The Passage of Particles through Matter

OVERFLOW IN A CYLINDRICAL PIPE BEND. 1. Introduction. Fig. 1: Overflow in a cylindrical pipe bend

Principles of Humidity Dalton s law

Differentiation of Exponential Functions

Part 7: Capacitance And Capacitors

INTERMEDIATE2 1 Corrosion

Where k is either given or determined from the data and c is an arbitrary constant.

Chapter 1 Elements of Physics

26th European Photovoltaic Solar Energy Conference and Exhibition CHARACTERIZATION OF MULTILAYER LUMINESCENT SOLAR CONCENTRATORS

Serge 10% COLLECTION REFLECTS SUNLIGHT OUTDOORS GLASSFIBRE OF = 10%

Supplementary Materials

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

Classical Magnetic Dipole

Ecrano COLLECTION REFLECTS SUNLIGHT OUTDOORS GLASSFIBRE OF = 2%

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Fr Carrir : Carrir onntrations as a funtion of tmpratur in intrinsi S/C s. o n = f(t) o p = f(t) W will find that: n = NN i v g W want to dtrmin how m

Optoelectronics EE/OPE 451, OPT 444 Fall 2009 Section 1: T/Th 9:30-10:55 PM

EE243 Advanced Electromagnetic Theory Lec # 23 Scattering and Diffraction. Reading: Jackson Chapter , lite

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS

Sec 2.3 Modeling with First Order Equations

Nonlinear surface electron transport over liquid helium

Calculus II (MAC )

Transcription:

Polycrystallin silicon as carrir slctiv contact for silicon solar clls SPREE Sminar Talk Udo Römr 21.07.2016

Outlin Tory / undrstanding poly-si contacts Local ovrcompnsation via ion implantation Procss optimisation poly-si contacts Combination of ts tcnologis 1

Motivation Rmoving front sid mtal sadowing ~2.5 ma/cm² gain in J sc PERC solar cll Poly-Si rar contact solar cll Voltag can b nancd by rducing rcombination: V SP-PERC cll as J 0 of ~300 fa/cm² Poly-Si / c-si-junction: 15 fa/cm² for p-typ poly-si 1 and OC kt Jgn ln 1 q J0 20 fa/cm² for n-typ poly-si 1 ~70 mv gain in V oc [1] J. Y. Gan and R. M. Swanson, IEEE Trans. Elctron Dvics, vol. ED-37, pp.245-250 (1990) 2

Enrgy [V] Poly-Si contact: working principl Band diagram of a n-typ poly-si contact (sktc) lctron transport many dfcts fw intrfac dfcts intrfac oxid: largr tunnl barrir for ols tan for lctrons Passivation: Transport: Low Tunnl D it transport at wafr surfac troug du t to oxid ig 1 or quality oxid Fild ols ffct in t passivation oxid 2 du to igly dopd poly-si layr Dpt [nm] [1] Stinkmpr, Fldmann, Bivour, and Hrml, IEEE Journal of Potovoltaics, vol. 5, no. 5, pp. 1348 (2015) [2] Pibst, Römr, Hofmann, Lim, Witlr, Krügnr, Hardr, and Brndl, IEEE Journal of Potovoltaics, vol. 4, no. 3, pp. 841 (2014) 3

Poly-Si contact: transport RCA-oxid aftr 10 min at 950 C RCA-oxid aftr 10 min at 1100 C HR-TEM invstigations sow braking up of t oxid aftr ig tmpratur procssing Wolstnolm, Jorgnsn, Asburn, and Bookr, J. Appl. Pys. 61, 225 (1987) 4

Procss flow poly-si tst structurs 1-stp-procss / 2-stp-procss Tin oxidation Dposition of dopd poly-si layrs Annaling / cracking of t oxid 5

Procss flow poly-si tst structurs 1-stp-procss / 2-stp-procss Tin oxidation Dposition of undopd poly-si layrs Annaling / cracking of t oxid Doping 5

Masurmnt of t rcombination caractristics Flas lamp 2.4 nm trmal oxid 30 min at 1050 C J 0 -tst structur Coil J 0 = 5 fa/cm² J 0 -dtrmination wit potoconductanc masurmnt and Kan & Swanson mtod 1 [1] Kan and Swanson, Proc.of t 18t IEEE PVSC, pp. 578 583 (1985) 6

Dtrmination of t contact rsistanc R poly R bulk R abs R poly R poly R poly R bulk R bulk R poly R poly Inductiv st rsistanc masurmnt 4PP st rsistanc masurmnt If oxid is prfctly insulating: R 4PP ~ R poly rl ~ 1 If oxid is prfctly conducting: R 4PP ~ R abs rl ~ 0 Römr, Pibst, Ords, Lim, Krügnr, Bugil, Witlr, and Brndl, Solar Enrgy Matrials and Solar Clls, vol. 131, pp. 85-91, Dc. 2014. 7

Simulation of 4PP-masurmnts SENTAURUS-DEVICE 3D-simulation Input paramtrs: Sampl gomtry Rsistivitis of wafr, poly-si layr and oxid Rsult: Masurd" st rsistanc Römr, Pibst, Ords, Lim, Krügnr, Bugil, Witlr, and Brndl, Solar Enrgy Matrials and Solar Clls, vol. 131, pp. 85-91, Dc. 2014. 8

Simulation of 4PP-masurmnts Calculation of rlativ contact rsistanc from simulatd 4PP rsistanc Plot vs. ral (spcifid) contact rsistanc Exampl: poly-si layr wit st rsistanc of 280 Ω/ : rl < 0.05 corrsponds to contact rsistanc of < 0.5 Ωcm² Römr, Pibst, Ords, Lim, Krügnr, Bugil, Witlr, and Brndl, Solar Enrgy Matrials and Solar Clls, vol. 131, pp. 85-91, Dc. 2014. 9

Invstigation of diffrnt oxids All oxids rac J 0 -valus btwn 5 and 20 fa/cm² Hig tmpraturs ndd for low contact rsistanc Boron-dopd poly-si contacts comparabl to Posporus-dopd Römr, Pibst, Ords, Lim, Krügnr, Bugil, Witlr, and Brndl, Solar Enrgy Matrials and Solar Clls, vol. 131, pp. 85-91, Dc. 2014. 10

Invstigation of diffrnt oxids Passivation stabl up to 60 min annaling at 1050 C Contact rsistanc dcrass wit incrasing annaling duration Good combination of low J 0 and rl possibl Römr, Pibst, Ords, Lim, Krügnr, Bugil, Witlr, and Brndl, Solar Enrgy Matrials and Solar Clls, vol. 131, pp. 85-91, Dc. 2014. 11

Influnc of t mtallization Mtallizd pics Liftim distribution masurd via Infrard Liftim Mapping (ILM) Solar cll dmonstrator ILM masurmnts bfor and aftr mtallization sow comparabl liftim lvl (apart from dg ffcts) Planar solar cll dmonstrators sow V oc of 714 mv 1 Sris rsistanc of 0.6 Ωcm² not limitd by poly-si contact 1 [1] Römr, Pibst, Ords, Lim, Krügnr, Bugil, Witlr, and Brndl, Solar Enrgy Matrials and Solar Clls, vol. 131, pp. 85-91, Dc. 2014. 12

Tory / undrstanding poly-si contacts Local ovrcompnsation via ion implantation Procss optimisation poly-si contacts 13

Local countrdoping wit in-situ pattrnd ion implantation Countrdoping: Ovrcompnsating on polarity of dopants wit dopants of t otr polarity Wit in-situ pattrnd countrdoping local doping possibl witout structurd dilctric layrs Countrdoping wit in-situ maskd ion implantation nabls lgant procss flow for back contactd solar clls Procss rsults in formation of latral pn-junction wit avily dopd p- and n-rgions - Risk for band to band tunnling - Risk for trap-assistd tunnling 14

Full ara countrdoping Procssing: - 1.5 x 10 15 cm -2 B implantation - 3 x 10 15 cm -2 P implantation - Annaling at 1050 C SIMS masurmnt: - Posporus profil covrs boron profil ovr wol dpt Countrdoping works fin! Römr, Pibst, Ords, Larionova, Hardr, Brndl, Gro, Stictnot, Wütric, t al., Proc. 39 t,ieee PVSC, pp. 1280 (2013) 15

Position z [µm] Local countrdoping Passivation layr Local posporus implantation p-typ silicon Position x [µm] Full ara boron implantation Aluminum contacts Simulations of t diod caractristics Masurmnts on tst structurs Simulations faturing latral pn-junction Variation of t liftim in t implantd ara Masurmnts on tst structurs and comparison wit simulations Römr, Pibst, Ords, Larionova, Hardr, Brndl, Gro, Stictnot, Wütric, t al., Proc. 39 t,ieee PVSC, pp. 1280 (2013) 16

Local countrdoping Simulations of t diod caractristics Masurmnts on tst structurs Simulations sow no dtrimntal influnc of igly dopd pn-junction: n = 1 as long as implant damag is wll annald Otrwis strong rcombination in spac carg rgion wit n = 2 Masurmnts on tst structurs sow n = 1 Evryting is fin! Römr, Pibst, Ords, Larionova, Hardr, Brndl, Gro, Stictnot, Wütric, t al., Proc. 39 t,ieee PVSC, pp. 1280 (2013) 17

Local countrdoping Furtr invstigations (incl. influnc of t latral doping profil & caractristics in rvrs dirction) publisd 1 Evryting is fin! Larg ara (156 mm x 156 mm psq.) ion implantd IBC solar clls faturing local countrdoping rac fficincis of 22.1 % 2 [1] Römr, Pibst, Ords, Larionova, Hardr, Brndl, Gro, Stictnot, t al., Proc. 39 t,ieee PVSC, pp. 1280 (2013) [2] Bosc Solar Enrgy, ISFH, prss rlas, Aug. 15t, 2013 18

Tory / undrstanding poly-si contacts Local ovrcompnsation via ion implantation Procss optimisation poly-si contacts Combination of ts tcnologis 19

Procss flow for ion implantd poly-si wit countrdoping Trmal oxidation LPCVD poly-si dposition Boron implantation Annaling/ oxid brak-up Boron implantd Tst structur Posporus implantd tst structur 20

Procss flow for ion implantd poly-si wit countrdoping Trmal oxidation LPCVD poly-si dposition Boron implantation Maskd posporus implantation Annaling/ oxid brak-up Boron implantd Tst structur Posporus implantd tst structur Tst structur full ara countrdoping 20

Procss flow for ion implantd poly-si wit countrdoping Trmal oxidation LPCVD poly-si dposition Boron implantation Maskd posporus implantation Annaling/ oxid brak-up Boron implantd Tst structur Posporus implantd tst structur Tst structur full ara countrdoping Tst structur local countrdoping 20

Ion implantation in poly-si Dcrasing J 0 wit incrasing dos Vry low valus of 1.1 fa/cm² (posporus) and 4.4 fa/cm² (boron) Incras at too ig doss, spcially for boron doping Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) 21

Ion implantation in poly-si Doping concntration constant insid poly-si layr Oxid acts as diffusion barrir, in particular for posporus For ig doss strong diffusion of boron into wafr Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) 22

Rcombination caractristics of boron-implantd tst structur Implantation dos: 1x10 15 cm -2 B Higst V oc,impl. valu rportd so far for p + dopd poly-si junctions Bst valu F-ISE 1 : 694 mv Hig pff impl. -valu of 84.6 % (idal valu for t givn V oc is 85%) Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) [1] Fldmann, Müllr, Ricl, and Hrml, Pys. Stat. Sol. RRL, pp. 1 (2014) 23

Rcombination caractristics of posporus-implantd tst structur Implantation dos: 5 x 10 15 cm -2 P Vry ig V oc,impl. of 742 mv Du to J 0,poly of only 1.1 fa/cm² and vry ig bulk liftim, rcombination caractristics at MPP dominatd by Augr rcombination n Augr 2/3 rsults in vry ig pff impl. Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) 24

Countrdoping in poly-si J 0 -valus comparabl to valus witout countrdoping Contact rsistanc of som sampls vry ig For otrs comparabl to sampls witout countrdoping Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) 25

Countrdoping in poly-si For som sampls diffusion of boron into t wafr No contact btwn n + poly-si and n-typ wafr Hig posporus doss prvnt in-diffusion of boron Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) 26

Rcombination caractristics of countrdopd tst structur Implantation doss: 1x10 15 cm -2 B 5x10 15 cm -2 P Vry ig V oc,impl. -valu Bst valu F-ISE: 682 mv 1 Dspit J 0,poly -valu of 0.9 fa/cm² pff impl. -valu of only 84.7% [1] C. Ricl, F. Fldmann, R. Müllr, A. Moldovan, M. Hrml, and S. W. Glunz, 29t EUPVSEC (2014) 27

Rcombination caractristics of maskd countrdopd tst structur Implantation doss: 1x10 15 cm -2 B 5x10 15 cm -2 P Curv only fitabl by adding a furtr rcombination pat wit n>2 Standard SRH-Tory: 1<n<2 in SCR Non-standard bavior.g. coupld dfcts 1 Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) [1] Stingrub, Britnstin, Ramspck, Glunz, Scnk, and Altrmatt, Journal of Applid Pysics, vol. 110, no. 1 (2011) 28

Rcombination caractristics of maskd countrdopd tst structur J L J cll J para R para R s Römr, Pibst, Ords, Lim, Krügnr, Witlr, and Brndl, IEEE Journal of Potovoltaics, vol. 5, no. 2, pp. 507 (2015) 29

Rduction of pn-junction rcombination Lowring of poly-si ticknss - Possibly problms wit mtallisation Adaption of implantation paramtrs - Lowr dos at pn-junction - Not vry lpful (s tsis) Rmoval of latral pn-junction - Oxidisation 1 - Wt cmical tcing η = 23.9 % 2 R s J cll J para J L R para V oc = 722 mv 2 FF = 78.7 % 2 [1] Pibst, Römr, Patnt application [2] Rinäckr, Mrkl, Römr, Kolnbrg, Krügnr, Brndl, and Pibst, 6 t SiliconPV Confrnc 2016 30

Summary Fast and non-dstructing mtod for t stimation of t contact rsistanc btwn diffrnt layrs Poly-Si contacts wit J 0 -valus of 0.66 fa/cm² and 4.4 fa/cm² for posporus and boron doping dvlopd Full poly-si contactd solar cll wit V oc of 714 mv and low contact rsistanc fabricatd 31

Summary Local ovrcompnsation via maskd ion implantation invstigatd Ovrcompnsatd poly-si contacts wit J 0 -valus of 0.9 fa/cm² fabricatd Anomalous rcombination baivour in locally ovrcompnsatd poly-si contacts invstigatd 32

Many tanks to You for your attntion Many collagus at ISFH and LUH for tir lp: Tobias Witlr, Robby Pibst, Susann Mau, Hik Kolnbrg, Miriam Brgr, Tobias Ords, Mical Häbrl, Jan Krügnr, Agns Mrkl, Bianca Lim, Yvgniya Larionova, Sara Spätlic, David Sylla, and vryon ls for t always nic atmospr T Laboratory for Nano- and Quantum Enginring Hanovr T BMWi for funding

Back-up slids

Influnc of procss squnc

Solar cll rsults full ara wafr impl. V oc = 716 mv impl. PFF = 84.5 % Bst procss usd for production of proof of principl solar clls Hig implid V oc masurd; implid PFF narly idal (85.0 %)

Solar cll rsults full ara wafr impl. V oc = 716 mv impl. PFF = 84.5 % lasr-cut into a 2.5 x 2.5 cm² pic impl. V oc = 714 mv impl. PFF = 72.7 % V oc = 705 mv PFF = 73.1 % V oc rducd furtr du to t dg ffcts (masurd troug 2 x 2 cm² mask) Masurmnt witout mask yilds V oc of 714 mv Larg ara solar clls would not suffr from tis ffct

Solar cll rsults Ara [cm²] V oc [mv] V oc [mv] (full ara illumination) PFF [%] FF [%] R s,ff [Ωcm²] J sc [ma/cm²] 4.25 705 714 73.1 71.2 0.6 28.8 14.5 η [%] Flat surfac of t solar cll and ratr tick poly-si layr (> 200 nm tick) Low J sc Edg rcombination Low PFF Excllnt passivation quality of t poly-si layr ig V oc Good transport troug t poly-si / c-si junction low R s