Background. Valley fills Sites in the Area. Construction over Mine Spoil Fills

Similar documents
IAEA SAFETY STANDARDS Geotechnical Aspects of Site Evaluation and Foundations in NPPs, NS-G-3.6

Converse Consultants Geotechnical Engineering, Environmental & Groundwater Science, Inspection & Testing Services

Collapsible Soils Definitions

Engineer. Engineering. Engineering. (in-ja-neer ) A person trained and skilled in any of the various branches of engineering: a civil engineer

3/8/17. #20 - Landslides: Mitigation and Case Histories. Questions for Thought. Questions for Thought

3.18 GEOLOGY AND SOILS

IN SITU TESTING TECHNOLOGY FOR FOUNDATION & EARTHQUAKE ENGINEERING. Wesley Spang, Ph.D., P.E. AGRA Earth & Environmental, Inc.

Geotechnical verification of impact compaction

ENGINEER S CERTIFICATION OF FAULT AREA DEMONSTRATION (40 CFR )

Land Subsidence. Land subsidence is defined as the lowering of the land surface.

KDOT Geotechnical Manual Edition. Table of Contents

Converse Consultants Geotechnical Engineering, Environmental & Groundwater Science, Inspection & Testing Services

Chapter 12 Subsurface Exploration

Table 5-1 Sampling Program Summary for Milltown Ford Avenue Redevelopment Area, NJ.

Case History of Observed Liquefaction-Induced Settlement Versus Predicted Settlement

HISTORY OF CONSTRUCTION FOR EXISTING CCR SURFACE IMPOUNDMENT PLANT GASTON ASH POND 40 CFR (c)(1)(i) (xii)


LANDSLIDES IN THE WHITE MOUNTAIN (GEOTECHNICAL STUDIES AND ENGINEERING TESTS)

Rock & Aggregate Drop Inlet Protection

Geotechnical Engineering Study, Conifer Senior High School Football Field Improvements, Conifer, Colorado

Slope Stability Evaluation Ground Anchor Construction Area White Point Landslide San Pedro District Los Angeles, California.

Applied Geophysics for Environmental Site Characterization and Remediation

Location Restriction Demonstration

Learning Objectives. Your goals for studying this chapter are: Understand where landslides occur. Understand the warning signs of landslides.

REPORT OF PRELIMINARY GEOTECHNICAL EXPLORATION

A design Model for Pile Walls Used to Stabilize Landslides

ATTACHMENT A PRELIMINARY GEOTECHNICAL SUMMARY

Permeable Treatment Wall Project

This report was prepared by Klohn Crippen Consultants Ltd. for Alberta Transportation Central Region under Contract No. CE053/2000.

Central Queensland Coal Project Appendix 4b Geotechnical Assessment. Environmental Impact Statement

14 Geotechnical Hazards

CASE STUDY #9 - Brushy Fork Dam, Sugar Grove, West Virginia

June 9, R. D. Cook, P.Eng. Soils Engineer Special Services Western Region PUBLIC WORKS CANADA WESTERN REGION REPORT ON

PEACE RIVER EAST HILL - HWY 2:60 (PH2) SELECT PHOTOGRAPHS August 22, 2007 File: Photo E003. Station May 2007

25th International Conference on Ground Control in Mining

3.0 SUMMARY OF POTENTIAL GEOTECHNICAL IMPACTS AND MITIGATION MEASURES

An Introduction to Field Explorations for Foundations

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide

Remediation of Soft Clay Utilizing the Dry Mix Method. of Batavia, New York to its discharge into the Niagara River at Tonawanda, New York.

Terrain Conductivity Investigation of Groundwater Flow Near the Dam at Alpine Lake, West Virginia. Senior Thesis By Tom Darby II

Location. Mt Owen Complex. Overview. Mine Layout. Mining Method. Mitsubishi Lecture. In-Pit Lowwall Dump Design and Stability at Mt Owen Mine

SITE INVESTIGATION 1

CHAPTER FIVE 5.0 STABILITY OF CUT SLOPES IN THE STUDY AREA. them limited by a thick canopy of vegetation and steep slope angles.

Soil Mechanics Brief Review. Presented by: Gary L. Seider, P.E.

Predicting Settlement and Stability of Wet Coal Ash Impoundments using Dilatometer Tests

GEOTECHNICAL ENGINEERING II. Subject Code : 06CV64 Internal Assessment Marks : 25 PART A UNIT 1

10. GEOTECHNICAL EXPLORATION PROGRAM

Geotechnical Aspects of the Seismic Update to the ODOT Bridge Design Manual. Stuart Edwards, P.E Geotechnical Consultant Workshop

Landslide FE Stability Analysis

HYDROCOMPACTION CONSIDERATIONS IN SINKHOLE INVESTIGATIONS

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

Lecture 15: Subsidence

Gotechnical Investigations and Sampling

Design of Shallow Foundations for a Large Polysilicon Plant in China

Date: April 2, 2014 Project No.: Prepared For: Mr. Adam Kates CLASSIC COMMUNITIES 1068 E. Meadow Circle Palo Alto, California 94303

APPALACHIAN COLLUVIAL

ISSUED FOR CONSTRUCTION

WEIR INTERNATIONAL, INC. Mining, Geology and Energy Consultants

Ohio Department of Transportation Division of Production Management Office of Geotechnical Engineering. Geotechnical Bulletin

How & Where does infiltration work? Summary of Geologic History Constraints/benefits for different geologic units

1 PROJECT BACKGROUND. August 14, Alberta Transportation Central Region #401, Street Red Deer, Alberta T4N 6K8


Engineering Geophysical Application to Mine Subsidence Risk Assessment

Consists of cliff face (free-face) and talus slope or upper convex slope, a straight slope and a lower concave slope

GEOLOGY, SOILS, AND SEISMICITY

Impact of shallow and deep injection well leach solutions with respect to ore heap slope stability

IV. ENVIRONMENTAL IMPACT ANALYSIS G. GEOLOGY AND SOILS

DESIGN OF WASTE DUMPS WITH FLOW-THROUGH ROCK DRAINS by Peter C. Lighthall, C. David Sellars, and W.D. Burton ABSTRACT

CHAPTER GEOLOGICALLY HAZARDOUS AREAS Applicability Regulations.

b Blackwell Science Environmental Geology PRINCIPLES AND PRACTICE

Do Now - APES. Due Next Class. Mining HW. Work on QSC using today s notes

Site Investigations and Geotechnical Risk For Underground Construction Greg Raines, PE

Module 9 : Foundation on rocks. Content

ENCE 3610 Soil Mechanics. Site Exploration and Characterisation Field Exploration Methods

PECivilExam.com. Copyright 2015 Pecivilexam.com all rights reserved- E-Book Geotechnical Depth Exam: 80 problems

THE MINISTRY OF ENERGY AND ENERGY INDUSTRIES MINERALS DIVISION MINE DESIGN TEMPLATE OPERATOR NAME: OPERATOR ADDRESS: PHONE NUMBER: FACSIMILE:


Big Rivers Electric Corporation Disposal of Coal Combustion Residuals (CCR) from Electric Utilities Final Rule CCR Impoundment Liner Assessment Report

Pierce County Department of Planning and Land Services Development Engineering Section

INTI COLLEGE MALAYSIA

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Guidelines for Site-Specific Seismic Hazard Reports for Essential and Hazardous Facilities and Major and Special-Occupancy Structures in Oregon

LIQUEFACTION OF EARTH EMBANKMENT DAMS TWO CASE HISTORIES: (1) LIQUEFACTION OF THE EMBANKMENT SOILS, AND (2) LIQUEFACTION OF THE FOUNDATIONS SOILS

Construction Exits Rock pads

ARCH 1250 APPLIED ENVIRONMENTAL STUDIES

Monitoring and Characterization of the Meadowview Lane Landslide: Boyd County, KY

CONTROLLING FACTORS BASIC ISSUES SAFETY IN OPENCAST MINING WITH SPECIAL REFERENCE TO SLOPE STABILITY

Chapter 11 10/30/2013. Mass Wasting. Introduction. Factors That Influence Mass Wasting. Introduction. Factors That Influence Mass Wasting

LECTURE 10. Module 3 : Field Tests in Rock 3.6 GEOPHYSICAL INVESTIGATION

Deep Foundations 2. Load Capacity of a Single Pile

Mitigation of Gypsum Mine Voids Under SR-2 in Ottawa County, Ohio

Preliminary Geotechnical Investigation Cadiz / Trigg County I-24 Business Park. Cadiz, Kentucky

Reinforced Soil Structures Reinforced Soil Walls. Prof K. Rajagopal Department of Civil Engineering IIT Madras, Chennai

APPENDIX F CORRELATION EQUATIONS. F 1 In-Situ Tests

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Prepared By: John Blair Sean Donahue Celeste Hoffman Kimberly Klinkers Megan Slater

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

Introduction to Soil Mechanics Geotechnical Engineering

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

Transcription:

Construction over Mine Spoil Fills Wayne A. Karem, PhD, PE, PG, D.GE 2014 KSPE Annual Conference Background Strip mining; mountaintop and contour mining Creates huge quantities of mine spoil The mine spoil is placed in adjacent valleys and over previously mined benches This disposal and reclamation method results in large areas of flat land Flat Land in Mountainous areas would appear to be valuable????? Valley fills Sites in the Area 1

Loading spoil and end dumping Dragline Casting Dragline Casting Filling in the Pit 2

Construction of a valley fill slope In the mountains??? Primary Concerns when Developing on Mine Spoil Fill Sites Heterogeneous mix of durable and non durable materials Settlement due to reduction in void space due to self weight Degradation of non durable rock (shale) within fill Settlement due to water infiltration 3

Past Problems Appalachian Regional Hospital, Hazard, KY Multi story portion is founded on drilled shafts. Single story portion founded on spread footings The door pad was constructed flat, now it is sloping. 4

Objective of Exploration Program Reduce the Risk of Unknowns Develop a Reasonable Predictive Model (site to site basis based on material composition) Develop an estimation of settlement based on the model Site 1 386 Acres Mountaintop removal mining Mined in the early 1980 s Mined in the late 1980 s and early 90 s Reclamation in early 1990 s Mine spoil placed using end dumping methods; dump trucks and D9 s The fill has been in place ranging from 10 years to 25 years Fill depths of 40 to 60 feet on the benches and up to 250 feet in the valleys Site 2 348 acres Underground and Mountaintop removal Underground mining from 1910 to 1944 Surface Mining ended in mid 1990 s Reclamation in mid 1990 s Mine spoil placed using end dumping; dump trucks and D10 s 5

Site 3 6000 acres total Still an active mine Area of study; mountain top removal Mined in the mid 1990 s Mine spoil placed using dragline Subsurface conditions consist of limestone, sandstone, siltstone and shale spoil: 150 to 160 feet Site 4 6500 acres total Still an active mine Area of study; mountain top removal Mined in the early 1980 s and in the mid 1990 s Mine spoil placed using Marion 8050 dragline Subsurface conditions consist of sandstone and shale Site Characterization Methods Exploratory Borings Shallow Test pits Geophysics Seismic Refraction Cost effective v. numerous borings Can delineate bedrock surface by measuring P wave velocities Instrumentation Settlement Plates Extensometers Bedrock defined as Vs > 5000 ft/sec 6

Interpretation of Refraction Data, Site 2 Estimate of Bench Location Isometric Interpretation of Rock Surface Geophysical Summary Seismic Refraction worked well in delineating the old mine bench Confirmatory borings verified the findings of the seismic refraction data Hazard Site Seismic Refraction 7

Instrumentation and Settlement Monitoring Extensometer schematic Comparison of penetration resistances from three different sites Site 1 Site 2 Site 3 Mean N value 26.8 27.5 26 Median N value 21 22 20 Standard Deviation 16.3 18 23 Minimum N value 3 3 2 Maximum N value 87 70 100 Number of samples 127 237 727 Seismic Refraction Testing Interpretation of Seismic Refraction Velocities to Material Type (International Building Code) Material Description Shear Wave Velocity, Vs, ft/sec Hard Rock Vs> 5000 Rock 2500 < Vs < 5000 Very Dense Soil and Soft Rock 1200 < Vs <2500 Stiff Soil 600 < Vs <1200 Soft Soil Vs < 600 8

Typical Mine Spoil parameters Vince Mine Spoil Type Water Content (%) Dry Unit Weight pcf Total/Effective Angle of Internal Friction (degrees) Total Cohesion psf Effective Cohesion psf Plasticity Index (%) Soil 13 to 37 86 to 109 0 to 10 / 24 200 to 2000 200 12 to 30 Median 21 96 5 1200 19 Mixed 9to19 82to129 4to30/27 400to2800 400 14 to 32 Median 13 105 20 1300 19 Rock 5to15 90to119 27to32 600to1000 14 to 20 Median 9 103 29 800 18 Typical Extensometer Data West VA site Inclinometer Readings 9

Settlement of Structure on Minespoil Analyses of Settlement Data Initial compression of unsaturated mine spoil fills occur in a similar manner to the consolidation process of clays, with an initial short term period of large settlement. Secondary compression of unsaturated mine spoil consists of crushing of the rock point contacts Evaluated data based on end dumped and dragline dumped 10

Are we done? Water infiltration Hydrocompression on Settlement Site Preparation, extensive subsurface exploration, carefully monitored site work: undercut 10 feet and recompacted to 95% of standard Proctor using Cat 825 rollers Building Pad 11

Building Information 1 180,000 square feet, Spread footing foundations, steel framed metal sided, concrete slab on grade. Roof rain collected to gutters at front and rear of building Front lawn are flat, no positive drainage. Foundation construction started in January 2002 Construction completed in summer 2002 Cracking noticed in winter/spring 2003 Settlement Crack above Doorway Differential Level Survey of Floor Slab Differential settlement up to 8 inches on portions of the floor slab Topo of floor slab from March 2003 to September 2004 12

Water ponded next to building Site Observations Area of most severe settlement grass covered and very flat with no slope for runoff Some areas of lawn sloped toward building Evidence of gutter overflow; staining on sides of building Small diameter conduits in the mine spoil just outside building walls Settlement confined to exterior walls Less than 1 inch of settlement observed from extensometers Borings drilled to confirm the presence of the bench as determined by the seismic refraction data. Found generally uniform thickness of mine spoil over the bench 13

Findings Settlement essentially stopped by the March 2004 survey Based on the area of flat lawn, about 2 million gallons of water infiltrated the mine spoil fill adjacent to the building Borings found the top 10 feet of mine spoil soft and wet Water flow through mine spoil considered pseudokarst. Slaking of the shale portion of the spoil creates a crusting of the surface over time. Construction/site development destroys this crust allowing water infiltration Building 2 Theater in WV Observations and Findings Site was relatively flat Site drainage to the rear of building along ditch at base of mountain Spring at various locations Storm Drainage not sloped enough Water entered subsurface through inadequate storm drains (18 inch diameter culvert v. 3 6 inch culverts) 14

Site 3 Coal Processing Facility Site 3 loading tower Relationship between unit weight and Hydrocompression Laboratory 15

Proposed Hydrocompression Testing (I want to do this) Excavate and recompact area to a depth Install extensometers Construct footings Flood site Measure movement Factors Affecting the Magnitudes of Settlement Based on the results of this research the following factors affect settlement Placement methods Age of fill Composition of fill Thickness of fill Water infiltration/hydroconsolidation Site Development/Remediation Methods Past failures resulted in very conservative site remediation methods Most common methods Mass undercut and replacement Dynamic Compaction Deep Foundations Surcharge/Preloading 16

Dynamic Compaction Deep Dynamic Compaction Mine Spoil Fill Pipe pile installation Mine Spoil Fill Coal Fields Rebar in Mat Foundation at Call Facility 17

Comparing Costs of Options including using the Reasonable Predictive Model Option 1: Deep Dynamic Compaction $1,928,750 Option 2: Undercut 10 feet and Replace $1,577,500 Option 3: Deep Foundations $2,768,800 Option 4: Preloading $3,340,700 Option 5: Enhanced Undercut and Replacement $1,185,500 Benefit of Using Exploration Program Savings for site development costs without increasing level of risk However, predictive model does not account for hydrocompression. Summary if you feel lucky Settlement of end dumped mine spoil fills of less than 100 feet can be within tolerable ranges about 10 years after placement (reclamation) The depth of fill beneath the development can vary up to 20 % without additional risk Positive drainage to prevent hydrocompression is critical to minimizing detrimental settlement 18