The Failure-tree Analysis Based on Imprecise Probability and its Application on Tunnel Project

Similar documents
Assessment of Enterprise Value in Chemical Industry by Using Fuzzy Decision Making Method

Empirical Study on the Relationship between Chemical Industry Agglomeration and Regional Economic Growth in Anhui Province

Transformation and Upgrading of Chemical Enterprise under the Environment of Internet and Big Data

Chemical Production Fault Detection Technology Based on Computer Process Control Software

Experimental Study on Durability and Mechanical Properties of Basalt Fiber Reinforced Concrete under Sodium Sulfate Erosion

Maintenance Optimisation of Optronic Equipment

Stress Analysis of Tensioning Bolt based on MATLAB

Soft Sensor Modelling based on Just-in-Time Learning and Bagging-PLS for Fermentation Processes

Numerical Analysis of Flow Dynamics of Cyclone Separator Used for Circulating Fluidized Bed Boiler

Nondestructive Testing of Concrete Strength Based on Consolidation Wave Speed Measurement

Assessment of the Performance of a Fully Electric Vehicle Subsystem in Presence of a Prognostic and Health Monitoring System

Quantitative Relation of the Point BarWidth and Meander Belt Width of Subsurface Reservoir

Advanced Detection Theory and Application Research of Multi-wave and Multi-component Seismic Exploration in Mine

Oppau 1921: Old Facts Revisited

Improvement of Process Failure Mode and Effects Analysis using Fuzzy Logic

Study on the Effects of the Types and Addition Time of Chemical Admixtures on Cement Performance

The Influence Degree Determining of Disturbance Factors in Manufacturing Enterprise Scheduling

The Mine Geostress Testing Methods and Design

Mining method optimisation of Bayi gold mine based on the value engineering principle

Load and Resistance Factor Design Considering Design Robustness: R-LRFD

An Improved Method of Power System Short Term Load Forecasting Based on Neural Network

The Study of Overhead Line Fault Probability Model Based on Fuzzy Theory

The Influences of Structural Deformation on Coal and Gas Outburst Types

Estimation of the Number of Distillation Sequences with Dividing Wall Column for Multi-component Separation

Structural Reliability Analysis using Uncertainty Theory

Fuzzy reliability analysis of washing unit in a paper plant using soft-computing based hybridized techniques

Construction of Emergency Services Platform for Coal Mining Accidents by Integrating Multi Source Datasets

Materials Science Forum Online: ISSN: , Vols , pp doi: /

Risk analysis on cutter head failure of shield in composite ground

System Reliability Allocation Based on Bayesian Network

12 - The Tie Set Method

A New Reliability Allocation Method Based on FTA and AHP for Nuclear Power Plant!

The Fault extent recognition method of rolling bearing based on orthogonal matching pursuit and Lempel-Ziv complexity

Quantification of Temporal Fault Trees Based on Fuzzy Set Theory

Predicting IC Defect Level using Diagnosis

Indoor Testing of Solar Systems: A Solar Simulator for Multidisciplinary Research on Solar Technologies

Development of Multi-Unit Dependency Evaluation Model Using Markov Process and Monte Carlo Method

Study on Rheological Properties of Mountains Area Coarse-- Grained Soil Embankment and Settlement Prediction Method

Advanced Marine Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology Madras

A Mixed Efficient Global Optimization (m- EGO) Based Time-Dependent Reliability Analysis Method

A Numerical Study of the Effect of a Venetian Blind on the Convective Heat Transfer Rate from a Recessed Window with Transitional and Turbulent Flow

Analysis of real-time system conflict based on fuzzy time Petri nets

Stochastic Definition of State-Space Equation for Particle Filtering Algorithms

Mathematical Modeling of Cyclones - Dust Collectors for Air Pollution Control

Implementation of the Dynamic Modeling for Development of Chemical Processes

Chapter 18 Section 8.5 Fault Trees Analysis (FTA) Don t get caught out on a limb of your fault tree.

Fig. 1 Location of the New Shanghai No. 1 Mine in Inner Mongolia, China.

The Analytic Hierarchy Process for the Reservoir Evaluation in Chaoyanggou Oilfield

Complexity Research of Nondestructive Testing Signals of Bolt Anchor System Based on Multiscale Entropy

Application of matter element analysis in weather forecasting

Research Article Convex Polyhedron Method to Stability of Continuous Systems with Two Additive Time-Varying Delay Components

of an algorithm for automated cause-consequence diagram construction.

Compression and Expansion at the Right Pinch Temperature

Using Fuzzy Logic as a Complement to Probabilistic Radioactive Waste Disposal Facilities Safety Assessment -8450

COMMENT CARD RESPONSES (SEISMIC)

Experimental Study on Pressure Distributions around a Circular Cylinder in the Branch of a T-junction

The Reliability Evaluation of Electromagnetic Valve of EMUs Based on Two-Parameter Exponential Distribution

The effect of discontinuities on stability of rock blocks in tunnel

Minimum Spanning Tree with Uncertain Random Weights

Cascading Outages in Power Systems. Rui Yao

Method to Remove the Effect of Atmosphere and Ambient Radiation on Colorimetric Temperature Measurement

Matching method for emergency plans of highway traffic based on fuzzy sets and rough sets

Geotechnical & Mining Engineering Services

3D Modelling and Virtual Reality Management Information System (VRMIS) Application in China

Bearing fault diagnosis based on TEO and SVM

Computer Simulation of Opposing Reaction Kinetics

The role of predictive uncertainty in the operational management of reservoirs

Study on the Couple of 3D Geological Model and Reservoir Numerical Simulation Results

arxiv: v1 [cs.ai] 28 Oct 2013

Settlement characteristics of major infrastructures in Shanghai

Programmatic Approaches to Assessing and Mitigating Risk to Pipelines from Natural Forces

An Analytic Method for Solving Uncertain Differential Equations

Dynamic Data Modeling of SCR De-NOx System Based on NARX Neural Network Wen-jie ZHAO * and Kai ZHANG

Study on Shandong Expressway Network Planning Based on Highway Transportation System

1. Rock Mechanics and mining engineering

Research Article A PLS-Based Weighted Artificial Neural Network Approach for Alpha Radioactivity Prediction inside Contaminated Pipes

The Influence of Abnormal Data on Relay Protection

Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer Limin Du, Fucheng Cao

Analysis of the Factors Causing Roof Water Inrush in Coal Seam Mining with Thin Bedrock

Multi-wind Field Output Power Prediction Method based on Energy Internet and DBPSO-LSSVM

Use of Stripping or Rectifying Trays for a Distributed Control Strategy in Distillation Column

News Release. Infill Drilling Program

Uncertain Structural Reliability Analysis

Local cracking stability analysis of super high arch dam *Peng Lin 1), Qingbin Li, Dong Zheng, Senying Hu

Open Access Support Technique of Horse Head in Weakly Cemented Soft Rock

Predictive Analytics on Accident Data Using Rule Based and Discriminative Classifiers

Application of Structure Function in System Reliability Analysis based on Uncertain Data

Practical guidelines for strain burst hazard awareness for development miners

Divergence measure of intuitionistic fuzzy sets

Correlation Analysis of Behavioral Factors of Construction Safety Based on the Chi-square Test

NUCLEAR SAFETY AND RELIABILITY WEEK 3

A New Approach for Uncertain Multiobjective Programming Problem Based on P E Principle

Battery Pack Temperature Estimation Model for EVs and Its Semi-transient Case Study

Experimental and numerical simulation studies of the squeezing dynamics of the UBVT system with a hole-plug device

Drum Burst due to Runaway Reaction and the Limits of MOC

Warning System of Dangerous Chemical Gas in Factory Based on Wireless Sensor Network

Research on the Effect of Substation Main Wiring on the Power System Reliability Yuxin Zhao 1, a, Tao Liu 2,b and Yanxin Shi 3,c

THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE RATE PREDICTION IN THE POST-CRISIS ERA

RISK AND RELIABILITY IN OPTIMIZATION UNDER UNCERTAINTY

Research on robust control of nonlinear singular systems. XuYuting,HuZhen

Transcription:

463 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 59, 2017 Guest Editors: Zhuo Yang, Junjie Ba, Jing Pan Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-49-5; ISSN 2283-9216 The Italian Association of Chemical Engineering Online at www.aidic.it/cet DOI: 10.3303/CET1759078 The Failure-tree Analysis Based on Imprecise Probability and its Application on Tunnel Project Lei Huang School of Transportation, Wuhan University of Technology, Wuhan 430024, China LeiHuang@126.com Due to the inherent uncertainties in ground and groundwater conditions, tunnel projects often have to face potential risks of cost overrun or schedule delay. Risk analysis has become a required tool to identify and quantify risk, as well as visualize causes and effects, and the course (chain) of events. Various efforts have been made to risk assessment and analysis by using conventional methodologies with precise probabilities. However, because of limited information or experience in similar tunnel projects, available evidence in risk assessment and analysis usually relies on judgments from experienced engineers and experts. As a result, imprecision is involved in probability evaluations, which leading the results of risk assessment based on precise probability to the imprecise results. In this paper, a failure tree analysis method based on imprecise probability is established for the risk assessment of tunnel project, which making the results of risk assessment are more accurate and more reasonable. 1. Introduction The tunnel construction project is faced with large risk because of its complex construction environment, complex geological conditions, large environmental risk, long construction period, and so on (Shi et al., 2015; Zhang et al., 2016). The risk analysis and assessment of the tunnel construction project will help to reduce the occurrence of engineering accidents. Fault tree analysis is one of the commonly used quantitative and qualitative methods in the risk analysis method. Fault tree analysis is based on the causal logic between events, which focus on the relationship between risk and the reasons in the system. Based on logical deduction analysis, Fault tree analysis starts from a specific accident, and then analyzes the various possible causes of the accident, finally, identifies a variety of potential risk factors (Wu et al., 2015). According to the fault tree analysis, the risk factors of the system could be fully understanding, and the occurrence probability of risk or accident could be calculated, which could provide the plan of risk control or risk mitigation When using the traditional fault tree analysis method, the occurrence probability of a risk or an accident is a specific value, which is called "precise probability". However, in practice, it is imprecise to use "precise probability" to describe the risk of an event due to the uncertainty of the event itself (Gierczak, 2014). The uncertainty of events in the real world arise from the variance of the event itself and the ignorance about the subject matter. The variance of the event itself could be quantities assessed by using classic theories of precise probabilities, due to the variance have certain regularity (Mahmood et al., 2013; Wang and Hu, 2015). While the ignorance about the subject matter can be reduced if the amount of information is expanded the relationship between uncertainty, imprecision and randomness is shown in Figure 1. Note that the length of each part is only a schematic role, which has no special practical significance. Determine is the understanding of all the necessary information to aware of the consequences of the incident occurred clearly. The uncertainty is composed of imprecise and randomness. Randomness is an inherent property of an event itself, which usually expressed as a probability distribution or stochastic process of random variables; imprecision is the result of a gap between the available information and the complete information (Gustafson et al., 2013). Because of the limited information, assigning a precise value as the probability of an event is not practical. Please cite this article as: Lei Huang, 2017, The failure-tree analysis based on imprecise probability and its application on tunnel project, Chemical Engineering Transactions, 59, 463-468 DOI:10.3303/CET1759078

464 Figure 1: The Relationship of Uncertainty, Imprecision and Randomness In the tunnel project, it is unrealistic to increase the amount of knowledge in relevant fields in a short time due to the various conditions. It is means that assigning an exact numerical value as the probability of an event is impractical due to the inherent uncertainty. 2. Fault tree analysis based on imprecise probability A fault tree analysis is a deductive analytical technique. It starts from a specified state of the system as the Top event, and includes all faults which could contribute the top event. At the bottom of the fault tree, the basic initiating faults, which could not be further developed, are called as Basic events linked by fault tree gates, including AND-, OR-, and Exclusive OR- gates. Sub-tree with OR-gate and Sub-tree with AND-gate are shown in Figure 2 (Song et al., 2015). Figure 2: Sub-tree with OR-gate and Sub-tree with AND-gate Any event in the fault tree has only two possible states: occurrence or not occurrence. The occurrence probabilities for the failure events are assumed to be given imprecisely, i.e. as interval probabilities [P low, P upp]. Let P be the joint probability distribution for sub-events E1 through En, and thus P is a matrix of dimensions 2 2 2, where the i-th index indicates the states of Event Ei; let the subscript 1 denote the probability of occurrence, and 2 denote the probability of non-occurrence. For the OR-gate, the occurrence probability for the failure event E is P(E)=1-P 2,2,,2, where P 2,2,,2 is the probability of that none of the n events occurs. For the AND-gate, the occurrence probability for the event E is P(E)=1-P 1,1,,1, where P 1,1,,1 is the probability that all the n events occur Let Pi^j be the joint probability distribution for sub-events E i and E j, which can be written in terms of the joint distribution P for E 1 through E n: P 2 2 2 2 2 2 P i j 1, 2., n 1 1 1 1 1 1 1 i1 1 i1 1 j1 1 j1 1 n According to the assumed interaction between E i and E j, the joint distribution Pi^j should fall in one of the following cases: (1) Unknown interaction: P i^j φ u ; (2) Epistemic irrelevance: P i^j φ e s(i) ; (3) Epistemic independence: P i^j φ e ; (4) Strong independence: P i^j φ s ; (5) Uncertain correlation: P i^j φ c.

465 Take three sub-events E 1, E 2, and E 3 as an example. Assume epistemic independence between E 1 and E 2 and strong independence between E 2 and E 3. Lower and upperp 1,1,1 and P 2,2,2 are obtained by solving the optimization problems below: minimize (maximize)p 1,1,1(P 2,2,2) Subject to: P ; 12 E P ; 0 23 S P ; 2 2 2 i1 j1 l1 P i, j,l 1 Then lower and upper probabilities for event E are obtained by inserting lower and upper P 1,1,1 and P 2,2,2 into OR-gate or AND-gate, respectively. 3. Application of failure tree analysis based on imprecise probability on risk assessment of tunnel projects 3.1 The application of failure tree analysis based on imprecise probability Take a toll sub-river project as an example, where the failure of the project (Event E) is caused by two subevents: technical failure (Event E 1) or economical failure (Event E 2), which are here assumed to be strongly independent. Technical failure may happen due to the occurrence of at least one of two epistemic ally independent events: (1) Total collapse: seawater fills the tunnel (Event E 1,1), as a result of the occurrence of both too small rock cover (Event E 1,1,1) and insufficient investigations (Event E 1,1,2). E 1,1,1 and E 1,1,2 are here assumed to be linked by uncertain correlation with coefficient tρ= [0.6, 0.8]; (2) The tunnel cannot be built (Event E 1,2) because of difficult rock conditions (Event E 1,2,1) and poor investigation (Event E 1,2,2) occurring at the same time. Events E 1,2,1 and E 1,2,2 are assumed to be linked by unknown interaction. The economical failure is triggered by two strongly independent events: either too small toll revenue (Event E 2,1) or too high construction and maintenance costs (Event E 2,2). The structure of the fault tree is the same as Figure 3. Figure 3: Fault tree analysis for the failure probability of sub-sea tunnel project with imprecise probabilities First consider the sub-tree for Event E 1,1 together with sub-events E 1,1,1 and E 1,1,2,and determine the bounds on the occurrence probability of Event E 1,1 by solving the followed optimization problems written in terms of the joint distribution P of E 1,1,1 and E 1,1,2: minimize (maximize)p 1,1 Subject to: 0.01< P 1,1+ P 1,2<0.05; 0< P 1,1+ P 2,1<0.01; i=1 j=1 P ij = 1; P ij 0 E E E E E E E 08. D D where 111 11 2 111 11 2 111 11 2 2 2 E E111 11 2 111 11 2 111 11 2 ; 0 E E.6 D D E E E

466 P11, P1, 2 E E 111 = 1 0 P11, P1, 2 P2, 1 P2, 2 ; P11, P2, 1 E E 11 2 = 1 0 P11, P2, 1 P1, 2 P2, 2 ; 1 0 E E E P 0 0 P ; D111 P11, P1, 2P2, 1 P2, 2; D11 2 P11, P2, 1P1, 2 P2, 2 111 11 2 11, The extreme values of the occurrence probability of E 1,1 are found to be 0.01 and 0.0036. Detailed solutions are listed in Table 1. Next, calculate the bounds on the probability of Event E 1,2, Solutions detailed in Table 2 show that the upper and lower occurrence probabilities for E 1,2 are equal to 0.02 and 0, respectively. The next step is to determine the extreme values of the occurrence probability of Event E 1. Replace the probabilities of E 1,1 and E 1,2 with intervals [0.0036, 0.01] and [0, 0.02], respectively. Since E 1is connected with E 1,1 and E 1,2 by an OR-gate, the optimization problems are: Minimize(Maximize)1-P 2,2 Subject to: 0.0036< P 1,1+ P 1,2<0.01; 0 < P 1,1+ P 2,1<0.02; P E; 2 2 Pi, j 1, P i, j 0 i1 j1 where matrix P is the joint distribution of E 1,1 and E 1,2. The upper and lower probabilities for E 1 are 0.0298 and 0.0036, respectively. Table1: Solutions for the optimization problems for the upper and lower probabilities of Event E1,1 max min P: joint dist. of E 1,1,1 and E 1,1,2 P(E 1,1,1) P(E 1,1,2) P(E 1,1) =P 1,1 0. 01 0. 0055 0 0. 9845 0.0155 0.01 0.01 0. 0036 0. 0064 0 0. 99 0.01 0.0036 0.0036 Table 2: Solutions for the optimization problems for the upper and lower probabilities of Event E1,2 max min P: joint dist. of E 1,2,1 and E 1,2,2 P(E 1,2,1) P(E 1,2,2) P(E 1,2) =P 1,2 0.2 0 0 0 0. 98 0.02 0.02 0.02 0 0 0 1 0 0 0 Table 3: Solutions for the optimization problems for the upper and lower probabilities of Event E1 P: joint dist. of E 1,2,1 and E 1,2,2 P(E 1,1) P(E 1,2) P(E 1) 0. 0002 0. 0098 max 0.01 0.02 0.0298 0. 0198 0. 9702 0 0. 0036 min 0.0036 0 0.0036 0 0. 9964 As for the sub-tree of Event E 2, we determine the bounds on the occurrence probability by first multiplying all the extreme distributions of E 2,1 by all extreme probability distributions of E 2,2and then by calculating P(E 2) = 1- P 2,2 on all the extreme joint distributions as shown in Table 4. The upper and lower occurrence probabilities for E 2 are 0.012 and 0, respectively. Finally, we come to the top event of the fault tree E, i.e. the failure of the sub-sea tunnel project. The extreme values of the occurrence probabilities are achieved by the same procedure as E 2. Table 5 lists all extreme points with their values of P(E), and the upper and lower occurrence probabilities for E are0.041 and 0.004, respectively.

467 Table 4: Solutions for the optimization problems for the upper and lower probabilities of Event E2 Extreme points of Ψ comb P 1,1 P 1,2 P 2,1 P 2,2 P(E 2) 1 0.000 0.000 0.000 1.000 0.000 2 0.000 0.000 0.010 0.990 0.010 3 0.000 0.002 0.000 0.998 0.002 4 0.000 0.002 0.010 0.988 0.012 Table 5: Solutions for the optimization problems for the upper and lower probabilities of Event E Extreme points of Ψ comb P 1,1 P 1,2 P 2,1 P 2,2 P(E) 1 0.000 0.004 0.000 0.996 0.004 2 0.000 0.030 0.000 0.970 0.030 3 0.000 0.004 0.012 0.984 0.016 4 0.000 0.029 0.012 0.959 0.041 From the results of the risk assessment, it can be found that the result of the event tree analysis method based on imprecise probability is a probability interval. In this case, the decision maker has the right to choose the more appropriate way to deal with the risk according to their own risk preference. Such a result is more reasonable than a single point obtained with the precise probability. 3.2 Empirical comparison Wuhan Metro Line 2 Yangtze River Tunnel is a 1.27 km long and 8.1-meter diameter tunnel under crossing the Yangtze River. Because the tunnel started and ended in the downtown area, the major concerns were environmental concerns. A composed of experts in geotechnical engineering was set up at the beginning of the project to provide and ensure high quality technical solutions, where a risk analysis was conducted by using fault-trees to evaluate the environmental damage due to tunneling. Figure 4 through Figure 7 show the fault-trees, where the top event is the lime trees are damaged due to the tunneling activities. It should be noted that all events are assumed to be independent to each other. Interaction noted in Figure4 through Figure 7, such as unknown interaction etc., is applied only when imprecise probabilities is considered when using imprecise probability later. For the events at the bottom of the fault-trees, it is used precise probabilities, which are summarized in the columns under precise in Table 6. Finally, the occurrence probability for the top event is equal to 0.105, which it is thought acceptable. However, the current status of the project showed that it is not a good estimation. The probability might be higher than 0.105 and thus it is not acceptable. The two columns imprecise heading in Table 6 list all imprecise probabilities which evaluate the uncertainty of the events at the bottom of the fault-trees, where the interval widths are equal to 0.1. As shown in Figure 4 through Figure 7, the interaction between events is assumed to be unknown interaction, independence,or uncertain correlation with the correlation coefficient tρ[0.5,0.8]. Figure 4: Fault tree for damage to trees due to tunnelling activities Figure 5: Fault tree for Branch A (roots damaged mechanically)

468 Figure 6: Fault tree for Branch B (Trees damaged by chemical in the ground) Figure 7: Fault tree for Branch C (water transportation to tunneling area decrease) 4. Conclusion In this paper, the imprecise probability had been introduced into the process of risk assessment to deal with the problems caused by the uncertain information, and the Failure Event Tree Analysis based on imprecise probability had been also established. Finally, through an example of tunnel project, it is found that the eventtree analysis method based on imprecise probability could evaluate the risk of the tunnel project, which result is a probability interval. The result provides more choices for the decision-maker to choose the way to deal with risk, and the result is more reasonable. Reference Gierczak M., 2014, The quantitative risk assessment of MINI, MIDI and MAXI horizontal directional drilling projects applying fuzzy fault tree analysis. Tunneling and Underground Space Technology, 43(7), 67-77. Gustafson A., Schunnesson H., Galar D., 2013, The influence of the operating environment on manual and automated load-haul-dump machines: a fault tree analysis. International Journal of Mining, Reclamation and Environment, 27(2), 75-87. Mahmood Y.A., Ahmadi A., Verma A.K., 2013, Fuzzy fault tree analysis: A review of concept and application. International Journal of System Assurance Engineering and Management, 4(1), 19-32. DOI: 10.1007/s13198-013-0145-x Shi H.L., Ma S.Z., Jia H.B., 2015, Research on tunnel collapse probability calculation method based on extensible comprehensive evaluation model. Safety and Environment Engineering, 22(2), 154-158. Song L., Wang T., Song X., 2015, Research and application of FTA and petri nets in fault diagnosis in the pantograph-type current collector on CRH EMU trains. Mathematical Problems in Engineering, 2015. Wang N., Hu D., 2015, Important measure for multi-state fault tree based on multi-state multi-value decision diagram. Computer Integrated Manufacturing Systems, 5, 020. Wu X., Wang Y., Zhang L., 2015, A Dynamic Decision Approach for Risk Analysis in Complex Projects. Journal of Intelligent & Robotic Systems, 79(3), 1-11, DOI: 10.1007/s10846-014-0153-3 Zhang Y., Liu Y.X., Wu R.Z., Zhao J.C., Tan Y.Z., 2016, Influence of slot parameters on the structure performance of slotted tunnels under the internal chemical explosion, Chemical Engineering Transactions, 55, 1-6, DOI: 10.3303/CET1655001.