Implications of the 125 GeV Higgs for the inert dark matter

Similar documents
arxiv: v1 [hep-ph] 19 Jan 2015

The inert doublet model in light of LHC and XENON

The Inert Doublet Matter

Maria Krawczyk U. of Warsaw

CORFU HDMs. symmetry The Inert Model Various vacua Today= Inert phase Thermal evolutions Z 2

DISCRETE 2014 London, Maria Krawczyk U. of Warsaw. Plan Higgs: LHC data SM-like scenarios at LHC

h γγ and h Zγ in the Inert Doublet Higgs Model and type II seesaw Model

CORFU2012 Corfu Maria Krawczyk (University of Warsaw)

Invisible Sterile Neutrinos

The theory ends here. We need help. Experiments must clear up this mess. M. Veltman 2003

An update on scalar singlet dark matter

Topics about the Two Higgs Doublet Model

PoS(CHARGED2016)017. CP violation and BSM Higgs bosons

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

BSM Higgs Searches at ATLAS

Higgs couplings after Moriond

Constraining minimal U(1) B L model from dark matter observations

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Hidden two-higgs doublet model

The 2HDM in light of the recent LHC results. Rui Santos

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Inert Doublet Model:

arxiv: v2 [hep-ph] 30 Oct 2014

Production of Inert Scalars at the LHC and the high energy e + e colliders

Exploring Inert Scalars at CLIC

arxiv: v1 [hep-ph] 29 Apr 2017

Two-Higgs-doublet models with Higgs symmetry

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Models as existence proofs, speculations or... peaces of physical reality

arxiv: v7 [hep-ph] 19 Jul 2013

Non-Abelian SU(2) H and Two-Higgs Doublets

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Computer tools in particle physics

Fermionic DM Higgs Portal! An EFT approach

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

The CP-conserving 2HDM after the 8 TeV run

TeV Scale Seesaw with Loop Induced

Probing the Majorana nature in radiative seesaw models at collider experiments

Higgs: Interpretation and Implications. Marco Farina April 19, 2013

arxiv: v2 [hep-ph] 29 Apr 2016

Phenomenology of a light singlet-like scalar in NMSSM

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

Higgs boson(s) in the NMSSM

Beyond Simplified Models

Inert Doublet Model and DAMA:

Natural explanation for 130 GeV photon line within vector boson dark matter model

Radiative corrections to the Higgs boson couplings in the Higgs triplet model

Dark matter and collider signatures from extra dimensions

Effective Theory for Electroweak Doublet Dark Matter

Gamma-rays constraint on Higgs Production from Dark Matter Annihilation

Exotic scalars. Stefania Gori. Second MCTP Spring Symposium on Higgs Boson Physics. The University of Chicago & Argonne National Laboratory

arxiv: v2 [hep-ph] 25 May 2018

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Electroweak Baryogenesis and Higgs Signatures

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Higgs Signals and Implications for MSSM

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Diagnosing the Nature of the GeV LHC Higgs-like signal

SEARCH FOR RARE & EXOTIC HIGGS DECAY AND PRODUCTION: STATUS AND PERSPECTIVES

arxiv: v1 [hep-ph] 22 Apr 2015

Electroweak Baryogenesis after LHC8

Electroweak baryogenesis from a dark sector

arxiv: v1 [hep-ex] 5 Sep 2014

Right-Handed Neutrinos as the Origin of the Electroweak Scale

A complex 2HDM at the LHC. Rui Santos

125 GeV Higgs Boson and Gauge Higgs Unification

Natural Nightmares for the LHC

A realistic model for DM interactions in the neutrino portal paradigm

Electroweak Phase Transition, Scalar Dark Matter, & the LHC. M.J. Ramsey-Musolf

Electroweak and Higgs Physics

Introducing SModelS - with an application to light neutralino DM

Where is SUSY? Institut für Experimentelle Kernphysik

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Search for Higgs in the Two Doublet Models

Dark Matter and Gauged Baryon Number

Higgs Coupling Measurements!

Pseudoscalar Higgs boson signatures at the LHC

Dynamics of a two-step Electroweak Phase Transition

Search for BSM Higgs bosons in fermion decay modes with ATLAS

Supersymmetric Origin of Matter (both the bright and the dark)

How high could SUSY go?

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Review of Higgs results at LHC (ATLAS and CMS results)

Baryonic LHC

Koji TSUMURA (NTU à Nagoya U.)

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

An Exploratory study of Higgs-boson pair production

Stable or Unstable Light Dark Matter arxiv: v1 [hep-ph] 27 Jul 2015

Triplet Higgs Scenarios

Higgs Candidate Property Measurements with the Compact Muon Solenoid. Andrew Whitbeck * for the CMS Collaboration. Johns Hopkins University

Cosmological Constraint on the Minimal Universal Extra Dimension Model

arxiv: v1 [hep-ph] 3 Aug 2016

arxiv: v2 [hep-ph] 4 Oct 2018

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

Generic Dark Matter 13 TeV. Matteo Cremonesi FNAL On behalf of the ATLAS and CMS Collaborations Moriond EWK - March 18, 2016

Astroparticle Physics and the LC

Mirror World and Improved Naturalness

Models of New Physics for Dark Matter

Transcription:

Implications of the 125 GeV Higgs for the inert dark matter Bogumiła Świeżewska Faculty of Physics, University of Warsaw 26.03.2014 Recontres de Moriond QCD and High Energy Interactions, La Thuile, Italy in collaboration with M. Krawczyk, D. Sokołowska, P. Swaczyna, PRD 88 (2013) 035019, PRD 88 (2013) 055027, JHEP 09 (2013) 055

Outline Aim: Constrain the new scalar particles with the use of measured Higgs boson properties. Introduction to IDM Higgs @ LHC Inert DM Implications for the DM combination with PLANCK Detection of the DM

Why Inert Doublet Model? Simple extension of the SM (not so many parameters) Rich phenomenology SM-like Higgs boson Viable DM candidate Thermal evolution of the Universe + some conditions for baryogenesis

Inert Doublet Model (IDM) [N. G. Deshpande, E. Ma, PRD 18 (1978) 2574, J. F. Gunion, H. E. Haber, G. Kane, S. Dawson, The Higgs Hunter s Guide, 1990 Addison-Wesley, R. Barbieri, L. J. Hall, V. S. Rychkov, PRD 74 (2006) 015007, I. F. Ginzburg, K. A. Kanishev, M. Krawczyk, D. Sokołowska, PRD 82 (2010) 123533] IDM a 2HDM with the scalar potential (real parameters): [ ] ] V = 1 2 m11 2 (φ S φ S) + m22 2 (φ D φ D) + 1 2 [λ 1 (φ S φ S) 2 + λ 2 (φ D φ D) 2 ] +λ 3 (φ S φ S)(φ D φ D) + λ 4 (φ S φ D)(φ D φ S) + 1 2 λ 5 [(φ S φ D) 2 + (φ D φ S) 2 Z 2 symmetry: φ D φ D, φ S φ S (called D) Yukawa interactions: type I (only φ S couples to fermions) L D-symmetric D-symmetric vacuum state φ S = v 2, φ D = 0 EXACT D-symmetry

Particle spectrum of IDM [E. M. Dolle, S. Su, Phys. Rev. D 80 (2009) 055012, L. Lopez Honorez, E. Nezri, F. J. Oliver, M. Tytgat, JCAP 0702 (2007) 028, D. Sokołowska, arxiv:1107.1991 [hep-ph]] φ S : h SM-like Higgs boson, tree-level couplings to fermions and gauge bosons like in the SM. Deviation from SM in loop couplings possible! φ D : H, A, H ± D-odd dark scalars, no tree-level couplings to fermions D symmetry exact lightest D-odd particle stable DM candidate DM= H, so M H < M H ±, M A

Invisible decays of the Higgs boson h HH invisible decay (H is stable) h H H augmented total width of the Higgs boson, Γ(h HH) λ 2 345 LHC: Br(h inv) < 37% global fit: Br(h inv) 20% bounds on the mass of DM and λ 345 see the talk of P. Meridiani For M H = 50 GeV, M A = 58 GeV. [G. Bélanger, B. Dumont, U. Ellwanger, J. F. Gunion, S. Kraml, PLB 723 (2013) 340]

Two-photon decay of the Higgs boson, h γγ At the loop level in the SM γ h h W f γ γ γ In the IDM additional H ± h H ± γ γ Width of h γγ modified for invisible channels closed Γ(h γγ) IDM = G F α 2 Mh 3 128 2π 3 ASM + 2M2 H ± + ( m2 22 4M 2 ) 2M 2 A H ± 2 0 H ± M 2 h

Signal strength in the h γγ channel R γγ signal strength R γγ = σ(pp h γγ)idm σ(pp h γγ) SM Γ(h γγ)idm Γ(h) SM Γ(h γγ) SM Γ(h) IDM R γγ can differ from the SM value R γγ = 1 because of: invisible decays (in Γ(h) IDM ) the effect of the DM H ± loop (in Γ(h γγ) IDM ) the effect of the charged scalar For now: R γγ = 1.55 +0.33 0.28 (ATLAS), R γγ = 0.78 ± 0.27 (CMS) [ATLAS Collaboration, PLB 726 (2013) 88, CMS Collaboration, CMS PAS HIG-13-005 (2013)]

[A. Arhrib, R. Benbrik, N. Gaur, PRD 85 (2012) 095021, BŚ, M. Krawczyk, PRD 88 (2013) 035019] R γγ > 1 and the masses of the dark scalars Mass of the charged scalar Mass of the DM If R γγ > 1.2: M H, M H ± 154 GeV. Fairly light charged scalar If R γγ > 1: M H > M h /2 Light ( 63 GeV) DM excluded

Inert DM relic density constraints Higgs portal DM coupling to fermions through h hhh coupling λ 345 important for the relic density H h f H W H h W H f H W H W 0.1018 < Ω DM h 2 < 0.1234 (3σ, WMAP) 0.1118 < Ω DM h 2 < 0.1280 (3σ, PLANCK) Possible masses: light DM: M H 10 GeV, λ 345 O(0.5) intermediate DM: 40 GeV M H 160 GeV, λ 345 O(0.05) heavy DM: M H 500 GeV, λ 345 O(0.1) [E. M. Dolle, S. Su, Phys. Rev. D 80 (2009) 055012, L. Lopez Honorez, E. Nezri, F. J. Oliver, M. Tytgat, JCAP 0702 (2007) 028, D. Sokołowska, arxiv:1107.1991 [hep-ph]]

Constraints from R γγ [M. Krawczyk, D. Sokołowska, P. Swaczyna, BŚ, JHEP 09 (2013) 055] 1.0 Setting a lower limit on R γγ constrains λ 345 Upper and lower limits on λ 345 depend on M H RΓΓ 0.8 0.6 0.4 0.2 Λ 345,min 0.023 0.0 0.10 0.05 0.00 0.05 0.10 Λ 345,max 0.009 R ΓΓ 0.7 R ΓΓ Λ 345 Λ 345 For M H = 55 GeV, M A = 60 GeV, M H ± = 120 GeV Does it agree with the PLANCK measurements?

Light DM M H 10 GeV 0.04 M A M h 2 correct relic density λ 345 O(0.5) too small λ 345 overclosing the Universe R γγ > 0.7 λ 345 < 0.04 Λ 345 0.02 0.00 0.02 M H ± GeV 70 120 500 0.04 0 10 20 30 40 50 60 M H GeV Light DM exlucded [D. Sokołowska, arxiv:1107.1991 [hep-ph]; Scalars 2013]

Intermediate DM [Planck update: D. Sokołowska, P. Swaczyna, 2014] h HH open h HH closed 0.10 M A M H ± 120 GeV R ΓΓ 0.2 A H ± 50 GeV R ΓΓ 0.05 0.9 0.1 0.98 0.7 Λ 345 0.00 Planck excluded 0.5 Λ 345 0.0 0.94 0.05 red - agreement with Planck 0.3 0.1 Planck excluded 0.90 0.10 0.1 0.2 0.86 50 52 54 56 58 60 M H GeV 50 GeV < M H < M h /2, M A = M H ± = 120 GeV R γγ > 0.7 & PLANCK M H > 53 GeV 65 70 75 80 M H GeV M h /2 < M H < 83 GeV, M A = M H ± = M H + 50 GeV agreement with PLANCK and R γγ > 0.7, but then R γγ < 1

Heavy DM M H > 500 GeV, M A = M H ± = M H + 1 GeV (because of S, T ) 0.4 A H ± 1 GeV R ΓΓ 0.2 1.004 Λ 345 0.0 Planck excluded 1.002 1 0.2 0.998 0.4 0.996 550 600 650 700 750 800 850 M H GeV Agreement with PLANCK and R γγ 1.

Direct detection comparison with XENON/LUX DM-nucleon scattering cross section σ DM N λ 2 345 R γγ bounds on λ 345 translated to the (σ DM N, M H ) plane 10 5 10 6 XENON10 M H ± GeV 70 120 ΣDM,N pb 10 7 10 8 XENON100 500 10 9 10 10 0 10 20 30 40 50 60 M H GeV from the talk of P. Meridiani Constraints from R γγ > 0.7, 0.8 are stronger/comparable to LHC and LUX results.

Direct detection comparison with XENON/LUX DM-nucleon scattering cross section σ DM N λ 2 345 R γγ bounds on λ 345 translated to the (σ DM N, M H ) plane 10 5 10 6 XENON10 M H ± GeV 70 120 ΣDM,N pb 10 7 10 8 XENON100 500 10 9 10 10 0 10 20 30 40 50 60 M H GeV from the talk of P. Meridiani Constraints from R γγ > 0.7, 0.8 are stronger/comparable to LHC and LUX results.

Summary IDM in agreement with the data (LEP, LHC and PLANCK) h γγ can provide important information about IDM, because it is sensitive to M H and M H ± If R γγ combined with PLANCK constraints on DM scenarios

Back up

h γγ vs h Zγ [BŚ, M. Krawczyk, Phys. Rev. D 88 (2013) 035019, formulas for h Zγ: A. Djouadi, Phys.Rept. 459 (2008) 1, C.-S. Chen, C.-Q. Geng, D. Huang, L.-H. Tsai, Phys.Rev.D 87 (2013) 075019] Sensitivity to invisible channels R γγ and R Zγ positively correlated R γγ > 1 R Zγ > 1

Constraints on the Higgs decay width Γ Γ SM < 4.2 constraints on h HH 0.15 see the talk of N. De Fillipis 0.10 0.05 Λ345 0.00 0.05 0.10 0.15 0 10 20 30 40 50 60 M H The bounds are weaker than from constraints on Br(h inv).

Direct detection dependence on f N. DM-nucleon scattering cross section σ DM,N λ 2 345 σ DM,N = λ2 345 mn 4 4πMh 4 (m N + M H ) 2 f N 2 Depends on the value of f N, no agreement on its precise value. f N (0.014, 0.66). We use f N = 0.326 the middle value.

Constraints Vacuum stability: scalar potential V bounded from below Perturbative unitarity: eigenvalues Λ i of the high-energy scattering matrix fulfill the condition Λ i < 8π Existence of the Inert vacuum: Inert state a global minimum of the scalar potential m 2 22 9 104 GeV 2 H as DM candidate: M H < M A, M H ± and WMAP Electroweak Precision Tests (EWPT): S and T within 2σ (S = 0.03 ± 0.09, T = 0.07 ± 0.08, with correlation of 87%) LEP bounds on the scalars masses LHC: M h 125 GeV

Masses of the scalars Mh 2 = m2 11 = λ 1v 2 MH 2 ± = 1 2 (λ 3v 2 m22 2 ) MA 2 = 1 2 (λ 345 v 2 m22 2 ) MH 2 = 1 2 (λ 345v 2 m22 2 )

R γγ > 1 analytical solution If invisible channels closed R γγ = Γ(h γγ)idm Γ(h γγ) SM R γγ > 1 can be solved analytically for M H ±, m 2 22 Constructive interference m 2 22 < 2M2 H ± ( λ 3 < 0) with LEP bound on M H ± m 2 22 < 9.8 103 GeV 2 Destructive interference IDM contribution 2 SM contribution big m 2 22 required: m 2 22 1.8 105 GeV 2 excluded by the condition for the Inert vacuum m 2 22 9 104 GeV 2

DM signals [see e.g.: M. Gustafsson, S. Rydbeck, L. Lopez Honorez, E. Löndstrom, Phys. Rev. D 86 (2012) 075019] gamma-ray lines cosmic and neutrino fluxes direct detection signals