Laminar flame speed (burning velocity) reactants. propagating flame front. products. reactants

Similar documents
Liquid fuels viscosity (non-newtonian fluids)

Laminar Premixed Flames: Flame Structure

APPENDIX A: LAMINAR AND TURBULENT FLAME PROPAGATION IN HYDROGEN AIR STEAM MIXTURES*

Department of Mechanical Engineering BM 7103 FUELS AND COMBUSTION QUESTION BANK UNIT-1-FUELS

Experimental Study of 2D-Instabilities of Hydrogen Flames in Flat Layers

Lecture 7 Flame Extinction and Flamability Limits

Well Stirred Reactor Stabilization of flames

Combustion. Indian Institute of Science Bangalore

Flame Propagation in Poiseuille Flow under Adiabatic Conditions

Lecture 9 Laminar Diffusion Flame Configurations

COMBUSTION OF FUEL 12:57:42

Lecture 8 Laminar Diffusion Flames: Diffusion Flamelet Theory

Rouen LBV 2012 ACCURACY OF TWO METHODS TO MEASURE LAMINAR FLAME SPEEDS: (1) STEADY BUNSEN BURNER FLAMES AND (2) SPHERICAL FLAMES IN BOMBS.

Effects of Variation of the Flame Area and Natural Damping on Primary Acoustic Instability of Downward Propagating Flames in a Tube

ME332 FLUID MECHANICS LABORATORY (PART I)

Structures of Turbulent Bunsen Flames in the Corrugated-Flamelet Regime

Evaluation of Numerical Turbulent Combustion Models Using Flame Speed Measurements from a Recently Developed Fan- Stirred Explosion Vessel

DARS overview, IISc Bangalore 18/03/2014

Temperature Dependency of the Laminar Burning Velocity of Fuel-Rich Methane Oxygen Measurements

Hydrogen addition to the Andrussow process for HCN synthesis

Pre-Lab Exercises Lab 3: Chemical Properties

Kinetic study of combustion behavior in a gas turbine -Influence from varying natural gas composition

Flame / wall interaction and maximum wall heat fluxes in diffusion burners

Modeling of Gasoline Direct Injection Spark Ignition Engines. Chen Huang, Andrei Lipatnikov

a 16 It involves a change of laminar burning velocity, widening or narrowing combustion limits for

Experimental study of the combustion properties of methane/hydrogen mixtures Gersen, Sander

Presentation Start. Zero Carbon Energy Solutions 4/06/06 10/3/2013:; 1

Experimental investigation of propane-air flame propagation in narrow circular ducts

EFFECT OF CARBON DIOXIDE, ARGON AND HYDROCARBON FUELS ON THE STABILITY OF HYDROGEN JET FLAMES

Lecture 6 Asymptotic Structure for Four-Step Premixed Stoichiometric Methane Flames

Flame shape transition in an impinging jet burner over triangular shape Bluff body

TOPICAL PROBLEMS OF FLUID MECHANICS 97

7. Turbulent Premixed Flames

Suppression of Cellular Structure in Slot-Burner Flames

Premixed, Nonpremixed and Partially Premixed Flames

Analysis of homogeneous combustion in Monolithic structures

The Effect of Mixture Fraction on Edge Flame Propagation Speed

NUMERICAL ANALYSIS OF TURBULENT FLAME IN AN ENCLOSED CHAMBER

Asymptotic Structure of Rich Methane-Air Flames

Combustion: Flame Theory and Heat Produced. Arthur Anconetani Oscar Castillo Everett Henderson

Faculty of Engineering. Contents. Introduction

7.2 Sublimation. The following assumptions are made in order to solve the problem: Sublimation Over a Flat Plate in a Parallel Flow

Summer 2017 Math Packet

Dr.-Ing. Frank Beyrau Content of Lecture

FLAME PHOTOMETRY AIM INTRODUCTION

Lab Section Date. ME4751 Air Flow Rate Measurement

Modelling of transient stretched laminar flame speed of hydrogen-air mixtures using combustion kinetics

Laboratory 1: Calibration of a High-Volume Sampler

Atomic Absorption Spectroscopy and Atomic Emission Spectroscopy

Numerical Simulation of Premixed V-Flame

S. Kadowaki, S.H. Kim AND H. Pitsch. 1. Motivation and objectives

Experiment A4 Sensor Calibration Procedure

Outline. Definition and mechanism Theory of diffusion Molecular diffusion in gases Molecular diffusion in liquid Mass transfer

CFD SIMULATION OF HYDROGEN RELEASE, DISPERSION AND AUTO-IGNITION IN ENCLOSURES

Ignition of n-hexane-air Mixtures by Moving Hot Spheres

Steady-State Molecular Diffusion

Combustion Theory and Applications in CFD

AEROSPACE ENGINEERING DEPARTMENT. Second Year - Second Term ( ) Fluid Mechanics & Gas Dynamics

THE HEAT TRANSFER COEFFICIENT CALCULATION IN THE ICE CYLINDER BASED ON IN-CYLINDER PRESSURE DATA

CHARGE TO MASS RATIO FOR THE ELECTRON

EXPERIMENTS WITH RELEASE AND IGNITION OF HYDROGEN GAS IN A 3 M LONG CHANNEL

The modelling of premixed laminar combustion in a closed vessel

AME 513. " Lecture 8 Premixed flames I: Propagation rates

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Numerical Simulation of Hydrogen Gas Turbines using Flamelet Generated Manifolds technique on Open FOAM

Lecture 24. Design of flow meters

S. Q. Wang and S. T. Thynell

GLOWING AND FLAMING AUTOIGNITION OF WOOD

Stoichiometry Rockets

Ph.D. Qualifying Examination in Heat Transfer

Effects of radiative heat loss on the extinction of counterflow premixed H 2 air flames

Deflagration Parameters of Stoichiometric Propane-air Mixture During the Initial Stage of Gaseous Explosions in Closed Vessels

4. Combustion mechanism of fuel gases. 4.1 Reaction sequence Reaction mechanism. Reactions like (4-1) (4-2)

Combustion basics... We are discussing gaseous combustion in a mixture of perfect gases containing N species indexed with k=1 to N:

Lecture 15. The Turbulent Burning Velocity

QUENCHING DISTANCES OF STOICHIOMETRIC ETHYLENE-AIR MIXTURE WITH CO 2 ADDITION. Introduction. Experimental

Cellular structure of detonation wave in hydrogen-methane-air mixtures

THEORETICAL AND EXPERIMENTAL STUDY ON THE GAS FLOWING THROUGH THE NOZZLES OF OXY-FUEL CUTTING EQUIPMENT

Chemistry Semester One Exam Review

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt

240EQ212 - Fundamentals of Combustion and Fire Dynamics

I. CHEM. E. SYMPOSIUM SERIES No. 49

CFD study of gas mixing efficiency and comparisons with experimental data

EXPERIMENTAL STUDY OF A LAMINAR PREMIXED LFG/AIR FLAME IN A SLOT BURNER USING MACH-ZEHNDER INTERFEROMETRY

He measures the steady temperature of the water before adding the lithium iodide.

Quantitative Study of Fingering Pattern Created by Smoldering Combustion

ADVANCED DES SIMULATIONS OF OXY-GAS BURNER LOCATED INTO MODEL OF REAL MELTING CHAMBER

Thermoacoustic Instabilities Research

Stability Diagram for Lift-Off and Blowout of a Round Jet Laminar Diffusion Flame

AP Physics C - E & M

MOLECULAR TRANSPORT EFFECTS OF HYDROCARBON ADDITION ON TURBULENT HYDROGEN FLAME PROPAGATION

exothermic reaction and that ΔH c will therefore be a negative value. Heat change, q = mcδt q = m(h 2

COMPARISON OF ATOMIZERS

ME332 FLUID MECHANICS LABORATORY (PART II)

For use with Comprehensive Secondary Physics

Refracting prisms (Item No.: P )

INTRODUCTION TO CATALYTIC COMBUSTION

Experimental investigation of Methane Partial Oxidation for Hydrogen Production

Properties of Alkanes, Alkenes, Aromatic Compounds and an Alcohol

using simple distillation and paper chromatography practical to obtain a

Transcription:

Laminar flame speed (burning velocity) Introduction One of the most important parameters, influencing both, the combustion system design and combustion process control, is the flame speed. The flame speed is strictly connected to the rate at which the oxidizer and the fuel are consumed and converted into products. The consumption rate is seen as the propagation of flame through combustible mixture. In Fig. 1 a tube filled with stationary combustible mixture is presented. reactants propagating flame front products reactants Fig. 1. Propagating flame front in a tube of stationary combustible mixture The speed at which the flame propagates through the tube while ignited at one end is the laminar flame speed. For complex flows, the direction of flame propagation depends on local flow parameters and, as in the simple flow, the vector of the flame velocity is normal to the local flame front. Therefore the flame speed is often called the normal flame speed. Since the flame speed is strictly connected to the consumption of fuel and oxidizer, it affects the stabilization of flames [1]. In Fig. 2 a flame front propagating in a combustible mixture flowing in a duct with an average velocity w. In his case the flame front is not moving relative to the duct and is moving with the local effective velocity w e relative to the mixture. The local effective velocity is equal to the local flow velocity of the mixture but with an opposite direction. Because the normal flame speed w n is the component of the effective velocity, perpendicular to the flame front, its relationship to the effective velocity w e can be written as: w n = w e cos (1) At various positions on the flame front, both the effective velocity w e and the angle are changing due to the velocity distribution in the tube, however the product of w e and cos, equal to the normal flame speed, remains constant [2]. Theoretical considerations on laminar flames lead to conclusions that the laminar flame speed depends on initial temperature of reactants, system pressure, and mixture composition (Φ or λ). The flame speed Technology, Gliwice 1

depends also on the final temperature of products, however this influence can be understood as the dependence of this temperature on the mixture composition. Maximum values of w n are obtained for slightly rich flames as are the highest adiabatic flame temperatures of the products. This is the result of maximum reaction rates occurring at this compositions. Minimum values are obtained at the lower and upper flammability limits. The flame speed does not depend on the burner design and power. For most combustible mixtures the flame speeds range from 5 to 300 cm/s, usually being of the order of tens cm/s [3]. 1 2 w n w e Fig. 2. Normal flame speed as the component of the local effective velocity; 1, radial velocity distribution; 2, flame front The flame speeds can be calculated, however they are usually obtained experimentally based on measurements of shape of the flame front or velocity of its propagation. Therefore the experimental methods can be divided into stationary and non-stationary methods: In the stationary methods the flame front is not moving relative to the burner and the burning mixture is flowing. The Bunsen burner method or the flat flame method belong to this group. In the non-stationary methods the combustible mixture is not moving and the flame is propagating in the volume of reactants. A constant pressure or constant volume combustion bomb method belong to this group of methods. Another way to measure the speed it to photograph the flame propagating in a tube filled with combustible mixture [4]. Within this exercise the Bunsen burner method will be used to measure the normal flame speed. In the Bunsen burner the luminary flowing mixture is burned forming a stable light blue inner cone and an outer diffusive front. The method is based on the following simplifying assumptions: It is assumed that the thickness of the flame is infinitely small, thus the is treated as a thin sheet dividing the reactants and products. Technology, Gliwice 2

The inner cone of the flame is geometrically an ideal solid of revolution. The effective velocity of the flame is constant along the flame sheet. The mixture is not warming up prior to burning. In Fig. 3 a schematic of the cross-section of the real (left) and the idealized (right) inner cone is presented. 1 w n 1 w e w n H w e 2 R 2 0.7R 3 3 Fig. 3. The inner cone of the flame front of the real (left) and idealized (right) Bunsen burner; 1, flame front; 2, mixture velocity distribution; 3, burner It can be seen from Fig. 3 that the angle between w n and w e is the same as the angle between the burner radius R and the cone slant l (from similarity of the triangles). Using this fact, the normal flame speed can be calculated as: where the angle can be determined from: w n = w e cos = V g + V p πr 2 cos (2) = arctg H R (3) Thus, in order to determine the normal flame speed, one needs to measure the volumetric flow rates of the oxidizer and the fuel, the burner diameter (radius) and the inner cone height. A method based on photographing the flame front and determining the angle from the image can also be applied. The angle is measured at 0.7R because at his radial distance the local effective velocity w e is equal to the average velocity w (this is the result of the parabolic velocity profile of the laminar flow). Technology, Gliwice 3

The aim of the exercise The aim of the exercise is to acquaint the students with the structure of the Bunsen burner flames and the method of determining normal (laminar) flame speed as a function the excess air coefficients λ (or equivalence ratio Φ = 1/λ) for different gases. Experimental setup Scheme of the test rig used to measure the normal laminar flame speed using the Bunsen burner method is shown in Fig. 4. Fig. 4. Scheme the test rig to measure the normal burning velocity using the Bunsen burner method; 1, control valve; 2, manometer, 3, flow meter (rotameter); 4, removable burner; 5, inner combustion cone; 6, movable indicator with stand; 7, ruler A fundamental element of the test rig is the burner whose mixing chambers can be replaced. This allows using mixing chambers of various diameters and changing composition of the air/fuel mixture. In order to generate a premixed flame the gas and the air are introduced by two separate tubes to the base of the mixing chamber. The burner tube is relatively long, so that the out flowing mixture is homogenously mixed. The flow rates of the gases are measured using the flow meters. In order to determine a correction factor, taking into account the thermal parameters of the gases, the gauge pressure of the gas and air are also measured. The height of the inner combustion cone is measured with the ruler, and the inner diameter of the burner with caliper. The experimental procedure After revising the measurement system and checking its condition, follow the steps below: Technology, Gliwice 4

1) Put on the mixing chamber and measure its inner diameter D. Because the length of the mixing chambers differ remember to reset the system of flame height measurement 2) Set the combustible gas flow rate given by the instructor. This flow rate should be constant for a single test series. Ignite the gas. The resulting flame is a diffusion flame. 3) Start increasing the air flow rate and keep observing the flame. The flame should become shorter, and at some point you will observe two fronts of the flame - premixed (inner cone) and diffusion (outer cone) 4) Start the measurement when the inner cone becomes visible. Note down the volumetric flow rates of the substrates (V g, V p) and height of the inner cone H. Write down the gauge pressures of the flowing gases (p g, p p ). Write down the results in the measurement table. 5) Repeat the measurements for increased air flow rates so that each next reading of flame height will differ by about 1 cm. Note down the sets of parameters (H, V g, V p, p g, p p ) in the table for each air flow rate. Continue measurements until the flame is blown off. Remember to close the gas valve after this occurs. 6) Repeat steps 2 to 5 for other values of the combustible gas flow rate as given by the instructor. 7) Change the mixing chamber and repeat steps 1 to 6. 8) Note down the ambient air temperature and pressure. Analysis of the results Note down in the Table 1 the measured quantities where: D inner diameter of the burner, V g, V p - gas and air volumetric flow rates, H height of the inner combustion cone, p g, p p gauge pressure of the gas and air, V g,r, V p,r - corrected volumetric flow rate of the gas and air, λ excess air coefficient, w n laminar (normal) flame speed. In order to calculate the corrected volumetric flow rates, the following formulae should be used V c = V ρ ρ c (4) where: V c - corrected volumetric flow rate of the current fluid ρ c - density of the current fluid V - volumetric flow rate shown by the rotameter ρ - density of the fluid used to calibrate the rotameter Technology, Gliwice 5

Table 1. Results of the measurements using Bunsen burner method Gas: Minimum air requirement n a,min = Ambient air temperature t ot = Barometric pressure p ot = No. D mm V g V p H mm p g mmh 2 O p p mmh 2 O V g,r V p,r λ w n m/s 1 2 Calculate the effective velocity using equation the following relationship: w e = V g,r + V p,r πd 2 4 Calculate the angle Φ from Eq. (3), and then calculate the normal combustion velocity using Eq. (1). Calculate the excess air ratio λ knowing the minimum air requirement n a,min using the following equation: (5) λ = V p,r n a,min V g,r (6) Based on the obtained measurement results and calculated values of w n and λ plot the relationship between the normal laminar flame speed as a function the excess air coefficient for the tested gasses. Approximate this relation using a quadratic polynomial. Determine the coefficients of this function, and check the correctness of the approximation calculating the correlation coefficient. Analyze the graph and try to characterize the changes of w n as a function of λ. Describe the sources of possible measurement errors. Using the law of uncertainty (error) propagation calculate the uncertainty related to determining the excess air coefficient and the normal laminar flame speed. Assume that the class of the rotameters is 2.5 (maximum relative error) and the uncertainty in height measurement is 0.1 mm. Literature [1] Paliwa i ich spalanie. Część V Laboratorium (Petela R. - red.), Skrypt Politechniki Śląskiej Nr 1191, Gliwice, 1984 [2] Lewis B., von Elbe G.: Combustion, Flames and Explosion of Gases, 3 rd edition, Academic Press, New York, 1987 [3] Chomiak J.: Combustion: A Study in Theory, Fact and Application, Abacus Press/Gordon&Breach Science Publishers, New York, 1990 [4] Spalanie i paliwa (Kordylewski W. - red.), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1993 Technology, Gliwice 6