Using Molecular Dynamics to Compute Properties CHEM 430

Similar documents
Analysis of the simulation

Computer simulation methods (2) Dr. Vania Calandrini

Advanced Molecular Molecular Dynamics

What is Classical Molecular Dynamics?

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Molecular Dynamics Simulation Study of Transport Properties of Diatomic Gases

CHEM Atomic and Molecular Spectroscopy

Introduction to Vibrational Spectroscopy

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Neighbor Tables Long-Range Potentials

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Chemistry 213 Practical Spectroscopy

CE 530 Molecular Simulation

Non-bonded interactions

Why Is CO 2 a Greenhouse Gas?

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE No. : 5 (TRANSITION PROBABILITIES AND TRANSITION DIPOLE MOMENT. OVERVIEW OF SELECTION RULES)

Scientific Computing II

Polarization. D =e i E=k i e o E =e o E+ P

Biomolecular modeling II

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

The Effect of Model Internal Flexibility Upon NEMD Simulations of Viscosity

eigenvalues eigenfunctions

Chapter 11. Intermolecular Forces and Liquids & Solids

Spectroscopy in frequency and time domains

Michael W. Mahoney Department of Physics, Yale University, New Haven, Connecticut 06520

16.1 Molecular Vibrations

MOLECULAR SPECTROSCOPY


Non-bonded interactions

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

Supporting Information

Dynamic force matching: Construction of dynamic coarse-grained models with realistic short time dynamics and accurate long time dynamics

Vibrational and Rotational Analysis of Hydrogen Halides

Primary bonding: e- are transferred or shared Strong ( KJ/mol or 1-10 ev/atom) Secondary Bonding: no e -

MOLECULAR DYNAMICS STUDY OF THE NUCLEATION OF BUBBLE

Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56

Molecular Dynamics Simulation Study of the Ionic Mobility of OH Using the OSS2 Model

Brownian Motion and Langevin Equations

Downloaded from UvA-DARE, the institutional repository of the University of Amsterdam (UvA)

Radiant energy is proportional to its frequency (cycles/s = Hz) as a wave (Amplitude is its height) Different types are classified by frequency or

Collisionally Excited Spectral Lines (Cont d) Diffuse Universe -- C. L. Martin

Potentials, periodicity

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Fourier Transform IR Spectroscopy

Development of a Water Cluster Evaporation Model using Molecular Dynamics

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

CO 2 molecule. Morse Potential One of the potentials used to simulate chemical bond is a Morse potential of the following form: O C O

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

All measurement has a limit of precision and accuracy, and this must be taken into account when evaluating experimental results.

Part 2: Molecular Dynamics. Literature History Practical Issues

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

1.3 Molecular Level Presentation

Theoretical models for the solvent effect

Introduction to Molecular Vibrations and Infrared Spectroscopy

Infrared Spectroscopy (IR)

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study

Chemistry 543--Final Exam--Keiderling May 5, pm SES

As we ended the lectures on gases, we were introduced to an idea that serves as foundation for the material in this lecture:

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

Why study protein dynamics?

V( x) = V( 0) + dv. V( x) = 1 2

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MOLECULAR ENERGY LEVELS DR IMRANA ASHRAF

ECE440 Nanoelectronics. Lecture 07 Atomic Orbitals

The broad topic of physical metallurgy provides a basis that links the structure of materials with their properties, focusing primarily on metals.

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 6 THE PERIODIC TABLE & ATOMIC STRUCTURE INSTR : FİLİZ ALSHANABLEH

Nuclear models: Collective Nuclear Models (part 2)

1 Compounds and Molecules

Final Exam Chem 260 (12/20/99) Name (printed) Signature

Molecular dynamics simulation of limiting conductances for LiCl, NaBr, and CsBr in supercritical water

-Atomic Bonding in Solids

Homework Week 1. electronic excited state. electronic ground state

Types of Molecular Vibrations

Roto-translational motion in liquid water and its structural implication

Chapter 6 Vibrational Spectroscopy

QENS in the Energy Domain: Backscattering and Time-of

CE 530 Molecular Simulation

Unit 3 Water Part 2 The wide distribution and importance of water on Earth is a consequence of its molecular structure and hydrogen bonding.


MOLECULES. ENERGY LEVELS electronic vibrational rotational

Force Field for Water Based on Neural Network

Vibrational Spectroscopy

Molecular alignment, wavepacket interference and Isotope separation

ATOMIC BONDING Atomic Bonding

The Physical Properties of Sea Water OCEA 101

Structure-Property Relationships of Porous Materials for Carbon Dioxide Separation and Capture

Chapter 19 Chemical Thermodynamics

Organic Compound Identification Using Infrared Spectroscopy. Description

Chap 10 Part 4Ta.notebook December 08, 2017

Molecular dynamics simulation of Aquaporin-1. 4 nm

Chemistry 2. Assumed knowledge

Supplementary Figures

CHEM 3760 Orgo I, F14 (Lab #11) (TECH 710)

Principles of Molecular Spectroscopy

States of Matter 1 of 21 Boardworks Ltd 2016

Infrared Spectroscopy

Transcription:

Using Molecular Dynamics to Compute Properties CHEM 43

Heat Capacity and Energy Fluctuations

Running an MD Simulation Equilibration Phase Before data-collection and results can be analyzed the system must be prepared via equilibration Minimize energy Velocity/Pressure scaling (move T/P to desired value) Heat cycles Tempering of potential parameters During equilibration monitor thermodynamic properties and structure After achieving stability, perform production run Equilibration of the 2D argon system Potential and Kinetic Energy Total Energy Temperature Energy (kj/mol) 2 - -2-3 -4-5 -6-7.5.5 2 2.5 3 3.5 4 Energy (kj/mol) -32-34 -36-38 -4-42 -44-46.5.5 2 2.5 3 3.5 4 Temperature (K) 9 85 8 75 7 65 6.5.5 2 2.5 3 3.5 4 Time (ps) Time (ps) Time (ps)

The properties (such as time averages) should not depend on the initial conditions! Compute averages from several simulations : Initial condition time 2 3 Equilibration Production Compute block-averages : time Equilibration # #2 #3 #4 #5 #6 #7 Production Difficulty: Block-averages might be the same, because the equilibration is very slow Sometimes several simulations are performed with di erent system sizes to check equilibration

Evolution of the radial distribution function of the 2D argon system - ps -2 ps 2-3 ps 6 6 6 4 2 5 4 5 4 g(r) 8 g(r) 3 g(r) 3 6 4 2 2 2 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 Distance (Ang) Distance (Ang) Distance (Ang) Production phase It is important to continue to check the properties monitored during the equilibration phase during the production phase. They may still not be stable, in which case the beginning or the whole of the simulation might have to be discarded.

Properties from MD Simulations Time averages Thermodynamic properties (energies, pressure... ) Structural properties... Dynamic quantities Time correlation functions (and their FT s, related to spectroscopic properties.) Transport properties (di usion... )

Analyzing Simulation Results Directly visualize the results using molecular graphics. The results can (of course) be analyzed by inspection, although this is not as trivial as it may sound! Snapshot from a simulation containing 52 water molecules and one Na + ion Local environment of Na + (aq)

Structural Properties The radial distribution function gives a measure of the local structure. It corresponds to the local concentration of particles in a (thin) spherical shell at the distance r around a central particle, relative to a uniform distribution of particles. Examples r g(r) 2.8.6.4.2.8.6.4.2 Liquid Argon g(r) 4.5 4 3.5 3 2.5 2.5.5 NaCl Melt Na+ - Na+ Cl- - Cl- Na+ - Cl- 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 Distance (Angstrom) Distance (Angstrom)

Radial Distribution Functions Useful for molecular liquids. Site-site radial distribution functions for water : Oxygen-Oxygen Hydrogen-Hydrogen Oxygen-Hydrogen 3.5.4.6 3.2.4 g(r) 2.5 2.5 g(r).8.6.4 g(r).2.8.6.4.5.2.2 2 3 4 5 6 7 8 9 Distance (Ang) 2 3 4 5 6 7 8 9 Distance (Ang) 2 3 4 5 6 7 8 9 Distance (Ang) For large molecules the number of site-site distribution functions obviously becomes very large and only a subset is usually computed For molecules it is also possible to compute various angular dependent functions, and/or compute so-called spatial distribution functions

Integrating the radial distribution function gives the number of particles surrounding the central particle 3 25 2 g(r) n(r) g(r), n(r) 5 5 2 3 4 5 6 7 8 9 Distance (Ang) Structure of water around an Al 3+ ion: g Al O ( r ) and n Al O (r)

Dynamical Properties Time Correlation Functions Correlations between two di erent quantities A and B are measured using a time correlation function : C AB (t) = < A(t) B () > Such time correlation functions are interesting since : They give a picture of the dynamics in the system Their time integrals are often related to various transport properties Their Fourier transforms are often related to experimental spectra If A and B are di erent properties, C is called a cross correlation function If A and B are the same property, C is called an auto correlation function. The auto correlation function is a measure of the memory of the system for some property

Dynamical Properties: Time Correlation Functions (cont) If A( t) is a property of many particles the correlation function is collective If A(t) is a property of a single particle the function is a single particle correlation function The single particle velocity auto-correlation (VAC) function : C vv (t) = < v (t) v ( ) > Example : Hydrogen in liquid water.8.6.4 Cvv(t).2 -.2 -.4 -.6..2.3.4.5 Time (ps)

Dynamical Properties: Time Correlation Functions (cont) The average in the velocity auto-correlation function is typically taken over all particles in the system and for a number of di erent time origins < v (t) v ( ) > = N N Σ i < v i (t) v i ( ) > < v i (t) v i ( ) > = M M Σ j v i (t j + t ) v i (t j ) t= t= j=2 j=2 v i (2+t). v i (2) t= t= j= j= v i (+t). v i () t= t= j= j= v i (+t). v i () 2 3 4 5 6 7 8 9 time

Dynamical Properties: Time Correlation Functions (cont) The normalized time correlation function is < A(t) B () > C AB (t) = < A() B () > Fourier transforming the correlation function Ĉ AB (ω) =! C AB (t) e i2πωt dt Fourier transform of the hydrogen in liquid water VAC 3 2.5 2 DOS.5 water intramolecular bend.5 water intramolecular stretch -.5 5 5 2 25 3 35 4 Wavenumber (cm - )

Transport Properties Integrating the velocity auto-correlation function gives the di sion coefficient D = 3 < v (t) v () > dt This is an expression of the general type γ = < Ȧ(t) Ȧ() > dt The corresponding Einstein relation is 2tγ = < (A(t) A()) 2 > An alternate way to compute the di 2tD = < r (t) r () 2 > 3 sion coefficient

The Einstein relation holds at long times! 3 MSD (Angstrom^2) 2.5 2.5.5 MSD FIT 2 3 4 5 Time (ps) Examples of other dynamical properties that can be studied using time correlation functions and/or Einstein relations : Total dipole moment auto-correlation function : Related to (infrared) absorption spectrum Auto-correlation function of elements of the pressure tensor : Related to the viscosity Orientational correlation functions : Related to various spectroscopic techniques (NMR, IR, Raman...)

Handling Fast Vibrational Motion Vibrational motion with high frequencies ( ω k B T ) are really quantized Energy 7 hω/2 V(x)=kx 2 /2 5 hω/2 3 hω/2 hω/2 k B T/2? Displacement (x) Also, since the frequencies are very high, short timesteps are required Flow of energy might be slow, due to poor coupling between the degrees of freedom. This can lead to problems with equilibration.

Treatment of Rigid Molecules One solution is to make molecules / bonds rigid! Rigid molecules Separate motion into translation and rotation ; Separate equations of motion for the center of mass, and some representation of the rotation of the molecule (use Euler angles or quaternions) Rigid bonds Constraint dynamics (for holonomic constraints ) Appropriate for molecules that are partially flexible, such as a polymer Rigid small molecules can also be handled by introducing fixed bonds, three per atom (or, actually, 3N - 6 bonds per molecule)

Constraint Dynamics Relatively simple algorithms exist : SHAKE and RATTLE SHAKE enforces the (for instance) distance between two atoms to be constant roh=. Å rhh=.63298 roh=. Å Holonomic constraints : f(q, q 2,..., t) = rij 2 dij 2 = The SHAKE method is tightly connected to the integrator used, the variant for the velocity Verlet integrator is termed RATTLE The method introduces an extra force directed along the bond between two atoms at time zero (i.e. before the integration) First the integration step is completed as if there were no constraint force Then all constraint forces are solved for, one by one, iteratively

Long Range Interactions: Ewald Sum A long range interaction decays no faster than r d, where d is the dimensionality of the system The problem : The interaction decay is so slow that we cannot just truncate it at a reasonably short distance Even worse : Conditionally convergent! Important members of this class : charge-charge (r ) 2 charge-dipole (r ) 3 dipole-dipole (r ) 3 charge-quadrupole (r ) The Coulomb interaction : V = 4 N i= N j= i+ q i q j r ij

Di erent methods to treat this kind of interaction have been devised (Ewald, reaction field, various multipole methods) Here only the ordinary Ewald method is (briefly) considered Sum over periodic images built up in spherical layers : ε s The very large sphere is surrounded by a medium with relative permittivity s

The potential energy can be written as : V = 4 2 n N i N j q i q j r ij + n where n = ( n x L, n y L, n z L). n x, n y, n z are integers and L the size of the central image. The in the sum : i = j for n = The Ewald method : Add screening charge distribution with opposite charge and equal magnitude ( α 3 π 3/ 2 e α 2 r 2 ) + + - -

The interaction between the charges is now short ranged : V real = 4 2 n erfc(x ) = 2π / 2 x N i N j e t2 dt q i q j erfc(α r ij + n ) r ij + n For suitable values of the α parameter, n can be truncated to The original potential is restored by adding a canceling charge distribution :

The canceling distribution is summed in reciprocal (Fourier) space : V reciprocal = L 3 2 k = k 2 e k 2 4α 2 N i N j q i q j cos (r ij k ) The sum goes over reciprocal vectors, k = 2πn/ L A correction term needs to be subtracted as the sum in reciprocal space includes the interaction of the canceling distribution at r i with itself : V self = α 4π 3/ 2 N i q 2 i The expression V = V real + V reciprocal + V self, corresponds to the potential energy for the large sphere surrounded by a medium with s =