Contents Part A Number Theory Highlights in the History of Number Theory: 1700 BC 2008

Similar documents
MthEd/Math 300 Williams Fall 2011 Midterm Exam 3

Shi Feng Sheng Danny Wong

O1 History of Mathematics Lecture XIII Complex analysis. Monday 21st November 2016 (Week 7)

Industrial revolution and reform of mathematics

Beyond Newton and Leibniz: The Making of Modern Calculus. Anthony V. Piccolino, Ed. D. Palm Beach State College Palm Beach Gardens, Florida

Elementary Number Theory

A Classical Introduction to Modern Number Theory

Introduction to Number Theory

Math Topics in Algebra Course Notes: A Proof of Fermat s Last Theorem. Spring 2013

Number Theory and Algebraic Equations. Odile Marie-Thérèse Pons

What do you think are the qualities of a good theorem? it solves an open problem (Name one..? )

Lecture 2: What is Proof?

Course Competencies Template - Form 112

Exploring Number Theory via Diophantine Equations

An Invitation to Modern Number Theory. Steven J. Miller and Ramin Takloo-Bighash PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Mathematical Transition

A Brief History of Ring Theory. by Kristen Pollock Abstract Algebra II, Math 442 Loyola College, Spring 2005

How Euler Did It. by Ed Sandifer. Foundations of Calculus. September 2006

24/10/ Dr Ray Adams

The story of Fermat s Last Theorem

A Brief History of Algebra

Diophantine equations

THE HISTORY OF MATHEMATICS BRIEF VERSION VICTOR J* KATZ. University of the District of Columbia. SUB Gottingen A 3130

On the Cardinality of Mersenne Primes

THE MATHEMATICS OF EULER. Introduction: The Master of Us All. (Dunham, Euler the Master xv). This quote by twentieth-century mathematician André Weil

Part I, Number Systems. CS131 Mathematics for Computer Scientists II Note 1 INTEGERS

Working Group report: A brief history of functions for mathematics educators. Keywords: history of mathematics; functions; BSHM

Discrete Logarithms. Let s begin by recalling the definitions and a theorem. Let m be a given modulus. Then the finite set

Logic and Mathematics. 1. Lecture

Some Important Mathematicians. Palash Sarkar

E.J. Barbeau. Polynomials. With 36 Illustrations. Springer

Rassias Conjecture. For any prime p with p>2therearetwoprimesp 1, p 2, with p 1 <p 2 such that p = p 1 + p 2 +1 p 1 . (1)

History of Mathematics

UNIVERSITY OF DELHI DEPARTMENT OF MATHEMATICS. GENERIC ELECTIVE (GE) Courses For BA/B.Com. Programme. (Effective from Academic Year )

Cryptography. Number Theory with AN INTRODUCTION TO. James S. Kraft. Lawrence C. Washington. CRC Press

VII. Table of Contents

Contents. 2 Sequences and Series Approximation by Rational Numbers Sequences Basics on Sequences...

Deepening Mathematics Instruction for Secondary Teachers: Algebraic Structures

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2

are essentially different? Imagine them as made out of string. No fidgeting with them (without cutting) can make them look identical!

Elliptic Curves and Mordell s Theorem

Real Analysis. a short presentation on what and why

Math 1230, Notes 8. Sep. 23, Math 1230, Notes 8 Sep. 23, / 28

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 30th October 2017 (Week 4)

History of Mathematics

MATHEMATICS (MATH) Calendar

O1 History of Mathematics Lecture I Introduction. Monday 9th October 2017 (Week 1)

Modulus. Peter Martinson

Chapter 12: Ruler and compass constructions

~ 2. Who was Euclid? How might he have been influenced by the Library of Alexandria?

A Course in Computational Algebraic Number Theory

A proof has to be rigorously checked before it is published, after which other mathematicians can use it to further develop the subject.

Number Theory: Final Project. Camilla Hollanti, Mohamed Taoufiq Damir, Laia Amoros

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n

An Elementary Proof Of Fermat s Last Theorem

Course Contents. Prerequisite : MATH 140

O1 History of Mathematics Lecture VIII Establishing rigorous thinking in analysis. Monday 31st October 2016 (Week 4)

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

MAT 115H Mathematics: An Historical Perspective Fall 2015

Introduction: Pythagorean Triplets

300-Level Math Courses

Public Math Seminar Good Day To Math. Course Syllabus. July, Instructor : Sung Min Lee Visiting Lecturer : Won Kyung Lee

ENTRY NUMBER THEORY. [ENTRY NUMBER THEORY] Authors: Oliver Knill: 2003 Literature: Hua, introduction to number theory.

A Comprehensive Course in Number Theory

Minal Wankhede Barsagade, Dr. Suchitra Meshram

AN INTRODUCTION TO THE FRACTIONAL CALCULUS AND FRACTIONAL DIFFERENTIAL EQUATIONS

1 Natural numbers and integers

In Defense of Euclid. The Ancient Greek Theory of Numbers

Fermat s Last Theorem

Number Theory. Jason Filippou UMCP. ason Filippou UMCP)Number Theory History & Definitions / 1

Mathematical Masterpieces: Teaching with Original Sources

MATH 205 L01 W 2006 MIDTERM AND SOLUTIONS

INTRODUCTORY ALGEBRAIC NUMBER THEORY

Contents. Preface. Chapter 3. Sequences of Partial Sums Series in the 17th century Taylor series Euler s influence 96.

5 History of Linear Algebra

INTRODUCTION TO TRANSCENDENTAL NUMBERS

The Work of Akshay Venkatesh. Allyn Jackson

Projects on elliptic curves and modular forms

PMATH 300s P U R E M A T H E M A T I C S. Notes

O1 History of Mathematics Lecture XII 19th-century rigour in real analysis, part 2: real numbers and sets. Monday 14th November 2016 (Week 6)

English and L A TEX for Mathematicians

From Wikipedia, the free encyclopedia

January 25, Academic Team Math Must Know.notebook. Jan 25 10:15 AM. Jan 25 8:31 AM. Jan 25 10:15 AM. Jan 25 10:17 AM.

MATHEMATICS (MATH) Mathematics (MATH) 1 MATH AP/OTH CREDIT CALCULUS II MATH SINGLE VARIABLE CALCULUS I

The Limit of Humanly Knowable Mathematical Truth

L1. Determine the limit of a function at a point both graphically and analytically

Impact of Women in Number Theory

Elliptic Curves and the abc Conjecture

Elliptic Curves. Kenneth A. Ribet. PARC Forum October 17, UC Berkeley

O1 History of Mathematics Lecture VI Successes of and difficulties with the calculus: the 18th-century beginnings of rigour

List of mathematical functions

A History of Abstract Algebra

Rational Points on Conics, and Local-Global Relations in Number Theory

Let π and e be trancendental numbers and consider the case:

MATH (43128): Topics in History of Mathematics JB-387, TuTh 6-7:50PM SYLLABUS Spring 2013

ILLINOIS LICENSURE TESTING SYSTEM

The New Book of Prime Number Records

Introduction to Arithmetic Geometry

Complexity Theory. Ahto Buldas. Introduction September 10, Slides based on S.Aurora, B.Barak. Complexity Theory: A Modern Approach.

Math 312, Lecture 1. Zinovy Reichstein. September 9, 2015 Math 312

Transcription:

Contents Part A Number Theory 1 Highlights in the History of Number Theory: 1700 BC 2008... 3 1.1 Early Roots to Fermat... 3 1.2 Fermat... 6 1.2.1 Fermat s Little Theorem... 7 1.2.2 Sums of Two Squares... 7 1.2.3 Fermat s Last Theorem... 8 1.2.4 Bachet s Equation... 9 1.2.5 Pell s Equation... 9 1.2.6 Fermat Numbers... 9 1.3 Euler... 10 1.3.1 Analytic Number Theory... 11 1.3.2 Diophantine Equations... 12 1.3.3 Partitions... 13 1.3.4 The Quadratic Reciprocity Law... 14 1.4 Lagrange... 15 1.4.1 Pell s Equation... 15 1.4.2 Sums of Four Squares... 15 1.4.3 Binary Quadratic Forms... 16 1.5 Legendre... 17 1.6 Gauss Disquisitiones Arithmeticae... 18 1.6.1 Introduction... 18 1.6.2 Quadratic Reciprocity... 18 1.6.3 Binary Quadratic Forms... 19 1.6.4 Cyclotomy... 20 1.7 Algebraic Number Theory... 20 1.7.1 Reciprocity Laws... 20 1.7.2 Fermat s Last Theorem... 21 1.7.3 Dedekind s Ideals... 22 1.7.4 Summary... 23 xiii

xiv Contents 1.8 Analytic Number Theory... 23 1.8.1 The Distribution of Primes Among the Integers: Introduction... 24 1.8.2 The Prime Number Theorem... 24 1.8.3 The Riemann Zeta Function... 25 1.8.4 Primes in Arithmetic Progression... 25 1.8.5 More on the Distribution of Primes... 26 1.9 Fermat s Last Theorem... 27 1.9.1 Work Prior to That of Wiles... 27 1.9.2 Andrew Wiles... 28 References... 29 2 Fermat: The Founder of Modern Number Theory... 31 2.1 Introduction... 31 2.2 Fermat s Intellectual Debts... 32 2.3 Fermat s Little Theorem and Factorization... 33 2.3.1 A Look Ahead... 35 2.4 Sums of Squares... 36 2.4.1 A Look Ahead... 37 2.5 Fermat s Last Theorem... 38 2.5.1 A Look Ahead... 40 2.6 The Bachet and Pell Equations... 40 2.6.1 Bachet s Equation... 40 2.6.2 A Look Ahead... 41 2.6.3 Pell s Equation... 42 2.6.4 A Look Ahead... 43 2.7 Conclusion... 44 References... 44 3 Fermat s Last Theorem: From Fermat to Wiles... 47 3.1 Introduction... 47 3.2 The First Two Centuries... 48 3.3 Sophie Germain... 49 3.4 Lamé... 50 3.4.1 Pythagorean Triples... 50 3.4.2 Lamé s Proof... 51 3.5 Kummer... 51 3.6 Early Decades of the Twentieth Century... 53 3.7 Several Results Related to FLT, 1973 1993... 54 3.8 Some Major Ideas Leading to Wiles Proof of FLT... 55 3.8.1 Elliptic Curves... 55 3.8.2 Number Theory and Geometry... 55 3.8.3 The Shimura-Taniyama Conjecture... 56 3.9 Andrew Wiles... 58 3.10 Tributes to Wiles... 61 3.11 Is There Life After FLT?... 62 References... 63

Contents xv Part B Calculus/Analysis 4 History of the Infinitely Small and the Infinitely Large in Calculus, with Remarks for the Teacher... 67 4.1 Introduction... 67 4.2 Seventeenth-Century Predecessors of Newton and Leibniz... 68 4.2.1 Introduction... 68 4.2.2 Cavalieri... 69 4.2.3 Fermat... 69 4.3 Newton and Leibniz: The Inventors of Calculus... 71 4.3.1 Introduction... 71 4.3.2 Didactic Observation... 72 4.3.3 Newton... 72 4.3.4 Leibniz... 75 4.3.5 Didactic Observation... 77 4.4 The Eighteenth Century: Euler... 78 4.4.1 Introduction... 78 4.4.2 Didactic Observation... 78 4.4.3 The Algebraization of Calculus... 79 4.4.4 Didactic Observation: Discovery and Proof... 80 4.5 Foundational Issues in the Seventeenth and Eighteenth Centuries... 81 4.5.1 Introduction... 81 4.5.2 Newton and Leibniz... 82 4.5.3 Berkeley and d Alembert... 84 4.5.4 Euler... 85 4.5.5 Lagrange... 85 4.6 Calculus Becomes Rigorous: Cauchy, Dedekind, and Weierstrass... 87 4.6.1 Introduction... 87 4.6.2 Cauchy... 87 4.6.3 Dedekind and Weierstrass... 91 4.6.4 Didactic Observation... 93 4.7 The Twentieth Century: The Nonstandard Analysis of Robinson... 94 4.7.1 Introduction... 94 4.7.2 Hyperreal Numbers... 95 4.7.3 Wider Implications... 97 4.7.4 Robinson and Leibniz... 97 4.7.5 Didactic Observation... 98 References... 99 5 A Brief History of the Function Concept... 103 5.1 Introduction... 103 5.2 Precalculus Developments... 104

xvi Contents 5.3 Euler s Introductio in Analysin Infinitorum... 105 5.4 The Vibrating-String controversy... 106 5.5 Fourier Series... 110 5.6 Dirichlet s Concept of Function... 112 5.7 Pathological Functions... 115 5.8 Baire and Analytically Representable Functions... 117 5.9 Debates About the Nature of Mathematical Objects... 119 5.10 Recent Developments... 121 References... 123 6 More on the History of Functions, with Remarks on Teaching... 125 6.1 Introduction... 125 6.2 Anticipations of the Function Concept... 126 6.2.1 Babylonian Mathematics... 126 6.2.2 Greek Mathematics... 126 6.2.3 The Latitude of Forms... 127 6.2.4 Precalculus Developments... 127 6.2.5 The Calculus of Newton and Leibniz... 128 6.2.6 Remark on Teaching... 128 6.3 The Emergence and Consolidation of the Function Concept... 128 6.3.1 Remarks on Teaching... 130 6.4 Functions Repesented by Power Series... 130 6.4.1 Remarks on Teaching... 133 6.5 Functions Defined by Integrals... 134 6.5.1 Remarks on Teaching... 135 6.6 Functions Defined as Solutions of Differential Equations... 135 6.6.1 Remark on Teaching... 137 6.7 Partial Differential Equations and the Representation of Functions by Fourier Series... 138 6.7.1 Remarks on Teaching... 141 6.8 Functions and Continuity... 142 6.8.1 Remarks on Teaching... 145 6.9 Conceptual Aspects of Functions... 145 6.9.1 Remarks on Teaching... 147 6.10 Analytically Representable Functions... 147 6.10.1 Remark on Teaching... 148 6.11 Conclusion... 149 References... 149 Part C Proof 7 Highlights in the Practice of Proof: 1600 BC 2009... 153 7.1 Introduction... 153 7.2 The Babylonians... 153 7.3 Greek Axiomatics... 154

Contents xvii 7.4 Symbolic Notation... 156 7.4.1 Leibniz... 156 7.4.2 Euler... 157 7.5 The Calculus of Cauchy... 158 7.6 The Calculus of Weierstrass... 161 7.7 The Reemergence of the Axiomatic Method... 164 7.8 Foundational Issues... 167 7.8.1 Introduction... 167 7.8.2 Logicism... 168 7.8.3 Formalism... 169 7.8.4 Intuitionism... 170 7.9 The Era of the Computer... 172 References... 177 8 Paradoxes: What Are They Good For?... 181 8.1 Introduction... 181 8.2 Numbers... 182 8.2.1 Incommensurables... 182 8.2.2 Negative Numbers... 183 8.2.3 Complex Numbers... 183 8.3 Logarithms... 184 8.4 Functions... 186 8.4.1 The Eighteenth Century... 186 8.4.2 Nineteenth-Century Views... 187 8.5 Continuity... 188 8.5.1 Euler and Cauchy... 188 8.5.2 Continuity and Differentiability... 189 8.6 Aspects of Calculus Other than Continuity... 190 8.6.1 Tangents... 190 8.6.2 Infinite Series... 191 8.7 Sets... 192 8.8 Curves... 193 8.9 Decomposition of Geometric Objects... 194 8.9.1 Doubling the Cube... 194 8.9.2 Squaring the Circle... 194 8.10 Conclusion... 194 References... 195 9 Principle of Continuity: Sixteenth Nineteenth Centuries... 197 9.1 Introduction... 197 9.2 Analysis... 198 9.2.1 Leibniz and Robinson... 199 9.2.2 Euler and Cauchy... 200 9.3 Algebra... 202 9.3.1 British Symbolical Algebra... 203 9.3.2 Cubic Equations and Complex Numbers... 205

xviii Contents 9.4 Geometry... 206 9.4.1 Projective Geometry... 206 9.4.2 What Is Geometry?... 209 9.5 Number Theory... 209 9.5.1 The Bachet Equation... 210 9.5.2 Fermat s Last Theorem... 211 9.6 Conclusion... 211 References... 213 10 Proof: A Many-Splendored Thing... 215 10.1 Introduction... 215 10.2 Heuristics vs. Rigor... 216 10.2.1 Ancient Mathematics... 216 10.2.2 Calculus... 216 10.2.3 Riemann and Weierstrass... 218 10.3 Analysis vs. Synthesis... 219 10.3.1 Ancient Greece... 219 10.3.2 Leibniz and Newton... 220 10.3.3 Eighteenth and Nineteenth Centuries... 220 10.4 Pure vs. Applied... 221 10.4.1 Introduction... 221 10.4.2 The Vibrating-String Problem... 222 10.4.3 The Heat-Conduction Problem... 223 10.5 Legitimate vs. Illegitimate... 224 10.5.1 The Quaternions... 224 10.5.2 Functions... 224 10.5.3 Continuity... 225 10.5.4 Definitions in Mathematics... 225 10.5.5 Abstraction... 226 10.6 Idealists vs. Empiricists... 226 10.6.1 Ideals... 226 10.6.2 Pathological Functions... 227 10.6.3 Invariants... 227 10.6.4 Weyl and Von Neumann... 228 10.7 Short vs. Long Proofs... 228 10.8 Humans vs. Machines... 229 10.9 Deterministic vs. Probabilistic Proofs... 230 10.10 Theorems vs. Proofs... 230 10.11 The Recent Debate... 231 References... 234 Part D Courses Inspired by History 11 Numbers as a Source of Mathematical Ideas... 239 11.1 Introduction... 239

Contents xix 11.2 Beyond the Complex Numbers... 240 11.2.1 A Brief History of Standard Number Systems... 240 11.2.2 The Quaternions... 240 11.2.3 Other Hypercomplex Systems... 242 11.2.4 What is a Number?... 243 11.3 The Algebraic-Transcendental Dichotomy... 243 11.3.1 Introduction... 243 11.3.2 Algebraic Numbers... 244 11.3.3 Transcendental Numbers... 244 11.3.4 Algebraic Numbers and Diophantine Equations... 245 11.4 Transfinite Numbers... 246 11.4.1 Introduction... 246 11.4.2 Some Implications of Cantor s Work... 247 11.5 The Personality of Numbers... 248 11.6 One, Two, Many... 250 11.7 Discovery (Invention), Use, Understanding, Justification... 250 11.8 Numbers and Geometry... 252 11.9 Numbers and Analysis... 254 11.9.1 The Arithmetization of Analysis... 255 11.9.2 Nonstandard Analysis... 255 11.9.3 Number Theory... 256 References... 256 12 History of Complex Numbers, with a Moral for Teachers... 261 12.1 Introduction... 261 12.2 Birth... 261 12.3 Growth... 263 12.4 Maturity... 265 12.5 The Moral... 267 12.6 Projects... 270 References... 271 13 A History-of-Mathematics Course for Teachers, Based on Great Quotations... 273 13.1 Introduction... 273 13.2 What Is Mathematics?... 274 13.3 Non-Euclidean Geometry... 277 13.4 The Infinite... 279 13.5 The Twentieth Century: Foundational Issues... 280 13.6 Conclusion... 282 References... 282 14 Famous Problems in Mathematics... 285 14.1 Introduction... 285 14.2 The Themes... 285 14.2.1 The Origin of Concepts, Results, and Theories... 285

xx Contents 14.2.2 The Roles of Intuition vs. Logic... 286 14.2.3 Changing Standards of Rigor... 286 14.2.4 The Roles of the Individual vs. the Environment... 286 14.2.5 Mathematics and the Physical World... 287 14.2.6 The Relativity of Mathematics... 287 14.2.7 Mathematics: Discovery or Invention?... 287 14.3 The Problems... 288 14.3.1 Problem 1: Diophantine Equations... 288 14.3.2 Problem 2: Distribution of Primes Among the Integers... 290 14.3.3 Problem 3: Polynomial Equations... 293 14.3.4 Problem 4: Are There Numbers Beyond the Complex Numbers?... 293 14.3.5 Problem 5: Why Is ( 1)( 1)D1?... 294 14.3.6 Problem 6: Euclid s Parallel Postulate... 296 14.3.7 Problem 7: Uniqueness of Representation of a Function in a Fourier Series... 296 14.3.8 Problem 8: Paradoxes in Set Theory... 296 14.3.9 Problem 9: Consistency, Completeness, Independence... 297 14.4 Other Problems... 297 14.5 General Remarks on the Course... 298 References... 298 Part E Brief Biographies of Selected Mathematicians 15 The Biographies... 305 15.1 Richard Dedekind (1831 1916)... 305 15.1.1 Introduction... 305 15.1.2 Life... 305 15.1.3 Algebraic Numbers... 307 15.1.4 Real Numbers... 308 15.1.5 Natural Numbers... 308 15.1.6 Other Work... 309 15.1.7 Conclusion... 310 References... 311 15.2 Leonhard Euler (1707 1783)... 312 15.2.1 Introduction... 312 15.2.2 Life... 313 15.2.3 Analysis... 314 15.2.4 Number Theory... 317 15.2.5 Conclusion... 319 References... 319 15.3 Carl Friedrich Gauss (1777 1855)... 320 15.3.1 Life... 320

Contents xxi 15.3.2 Disquisitiones Arithmeticae... 321 15.3.3 Biquadratic Reciprocity... 322 15.3.4 Differential Geometry... 323 15.3.5 Probability and Statistics... 324 15.3.6 The Diary... 324 15.3.7 Personality... 325 15.3.8 Conclusion... 325 References... 326 15.4 David Hilbert (1862 1943)... 326 15.4.1 Introduction... 326 15.4.2 Life... 327 15.4.3 Invariants... 328 15.4.4 Algebraic Numbers... 329 15.4.5 Foundations of Geometry... 331 15.4.6 Analysis and Physics... 332 15.4.7 Foundations of Mathematics... 332 15.4.8 Mathematical Problems... 333 15.4.9 Conclusion... 334 References... 335 15.5 Karl Weierstrass (1815 1897)... 335 15.5.1 Life... 335 15.5.2 Foundations of Real Analysis... 336 15.5.3 Complex Analysis... 338 15.5.4 Other Work... 338 15.5.5 Conclusion... 340 References... 341 Index... 343

http://www.springer.com/978-0-8176-8267-5