The number 6. Gabriel Coutinho 2013

Similar documents
Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Groups and Symmetries

Permutation groups/1. 1 Automorphism groups, permutation groups, abstract

Independent generating sets and geometries for symmetric groups

MODEL ANSWERS TO THE FIFTH HOMEWORK

SUPPLEMENT ON THE SYMMETRIC GROUP

Math 250A, Fall 2004 Problems due October 5, 2004 The problems this week were from Lang s Algebra, Chapter I.

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation

for all i = 1,..., k and we are done.

Examples: The (left or right) cosets of the subgroup H = 11 in U(30) = {1, 7, 11, 13, 17, 19, 23, 29} are

Chapter 5 Groups of permutations (bijections) Basic notation and ideas We study the most general type of groups - groups of permutations

MODEL ANSWERS TO HWK #4. ϕ(ab) = [ab] = [a][b]

BASIC GROUP THEORY : G G G,

Abstract Algebra II Groups ( )

REU 2007 Discrete Math Lecture 2

Notas de Aula Grupos Profinitos. Martino Garonzi. Universidade de Brasília. Primeiro semestre 2018

The Outer Automorphism of S 6

Math 3140 Fall 2012 Assignment #3

0 Sets and Induction. Sets

Group Actions Definition. Let G be a group, and let X be a set. A left action of G on X is a function θ : G X X satisfying:

MATH 436 Notes: Cyclic groups and Invariant Subgroups.

Permutation Groups and Transformation Semigroups Lecture 4: Idempotent generation

Modern Algebra I. Circle the correct answer; no explanation is required. Each problem in this section counts 5 points.

The following results are from the review sheet for the midterm.

CLASSIFICATION OF GROUPS OF ORDER 60 Alfonso Gracia Saz

but no smaller power is equal to one. polynomial is defined to be

Homework 7 Solution Chapter 7 - Cosets and Lagrange s theorem. due: Oct. 31.

3. G. Groups, as men, will be known by their actions. - Guillermo Moreno

6 Cosets & Factor Groups

Definition List Modern Algebra, Fall 2011 Anders O.F. Hendrickson

Group Theory

CONSEQUENCES OF THE SYLOW THEOREMS

FROM GROUPS TO GALOIS Amin Witno

SF2729 GROUPS AND RINGS LECTURE NOTES

The L 3 (4) near octagon

Normal Subgroups and Quotient Groups

EXERCISES ON THE OUTER AUTOMORPHISMS OF S 6

Cosets and Lagrange s theorem

Part V. 17 Introduction: What are measures and why measurable sets. Lebesgue Integration Theory

DISTINGUISHING PARTITIONS AND ASYMMETRIC UNIFORM HYPERGRAPHS

Course 311: Abstract Algebra Academic year

Some notes on Coxeter groups

Chordal Coxeter Groups

UMASS AMHERST MATH 411 SECTION 2, FALL 2009, F. HAJIR

Rohit Garg Roll no Dr. Deepak Gumber

Scott Taylor 1. EQUIVALENCE RELATIONS. Definition 1.1. Let A be a set. An equivalence relation on A is a relation such that:

The cycle polynomial of a permutation group

FINITE IRREFLEXIVE HOMOMORPHISM-HOMOGENEOUS BINARY RELATIONAL SYSTEMS 1

Math 3140 Fall 2012 Assignment #2

MAIN THEOREM OF GALOIS THEORY

MA554 Assessment 1 Cosets and Lagrange s theorem

GALOIS GROUPS AS PERMUTATION GROUPS

Fibers, Surjective Functions, and Quotient Groups

DIGRAPHS WITH SMALL AUTOMORPHISM GROUPS THAT ARE CAYLEY ON TWO NONISOMORPHIC GROUPS

2) e = e G G such that if a G 0 =0 G G such that if a G e a = a e = a. 0 +a = a+0 = a.

Math 594, HW2 - Solutions

2. Prime and Maximal Ideals

Section I.6. Symmetric, Alternating, and Dihedral Groups

Supplement. Dr. Bob s Modern Algebra Glossary Based on Fraleigh s A First Course on Abstract Algebra, 7th Edition, Sections 0 through IV.

THE EULER CHARACTERISTIC OF A LIE GROUP

MA441: Algebraic Structures I. Lecture 26

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

MAT1100HF ALGEBRA: ASSIGNMENT II. Contents 1. Problem Problem Problem Problem Problem Problem

The Symmetric Groups

GENERATING SETS KEITH CONRAD

Solutions of exercise sheet 6

120A LECTURE OUTLINES

Two subgroups and semi-direct products

CONJUGATE FACTORIZATIONS OF FINITE GROUPS. Communicated by Patrizia Longobardi. 1. Introduction

1.1 Definition. A monoid is a set M together with a map. 1.3 Definition. A monoid is commutative if x y = y x for all x, y M.

Tree sets. Reinhard Diestel

The alternating groups

Lecture 8: Equivalence Relations

GALOIS GROUPS OF CUBICS AND QUARTICS (NOT IN CHARACTERISTIC 2)

Elements of solution for Homework 5

Algebra-I, Fall Solutions to Midterm #1

Math 2070BC Term 2 Weeks 1 13 Lecture Notes

Permutation Groups. John Bamberg, Michael Giudici and Cheryl Praeger. Centre for the Mathematics of Symmetry and Computation

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1

TC10 / 3. Finite fields S. Xambó

Math 121. Fundamental Theorem and an example

Overgroups of Intersections of Maximal Subgroups of the. Symmetric Group. Jeffrey Kuan

GROUPS AND THEIR REPRESENTATIONS. 1. introduction

9. Finite fields. 1. Uniqueness

ALGEBRA HOMEWORK SET 2. Due by class time on Wednesday 14 September. Homework must be typeset and submitted by as a PDF file.

Latin squares: Equivalents and equivalence

TRANSPOSITIONS IN FINITE SYMMETRIC GROUPS. Lynnette Gilmore Peter Lorimer*

GROUPS AS SQUARES OF DOUBLE COSETS

Boolean Inner-Product Spaces and Boolean Matrices

Twisted Projective Spaces and Linear Completions of some Partial Steiner Triple Systems

7 Semidirect product. Notes 7 Autumn Definition and properties

Finite affine planes in projective spaces

ORBITAL DIGRAPHS OF INFINITE PRIMITIVE PERMUTATION GROUPS

FINITE GROUP THEORY: SOLUTIONS FALL MORNING 5. Stab G (l) =.

QUIVERS AND LATTICES.

Section III.15. Factor-Group Computations and Simple Groups

8. Prime Factorization and Primary Decompositions

Algebraic Tractability Criteria for Infinite-Domain Constraint Satisfaction Problems

Reachability relations and the structure of transitive digraphs

Representations and Linear Actions

Transcription:

The number 6 Gabriel Coutinho 2013 Abstract The number 6 has a unique and distinguished property. It is the only natural number n for which there is a construction of n isomorphic objects on a set with n elements, invariant under all permutations of the set, but not in natural bijection with the set. I will talk about this fact and a closely related result. This is based on Chapter 6 of Cameron and Van Lint [1]. 1 A distinguished property of 6 Theorem 1. The number 6 is the only natural number n that satisfies the following property: If E is an n-set, then there is a construction of exactly n isomorphic objects on E whose union is invariant under the permutations of E, but none correspond in natural way to an element of E. Some clarification is needed here. Neither the meaning of object nor that of natural is clear. I will make it even worse, and provide a bad definition for one, and an incomplete for the other. An object on a set E is a construction that can be made using the elements of E and set-theoretical operations, such as taking the union. An object on E corresponds naturally to a point of E if the automorphism group of the object is the stabilizer of that point in S n. Despite such abstract formulation, we will see that this theorem has a very concrete interpretation. In particular, the shape of such objects will arise naturally throughout the proof. The idea of the proof is to analyse the automorphism group the objects defined by 1

the automorphisms of the ground set which do not change the object. The skeleton and the muscle of the proof is in Cameron and Van Lint [1]. Here I will add all the fat it deserves. Proof. Let O be one of such objects. Let H be the automorphism group of O, in the sense that H is the subgroup of S n that fixes O. By hypothesis, there are n 1 objects isomorphic to O defined on E, and H is the automorphism group of each of them. Because S n fixes the union of such objects, either an element of S n fixes O or maps it to some of the other objects, therefore H has n left classes, and hence its index in S n is n. Fact 1: H is transitive. Proof: If not, consider a natural k satisfying 0 < k < n such that H fixes a k-subset F of E. Let K be the full group of automorphisms of E that fixes F, K S n. Note that H K. Now K has ( ) n k left classes on S n, as S n acts transitively on k-subsets. Hence its index is ( n k), and Thus H K [S n : K] [S n : H]. ( ) n n. k This is only possible for k = 1 or k = n 1, which is essentially the same case, but is anyway contrary to the assumption that none of the objects is in natural correspondence to an element of E. Fact 2: H is primitive - meaning that it is transitive and it preserves no non-trivial partition of E. Proof: Being transitive, the only possible way H could preserve a partition would be if such partition had parts of same size. Now suppose that k is the number of parts of a non-trivial partition P preserved by H, all of the parts of P of same size and 1 < k n/2. Let K be the full automorphism group of P, hence H K S n. Note that there are: k!) such partitions, therefore this is k the index of K in S n (as it is the number of left cosets). 2

Again, we have that the index of K must divide the index of H: k!) k n This is certainly possible for k = 1 and k = n, cases in which the partition is trivial. Now observe that k!) k k!(n/k) 1. For k 3 and n 8, we have that k! (n/k) 1 > k k n n, hence a contradiction. For k = 3 and n = 6, k!) k For k = 2 and n 8, we have that = 15 > 6. k!) k > 2(n/2) 1 n, again a contradiction. Finally, for n = 6 we have and for n = 4, we have k!) k = 10 > 6, k!) k = 3 that does not divide 4. We therefore observe that there is no valid choice for k but for 1 or n, concluding that H is primitive. Fact 3: H contains no 3-cycle. Proof: Suppose to the contrary that it does. Consider the relation in E defined by a b whenever a = b or there is a 3-cycle σ H acting as σ(a) = b. We claim that this is an equivalence relation. It is clearly reflexive and symmetric. To see transitivity, note that if a b and b c, we have either of the following: 3

(abx) H and (bcy) H, and therefore (bcy) (xba) (ycb) (abx) = (abc), hence a c. (abx) H and (bcx) H, and therefore (abx) (bcx) = (cab), hence a c. Also, if a b c, then as we saw above, (abc) H. Now suppose partitioned H into more than one equivalence class. As we saw above, H cannot fix such classes, so consider a permutation τ that maps some elements of a class C 1 to some class C 2, and some other elements to a class C i, where i can be anything but 2. Suppose, for example, a, b, c C 1 and τ(b) C 2 and τ(a) C i. Now observe that τ (abc) τ 1 = (τ(a)τ(b)τ(c)) H, a contradiction to the fact that τ(a) and τ(b) lie on different classes. Therefore must be a universal relation, in the sense that any two elements are related. Hence H contains all 3-cycles and must be the alternating subgroup of S n. Its index in S n for any n is 2, and hence n = 2. Thus H is trivial, and therefore fixes a point, a contradiction to the fact that H is transitive. Fact 4: H contains no transposition. Proof: Observe that we could follow the same argument as above, being even easier to show that an analogous relation is of equivalence. If, as above, such equivalence relation is not universal, we would find a contradiction to the fact that H is primitive. If it were universal, we would end up finding that H is S n itself, as all the transpositions generate S n, again a contradiction. Now let us analise where the transpositions of S n are. We have ( ) n 2 transpositions distributed among the n 1 left (or right) cosets of H. If two transpositions moving a common point lay on the same coset, we would have (ab)(bc) 1 = (abc) H, a contradiction. Therefore each coset must contain n 2 pairwise disjoint transpositions, what defines a factor of E. Fact 5: If (a b) and (c d) are the transpositions in the same left coset, then for any element h H are in the same left coset. (h(a) h(b)) and (h(c) h(d)) 4

Proof: As (cd) (ab)h, let (cd) = (ab)g, g H. We have Thus h(a b)h 1 = (h(a) h(b)). (h(c) h(d)) = h(c d)h 1 = h(a b)gh 1 = (h(a) h(b))hgh 1 (h(a) h(b))h. Therefore an element of H either preserves one of the collections of n/2 transpositions or maps one to another. Thus H preserves a factorization of E. There are (n 1) factors on a factorization of E. We pick one and note that an element of H either fixes it or maps it to some other. So the stabilizer of a factor in H, say F, has index at most n 1 (using the Orbit-Stabilizer Lemma and Lagrange s theorem). Its index on S n is therefore at most n(n 1). However, there are (n 1)!! = (n 1)(n 3)...3.1 factors in E, what can be easily seen by elementary counting arguments. They are all permuted transitively in S n, so this is the index of the stabilizer of the same factor in S n, say F. Now therefore F F S n [S n : F ] [S n : F ], (n 1)(n 3)...3.1 n(n 1). This implies that n 6. Remember that n is even. If n = 2 or n = 4, there is just one factorization. Hence these cases are excluded. So n = 6 is the only possible case. We construct 6 isomorphic factorization on a set of size 6. It is easier at this point to think of our 6-set as the complete graph K 6. Theorem 2. There are 6 factorizations on a set of size 6, any two of them isomorphic. Furthermore, two disjoint factors are contained in a unique factorization. 5

Proof. Let us build a factorization. The union of two disjoint factors of a complete graph is a graph where every vertex has degree 2. Hence it is a union of disjoint cycles. As n = 6, it must be a 6-cycle. The remaining 9 edges are either between vertices at distance 3 or at distance 2 in such cycle. There are 3 of the first type and 6 of the second. It is easy to see that 3 edges of the second type cannot form a factor, hence any factor now must have 1 edge of the first type and 2 of the second. It is also easy to see that fixed an edge of the first type, the other two are determined. Therefore all factorizations have the same structure, hence they are isomorphic. Each factorization contains 10 pairs of disjoint factors, and each pair of factors determines a factorization. There are 15 factors in the graph, and for each we can build 8 disjoint factors. So there ate 60 pairs of disjoint factors in total. Easy double-counting implies that there are 6 factorizations. 2 The outer automorphisms of S n In this section, we will prove that S 6 is the only symmetric group that admits an outer automorphism. First, we will understand what this means. Then we will see how this is related to the past section. Given a group G and an element a G, we call conjugation by a the mapping: ϕ a : G G g aga 1. Observe that each ϕ a is a group automorphism. Any automorphism of this form will be called an inner automorphism of G. Moreover, ϕ a ϕ b = ϕ ab, so the set of all such automorphisms form a subgroup of the automorphisms group of G, denoted by Inn(G) Any automorphism of a group which is not an inner automorphism is called an outer automorphism. A very important fact about S n is that an inner automorphism preserves the cycle type of a permutation. The following fact, whose proof is trivial, is the key to prove this statement: Proposition 1. Let a S n and consider the transposition (i j) S n. Then a(i j)a 1 = (a(i) a(j)). 6

Corollary 2.1. An inner automorphism preserves cycle type. Moreover, if two permutations have the same cycle type, there is an inner automorphism mapping one to the other. Using the corollary above, we have: Corollary 2.2. Let θ be an automorphism of S n. Then permutations of same cycle type are mapped by θ to permutations of same cycle type. In other words, θ naturally induces a bijection between the cycle types. Proof. Let a and b be permutations of same cycle type. Let ϕ g be the inner automorphism that maps a to b. Then: θ(b) = θ(ϕ g (a)) = ϕ θ(g) θ(a) Hence θ(b) and θ(a) have the same cycle type. 2.1 Number 6 again It is easier to prove the theorem below than to prove Theorem 1. This is compensated by the fact that it is easier to construct the factorizations of K 6 than an outer automorphism of S 6. Here I will prove the theorem below using Theorem 1, probably to understand better the connection between these results. Theorem 3. Except for n = 6, no symmetric group S n admits an outer automorphism. Proof. Let θ be an outer automorphism. Observe that it maps the transpositions containing a fixed element i [n] to permutations of same cycle type. The collection of such permutations is an object O i, and the permutation θ(i j) maps a permutation of O i to one of O j. That is because θ(i j) 1 θ(i k)θ(i j) = θ(k j). Moreover, any permutation g S n can be written as g = θ(h), and h is a product of transpositions, hence the collection of the objects O i is invariant under S n. The automorphism θ maps transpositions to permutations of order 2 which are not transpositions, that is, disjoint union of transpositions. If θ(i j) is a permutation that fixes i and j, then (i j) is a permutation that fixes θ(i j) but not i. Suppose θ(i j) does not fix i. Because it is a union of at least two transposition, let k be such that θ(i j)[i] = i 1 and θ(i j)[k] = i 2, 7

with i i 1 and k i 2. Then (i 1 i 2 ) maps θ(i j) to θ(k j) but fixes i. At any case, the stabilizer of i in S n is not equal to the automorphism group of O i. So the objects O i with i [n] are isomorphic, their union is invariant under S n, but their automorphism group is not the stabilizer of any point. That all together implies that n = 6 by Theorem 1. Theorem 4. S 6 admits an outer automorphism. Observe that this outer automorphism must map each transposition to a permutation that resembles a 1-factor, hence the transpositions containing a particular element will define a 1-factorization. This implies that for any two outer automorphisms θ and σ, there will be an inner automorphism ϕ such that θ = σϕ. In particular, Aut(S 6 )/Inn(S 6 ) = 2. There are many constructions of an outer automorphism for S 6. Inspired by what we did before, we could just select a 1-factorization of [6] and associate its 1-factors to the transpositions containing 1. As such transpositions generate S n, we would need only to prove that this is a well-defined bijection. There is an easier and nicer way though. Proof. In general, the group S n can be embedded in S n+1 by considering the stabilizer of an element. The great thing here is that there is a copy of S 5 in S 6 which acts transitively on [6]: it does not fix an element at all. To construct such embedding, consider the 24 permutations of S 5 that are cycles of length 5. The order of such cycles is 5, therefore these 24 permutations can be partitioned into the non-identity elements of six distinct subgroups of S 5. Voilà: S 5 acts transitively by conjugation on these 6 subgroups. Each element of S 5 can be hence identified with a permutation of S 6 once such six subgroups are numbered. Moreover, the kernel of this homomorphism is a normal subgroup of S 5, hence the only non-trivial possible choice would be A 5. But clearly (123) is not on the kernel, hence the kernel is trivial and this homomorphism is injective. Let H be the image of S 5 in S 6 which is a transitive subgroup. Observe that H has index 6, and call L the set of its right cosets. As L = 6, the full group of symmetries of L is S 6. However S 6 acts on L in other way: by right multiplication, permuting its elements. Therefore the correspondence φ between an element of S 6 and the permutation that it induces on the right cosets of H is a endomorphism of S 6. It is injective because any permutation fixing H must 8

be contained in H, so the kernel of this endomorphism is a subgroup of H. But H has index 6, and S 6 has no normal subgroup of index greater or equal than 6. Thus φ is an automorphism of S 6. Finally, observe that φ maps every element of H to a permutation that fixes the coset He = H, so H is mapped to the subgroup stabilizer of a point. If φ were an inner automorphism, say ϕ a, it would have to map a transitive group to a transitive group. This is because given elements i and j of [6], there is a permutation of h H that maps a 1 (i) to a 1 (j) because H is transitive. Hence aha 1 maps i to j, and ϕ a (H) is transitive. Therefore φ is not an inner automorphism, and we are done. References [1] Peter J Cameron and Jacobus Hendricus Van Lint. Designs, graphs, codes, and their links. Cambridge University Press, 1992. 9