LIQUID METAL REACTOR PROGRAM JASPER. 2- USDOE/PNC Shielding Research Program. Technical Progress Report. August 1 - September 30, 1986

Similar documents
12/16/95-3/15/96 PERIOD MULTI-PARAMETER ON-LINE COAL BULK ANALYSIS. 2, 1. Thermal Neutron Flux in Coal: New Coal Container Geometry

PROJECT PROGRESS REPORT (03/lfi?lfibr-~/15/1998):

Engineering Physics and Mathematics Division MEASUREMENTS FOR THE JASPER PROGRAM FISSION GAS PLENUM EXPERIMENT. Report Written by: F. J.

DISCLAIMER. and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Applications of Pulse Shape Analysis to HPGe Gamma-Ray Detectors

BWXT Y-12 Y-12. A BWXT/Bechtel Enterprise SMALL, PORTABLE, LIGHTWEIGHT DT NEUTRON GENERATOR FOR USE WITH NMIS

sample-specific X-ray speckle contrast variation at absorption edges $ & ~ 0

IMAGING OF HETEROGENEOUS MATERIALS BY. P. Staples, T. H. Prettyman, and J. Lestone

J. T. Mihalczo. P. 0. Box 2008

A Two-Dimensional Point-Kernel Model for Dose Calculations in a Glovebox Array. D. E. Kornreich and D. E. Dooley

Modeling Laser and e-beam Generated Plasma-Plume Experiments Using LASNEX

RESEARCH OPPORTUNITIES AT THE CNS (Y-12 AND PANTEX) NUCLEAR DETECTION AND SENSOR TESTING CENTERS (NDSTC)

Development of a High Intensity EBIT for Basic and Applied Science

Tell uric prof i 1 es across the Darrough Known Geothermal Resource Area, Nevada. Harold Kaufniann. Open-file Report No.

CQNl_" RESPONSE TO 100% INTERNAL QUANTUM EFFICIENCY SILICON PHOTODIODES TO LOW ENERGY ELECTRONS AND IONS

SOME ENDF/B-VI MATERLALS. C. Y. Fu Oak Ridge National Laboratory Oak Ridge, Tennessee USA

GA A22689 SLOW LINER FUSION

Fission-Fusion Neutron Source

PROJECT PROGRESS REPORT (06/16/1998-9/15/1998):

PLASMA MASS DENSITY, SPECIES MIX AND FLUCTUATION DIAGNOSTICS USING FAST ALFVEN WAVE

Analysis of Shane Telescope Aberration and After Collimation

Excitations of the transversely polarized spin density. waves in chromium. E3-r 1s

in the pinch. This paper describes the computer modeling behind the shielding design of a

GA A26686 FAST ION EFFECTS DURING TEST BLANKET MODULE SIMULATION EXPERIMENTS IN DIII-D

The photoneutron yield predictions by PICA and comparison with the measurements

CEIVED. 3UN 2 5 m7 O ST I. NE Holden' NEUTRON AND NUCLEAR DATA REVISED FOR THE 1997/98HANDBOOK OF CHEMISTRY AND PHYSICS*

LQG/LTR ROBUST CONTROL SYSTEM DESIGN FOR A LOW-PRESSURE FEEDWATER HEATER TRAIN. G. V. Murphy J. M. Bailey The University of Tennessee, Knoxville"

DE '! N0V ?

Optimization of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector. P. Ilinski

(4) How do you develop an optimal signal detection technique from the knowledge of

8STATISTICAL ANALYSIS OF HIGH EXPLOSIVE DETONATION DATA. Beckman, Fernandez, Ramsay, and Wendelberger DRAFT 5/10/98 1.

Use of Gamma Rays from the Decay of 13.8-sec "Be to Calibrate a Germanium Gamma Ray Detector for Measurements up to 8 MeV

FUSION TECHNOLOGY INSTITUTE

On the HalfiLife of LABORATORY ERNEST ORLANDO LAWRENCE BERKELEYNATIONAL. and Particle Astrophysics Nuclear Science and Physics Divisions

Alex Dombos Michigan State University Nuclear and Particle Physics

RECXWH2 W/o s3-1

9 7og$y4- International Conference On Neutron Scattering, Toronto August Spin Dynamics of the reentrant spin glass Fe0.7A10.3.

Reactors and Fuels. Allen G. Croff Oak Ridge National Laboratory (ret.) NNSA/DOE Nevada Support Facility 232 Energy Way Las Vegas, NV

Plutonium 239 Equivalency Calculations

Plasma Response Control Using Advanced Feedback Techniques

A Germanium Detector with Optimized Compton Veto for High Sensitivity at Low Energy

N. Tsoupas, E. Rodger, J. Claus, H.W. Foelsche, and P. Wanderer Brookhaven National Laboratory Associated Universities, Inc. Upton, New York 11973

GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE

SOME POSSIBLE APPLICATIONS OF MEASUREMENTS ON MU MESONS TO NUCLEAR SAFEGUARDS, NONPROLIFERATION, AND ARMS CONTROL ACTTVinES

Three-Dimensional Silicon Photonic Crystals

GA A26057 DEMONSTRATION OF ITER OPERATIONAL SCENARIOS ON DIII-D

~ _- IDOCLRXKT DMSP SATELLITE DETECTIONS OF GAMMA-RAY BURSTS. J. Terrell, NIS-2 P. Lee, NIS-2 R W.

41--tsh.. J. Halperin M. P. Lietzke ORNL-2823 EFFECTIVE CADMIUM CUTOFF ENERGIES SUPPLEMENT OAK RIDGE NATIONAL LABORATORY. R. W.

A NEW TARGET CONCEPT FOR PROTON ACCELERATOR DRIVEN BORON NEUTRON CAPTURE THERAPY APPLICATIONS* Brookhaven National Laboratory. P.O.

A Few-Group Delayed Neutron Model Based on a Consistent Set of Decay Constants. Joann M. Campbell Gregory D. Spriggs

August 3,1999. Stiffness and Strength Properties for Basic Sandwich Material Core Types UCRL-JC B. Kim, R.M. Christensen.

GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D

A TER. Observation of Xe with the PNNL ARSA System PNNL UC-7 13

J. C. Batchelder', K. S. Toth2, D. M. Moltz3, E. F. Zganjarl, T. J. Ognibene3, M. W. Rowe3, C. R. Binghan12.~,J. Powell3, and B. E.

GA A27805 EXPANDING THE PHYSICS BASIS OF THE BASELINE Q=10 SCENRAIO TOWARD ITER CONDITIONS

Variational Nodal PerturbationCalculations Using Simplified Spherical HarmonicsO

OAK RIDGE NATIONAL LABORATORY

: Y/LB-16,056 OAK RIDGE Y-12 PLANT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

ORNL CONTRIBUTION TO TEE IAEA BENCHMARK PROBLEM ON FISSION REACTOR DECOMMISSIONING

Abstract of paper proposed for the American Nuclear Society 1997 Winter Meeting Albuquerque, New Mexico November 16-20, 1997

GA A27806 TURBULENCE BEHAVIOR AND TRANSPORT RESPONSE APPROACHING BURNING PLASMA RELEVANT PARAMETERS

TEE METHOD OF LIFE EXTENSION FOR THE HIGH FLUX ISOTOPE REACTOR VESSEL

Los Alamos. OF nm LA-"'- Title: HYBRID KED/XRF MEASUREMENT OF MINOR ACTINIDES IN REPROCESSING PLANTS. S. T. Hsue and M. L.

Diffractive Dijet Search with Roman Pots at CDF

IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES

Data Comparisons Y-12 West Tower Data

by KAPL, Inc. a Lockheed Martin company KAPL-P EFFECTS OF STATOR AND ROTOR CORE OVALITY ON INDUCTION MACHINE BEHAVIOR September 1996 NOTICE

BASAL CAMBRIAN BASELINE GEOLOGICAL CHARACTERIZATION COMPLETED

GA A27857 IMPACT OF PLASMA RESPONSE ON RMP ELM SUPPRESSION IN DIII-D

GA A25658 PRECISION X-RAY OPTICAL DEPTH MEASUREMENTS IN ICF SHELLS

Int. Coaf. Physics of Nuclear Science and Technology

Start-up Noise in 3-D Self-AmpMed

ASTER. Dose Rate Visualization of Radioisotope Thermoelectric. Generators. RECElVED BEC OF THIS DOCUMEMT IS UNLlMIi L, Hanford Company

The Graphite Isotope Ratio Method (GIRM): A Plutonium Production Verification Tool

PREDICTIVE MODELING OF PLASMA HALO EVOLUTION IN POST-THERMAL QUENCH DISRUPTING PLASMAS

APPLICATION SINGLE ION ACTIVITY COEFFICIENTS TO DETERMINE SOLVENT EXTRACTION MECHANISM FOR COMPONENTS OF NUCLEAR WASTE

Experiment. The Pinhole Neutron. Pinex. c. c. sartain UCRL-ID November 21,1958

Multicusp Sources for Ion Beam Lithography Applications

MULTIGROUP BOLTZMANN FOKKER PLANCK ELECTRON-PHOTON TRANSPORT CAPABILITY IN M C N P ~ ~ DISCLAIMER

ust/ aphysics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Safety Considerations for Laser Power on Metals in Contact with High Explosives-Experimental and Calculational Results

HEAT TRANSFER AND THERMAL STRESS ANALYSES OF A GLASS BEAM DUMP

Simulation of Double-Null Divertor Plasmas with the UEDGE Code

DML and Foil Measurements of ETA Beam Radius

Multi-scale modeling with generalized dynamic discrepancy

m w n? r i OF,THISDOCUMENT IS UNLIMITED

Survey, Alignment and Beam Stability at the Advanced Light Source

UNIT OPERATIONS AND CHEMICAL PROCESSES. Alan M. Krichinsky

Analysis of High Enriched Uranyl Nitrate Solution Containing Cadmium

A lattice dynamical investigation of zircon (ZrSiOJ has been carried out to obtain a

PRECISION STUDIES OF NUCLEI

ION EXCHANGE SEPARATION OF PLUTONIUM AND GALLIUM (1) Resource and Inventory Requirements, (2) Waste, Emissions, and Effluent, and (3) Facility Size

LQSAlamos National Laboratory

Bulk Modulus Capacitor Load Cells

GA A22722 CENTRAL THOMSON SCATTERING UPGRADE ON DIII D

SPHERICAL COMPRESSION OF A MAGNETIC FIELD. C. M. Fowler DISCLAIMER

4kU. Measurement of Storage Ring Motion at the Advanced Light Source. QSTt ERNESTORLANDO LAWRENCE BERKELEYNATIONAL LABORATORY

MAGNETICALLY CONTROLLED DEPOSITION OF METALS USING GAS PLASMA. Quarterly Progress Report April - June 1997

Magnetic Measurements of the Elliptical Multipole Wiggler Prototype

Transcription:

--I LIQUID METAL REACTOR PROGRAM -- ~- ~--- JASPER 2- USDOE/PNC Shielding Research Program Technical Progress Report August 1 - September 30, 1986 D. T. Ingersoll W. W. Engle, Jr. F. J. Muckenthaler C. 0. Slater DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ---_I-- ~--~ ~~ - OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-840R21400

DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

JASP R Shielding Program Progress Report 'August 1 - September 30, 1986 INTRODUCTION The first two reports, ORNL/LMR/AC-86/3 and 4, cover the measurements in phases I, 11, 111 and V. This report contains the measurements in phases VI and VII, a graphite benchmark study and an alternate loop type shield design study for the LMR respectively. For these measurements the spectrum modifier remained the same as in I, I1 and 111. This report also includes the results of analyses for phases I, 11, 111, V, and VI. EXPERIMENTAL PROGRAM Schematics of the mockups in phases VI and VI1 of the program plan are given in Figs. 1 through 4. In Fig. 1, 7.62 cm of lead was placed behind the graphite to attenuate the gamma-rays so that neutron spectral measurements could be made with the NE-213 spectrometer. For the spectral measurements in VI-F it was necessary to add 15.24 cm of lead as shown in Fig. 2. The lead was removed for the Bonner ball measurements on centerline at 30 cm behind the configuration and at 304.8 cm from the reactor centerline as shown in Figs. 3 and 4. Measurements Data obtained with the NE-213 spectrometer behind the mockups for VI-A and VI-F are listed in Tables 1 and 2, and plotted in Figures 5 and 6 respectively. Accompanying low neutron energy spectra obtained with the hydrogen counter are given in Tables 3 and 4, and plotted in Figures 7 and 8. Integral neutron flux measurements with the Bonner balls on centerline at 30 cm behind the configurations are given in Table 5 for both phases. Similar measurements at 304.8 cm from the reactor centerline are given in Table 6. Several traverses through the horizontal midplane were made with the 5-511. Bonner ball 30 cm behind selected configurations and these data are listed in Table 7. Table 8 contains the results from measurements with the three Bonner balls at the NE-213 locations.

2 ANALYSIS Calculations were performed for all the configurations listed under Roman numerals I, 11, 111, V, and VI of the Experimental Program Plan. Calculations were performed with the DOT-IV (version 4.4) two-dimensional discrete ordinates radiation transport computer code in R-2 geometry using a 51-neutron-group cross-section library developed at ORNL for fast reactor shield analysis. The basic cross-section data came mainly from ENDF/B-IV. A symmetric S quadrature (96 directions) was used and is felt to be ade- 12 quate since little if any narrow-gap void streaming would be encountered. Higher order quadratures up to S did not result in significant changes in 32 the neutron flux levels behind l-d mockups of thick-shield configurations. The source for a particular calculation was either an external disk boundary flux incident on the spectrum modifier (following the Tower Shielding Reactor collimator) or an external disk boundary flux at some intermediate location in the larger configurations. For Configurations I.A, II.A, III.A, III.B, III.C, V.A, and VI.A, the source was incident on the spectrum modifier and during calculations for Configurations II.A, III.C, V.A, and V1.A boundary fluxes were saved at intermediate locations for use in follow-on calculations. For Configurations V.B through V. J the source was incident on the fourth sodium tank. For the remaining configurations the source was incident on the aluminum slab which followed the U02 radial blankets, thus eliminating the need for multiple outer iterations to converge the fission source in these cases. Calculated detector responses were obtained either by (1) calculating with DOT-IV the flux in the void region behind the configuration and using the DOTWRTPN code to weight the detector count rate over the detector's hemispherical surface which faces the configuration or (2) using the DISK- TRAN code to calculate responses at the centers of detection for the detectors. The calculated spectrum at the specified measurement location was compared directly with the measured spectrum (i.e. no spatial smearing of the calculated result).

3 Ti_4L -3 Results Results for Configuration V.A were reported in the last reporting period, although some of those are repeated for comparison. Calculation- to-experiment ratios (C/E) for the 5-in. Bonner ball at two or three posi- tions behind each configuration calculated are presented in Table 9. lar ratios were obtained for the 3-, 8-, and 10-in. Bonner balls. The ratios for the bare and Cd-covered BF detectors ranged from "similar to" to 3 "very different from" the 5-in. Bonner ball ratios depending on the confi- guration. The agreement is generally good for Configurations I, V, and the smaller configurations of sections 11, 111, and VI. There is some overpred- iction for section V configurations containing B C. Configurations in sec- 4 tion VI are underpredicted more than any others. The steadily declining C/E's with increasing shield thickness suggests an underprediction of (1) Simi- the fast-neutron flux leaving the UO blankets or (2) the fission neutron 2 source in the blankets. Possible reasons for the calculational discrepan- cies are being examined and hopefully will be identified prior to the ini- tiation of a new round of calculations for the remaining configurations. Calculated versus measured fast-neutron spectra for Configurations I.A, II.D, VI.A, and V1.F are shown in Figs. 9-12. The calculational underpred- iction is about the same as that for the 5-in. Bonner ball (last column of Table 9 ).

4 f\ REACTOR ORNL. DWG 86-15295 I 2x2 CONC 3x3 CONC ------------ ----------------- t NE213, HYDROGEN COUNTERS 3.5.10 IN. 6% Figure 1. Scheaatic of SM + 1.26 cm Al + 15.53 cm SS + 10.16 cm SS + 10.16 cm graphite + 7.62 cm lead (Item VI-A). Note: Lithiated paraffin covers lateral sides of configuration.

5 w it I l l!!!!!!! ORNL. OWG 86-15294 Figure 2. Schematic of SM + 1.26 ca A1 + 15.53 cn SS + 61 ca graphite + 6.50 cm B4C + 15.24 cm lead (Item VI-P). Note: Lithiated paraffin covers lateral sides of configuration.

6 m REACTOR OANC-DWG 86-15296 2x2 CONC 3x3 CONC I Figure 3. Schematic of SM + 1.26 cm A1 + 15.53 CB SS + 61 cm graphite (Items VI-A - P). Note: Lithiated paraffin covers lateral sides of configuration.

7 IIIIIII m 1 Iltttt OANL, OWC 86.15297 2x2 3x3 CONC CONC Figure 4. Schematic of SM + 1.26 cm A1 + 15.53 cm SS + 1.26 cm A1 + 15.74 cm SS + 1.26 cm A1 + 15.68 cm SS + 1.26 cm A1 + 16.95 cm B4C + 2.59 cm SS + 34.2 cm Na (Items VII-A - D). Note: Lithiated paraffin covers lateral sides of configuration.

22-AUG-86 0 2 4 6 10 12 14 16 18 20 NEUTRON ENERGY (MeV) Figure 5. Fast neutron fluxes (>0.8 MeV) on centerline at 51.1 cm beyond the graphite (36.4 cm behind the lead) (Item VI-A): Run 7858A.

9 1 I I I I I 1 I I 1 l9-am-86 I I I I I I I I I \ I 1 0 2 4 6 8 10 12 14 16 18 20 NEUTRON ENERGY (MeV) Figure 6. Spectrum of high-energy neutrons (>0.8 MeV) on centerline 63.2 CA beyond the graphite in the configuration (Item VI-F): Run 7859A.

10 X E 0 \ C X 3 3 G NEUTRON ENERGY I MeV 1 Figure 7. Neutron fluxes (50 kev to 1.4 MeV) on centerline at 51.1 cm behind the graphite (36.4 crn behind the lead) (Item VI-A): Runs 1542A, 1541B. 1541A.

11 I I I I I 1 1 1 1 10' 2x1oo, I I I l l I I I I I I l i 4x 1 o-2 1 b-l 12 NEUTRON ENERGY I MeV 1 Figure 8. Neutron spectrum (50 kev to 1.4 MeV) on centerline 63.2 cm beyond the graphite in the configuration (Item VI-F): Runs 1544A, 1544B, 1545A.

12 Figure 9. Calculated versus measured E > 0.09 MeV neutron spectra on centerline 178.8 cm behind Configuration I.A.

13 Figure 10. Calculated versus measured E > 0.09 MeV neutron spectra on centerline 33.6 cm behind Configuration 1I.D + 7.62 cm Pb.

I 4 I, 1, 1 I I I I I 1 I I I 3 - - -. Calculated - Measured I I I,,, ENERGY (MeV) - Figure 11. Calculated versus measured E > 0.09 MeV neutron spectra on centerline 36.4 cm behind Configuration V1.A + 7.62 cm Pb.

15 Figure 12. Calculated versus measured E > 0.09 MeV neutron spectrum on centerline 36.3 cm behind Configuration V1.F + 6.5 cm BqC + 15.24 cm Pb.

16 CA.- Table 1. Fast neutron fluxes (>0.8 MeV) on centerline at 51.1 CIII behind the graphite (36.4 cm behind the lead) (Item VI A): Run 7858A. Neutron Flux (neutrons cn-2hev-1kw-1s-1) Neutron Flux (neutrons cm-2mev-1kw-1s-1) Energy Lower Upper Energy Lower Upper ( NeV ) Limit Limit (MeV ) Liml t Limit 8.11E (-1) 9.07E (-1) 1.01E (0) 1.11E (0) 1.20E (0) 1.31E (0) 1.41E (0) 1.51E (0) 1.6lE (0) 1.71E (0) 1.81E (0) 1.93E (0) 2.10E (0) 2.30E (0) 2.50E (0) 2.70E (0) 2.90E (0) 3.10E (0) 3.30E (0) 3.50E (0) 3.71E (0) 3.91E (0) 4.15E (0) 4.45E (0) 4.75E (0) 5.04E (0) 5.35E (0) 5.6SE (0) 3.47E (3) 3.73E (3) 3.288 (3) 2.70E (3) 2.25E (3) 1.91E (3) 1.65E (3) 1.44E (3) 1.23E (3) 1.03E (3) 8.56E (2) 6.97s (2) 5.298 (2) 3.85E (2) 2.76E (2) 1.95E (2) 1.45E (2) 1.08E (2) 8.24E (1) 6.55E (11 5.51E (1) 4.928 (1) 4.75E (1) 5.03E (1) 4.968 ( 1) 4.248 (1) 3.41E (1) 2.85E (1) 3.51E (3) 3.75E (3) 3.29E (3) 2.71E (3) 2.268 (3) 1.92E (3) 1.66E (3) 1.44E (3) 1.23E (3) 1.04E (3) 8.63E (2) 7.04E (2) 5.358 (2) 3.90E (2) 2.80E (2) 1.99E (2) 1.49E (2) 1.12E (2) 8.56E (1) 6.92E (1) 5.81E (1) 5.18E (1) 5.01E (1) 5.25E (1) 5.16E (1) 4.41E (1) 3.57E (1) 3.01E (1) 5.946 (0) 6.25E (0) 6.56E (0) 6.84E (0) 7.24E (0) 7.743 (0) 8.248 (0) 8.76E (0) 9.26E (0) 9.74E (0) 1.03E ( I) 1.OBE (1) 1.12E (1) 1.18E (1) 1.24E (1) 1.32E (1) 1.40E (1) 1.48E (1) 1.56E (1) 1.65E (I) 1.75E (1) 1.85E (1) 1.95E (1) 2.06E (1) 2.16E (1) 2.26E (1) 2.35B (1) 2.441 (1) 2.05E (1) 1.74E (I) 1.5OE (1) 1.22E (1) 9.328 (0) 6.79E (0) 5.63E (0) 5.258 (0) 4.33E (0) 3.07E (0) 2.298 (0) 2.02E (0) 1.88E (0) 1.52E (0) 8.02E (-1) 2.69E (-1) 6.35E (-2) 3.62E (-3) -5.46E (-3) -5.09E (-3) -4.298 (-3) -3.49E (-3) -2.53E (-3) -1.60E (-3) -9.71E (-4) -5.87E (-4) 2.58E (1) 2.238 (1) 1.90E (1) 1.60E (1) 1.31E (I) 1.03E (1) 7.54E (0) 6.16E (0) 5.70E (0) 4.70E (0) 3.348 (0) 2.498 (0) 2.17E (0) 2.02E (0) 1.64E (0) 8.79E (-1) 3.03E (-1) 7.73E (-2) 8:88E (-3) -3.91E (-3) -4.53E (-3) -3.81E (-3) -3.01E (-3) -2.06E (-3) -1.14E (-3) -5.14E (-4) -1.OlE (-4) El E2 Integral Error (MeV) (MeV) (neutrons cm-2kw-1s-1) (neutrons cm-2kw-1s-1) 0.811 1.000 6.85E (2) 1.97E (0) 1.000 1.200 5.53E (2) 1.33E (0) 1.200 1 600 6.83E (2) 1.99E (0) 1.600 2.000 3.60E (2) 1.40E (0) 2.000 3.000 3.09E (2) 2.31E (0) 3.000 4.000 7.398 (1) 1.66E (0) 4.000 6.000 8.258 (1) 1.89E (0) 6.000 8.000 3.01E. (1) 1.21E (0) 8.000 10.000 1.15E (1) 5.238 (-1) 10.000 12.000 4.863 (0) 1.92E (-1) 12.000 16.000 2.232 (0) 9.86E (-2) 16.000 20.DO0-1.56E (-2) 1.72E (-3) 1.500 15.000 1.01E (3) 9.71E (0) 3.000 12.000 2.03E (2) 5.478 (0)

17 Table 2. Fast Neutron fluxes (>0.8 MeV) on centerline at 63.2 cm beyond the graphite in the configuration (Item VI-F): Run 7859A Neutron Flux (neutrons cm-2mev-1kw-1s-1) Neutron Flux (neutrons cm-2mev-1kw-1s-1) Energy Lower Upper Energy Lower Upper (MeV) Limit Limit (MeV) Limit Limit 8.11E (-1) 9.07E (-1) 1.01E (0) 1.11E (0) 1.20E (0) 1.31E (0) 1.41E (0) 1.51E (0) 1.61E (0) 1.71E (0) 1.81E (0) 1.93E (0) 2.10E (0) 2.30E (0) 2.50E (0) 2.70E (0) 2.90E (0) 3.10E (0) 3.30E (0) 3.50E (0) 3.71E (0) 3.91E (0) 4.15E (0) 4.45E (0) 4.75E (0) 5.04E (0) 5.35E (0) 5.65E (0) 4.48E (0) 4.93E (0) 4.368 (0) 3.548 (0) 2.97E (0) 2.61E (0) 2.38E (0) 2.16E (0) 1.93E (0) 1.69E (0) 1.45E (0) 1.22E (0) 9.498 (-1) 6.86E (-1) 4.87E (-1) 3.53E (-1) 2.70E (-1) 2.09E (-1) 1.66E (-1) 1.46E (-1) 1.41E (-1) 1.36E (-1) 1.30E (-1) 1.32E (-1) 1.28E (-1) 1.17E (-1) 1.13E (-1) 1.09E (-1) 4.548 (0) 4.97E (0) 4.388 (0) 3.57E (0) 2.99E (0) 2.63E (0) 2.40E (0) 2.18E (0) l.95e (0) 1.70E (0) 1.47E (0) 1.23E (0) 9.61E (-1) 6.97E (-1) 4.96E (-1) 3.628 (-1) 2.79E (-1) 2.19E (-1) 1.74E (-1) 1.55E (-1) 1.48E (-1) 1.42E (-1) 1.37E (-1) 1.38E (-1) 1.34E (-1) 1.22E (-1) 1.15E (-1) 1.14E (-1) 5.94E (0) 6.25E (0) 6.56E (0) 6.84E (0) 7.24E (0) 7.74E (0) 8.24E (0) 8.76E ( 0) 9.26E (0) 9.74E (0) 1.03E (1) 1.08E (1) 1.12E (1) 1.18E (1) 1.24E (1) 1.32E (1) 1.40E (1) 1.48E (1) 1.56E (1) 1.65E (1) l.7se (1) 1.85E (1) 1.95E (1) 2.06E (1) 2.16E (1) 2.268 (1) 2.35E (1) 1.06E (-1) 1.00E (-1) 9.36E (-2) 8.231 (-2) 6.04E (-2) 3.598 (-2) 2.15E (-2) 1.45E (-2) 1.13E (-2) 8.35E (-3) 5.17E (-3) 3.21E (-3) 2.538 (-3) 2.13E (-3) 1.48E (-3) 7.20E (-4) 4.31E (-4) 3.31E (-4) 2.70E (-4) 1.52E (-4) -8.63E (-5) -2.33E (-4) -2.31E (-4) -2.538 (-4) -1.82E (-4) -1.91E (-4) -2.OOE (-4) l.loe (-1) 1.06E (-1) 9.81E (-2) 8.538 (-2) 6.27E (-2) 3.83E (-2) 2.33E (-2) 1.58E (-2) 1.24E (-2) 9.30E (-3) 5.94E (-3) 3.87E (-3) 3.11E (-3) 2.668 (-3) 1.91E (-3) 1.07E (-3) 7.241 (-4) 7.40E (-4) 7.29E (-4) 4.96E (-4) 3.49E (-4) 2.521 (-4) 2.21E (-4) 2.05E (-4) 2.64E (-4) 2.838 (-4) 2.93E (-4) El E2 Integral Error (MeV) (MeV) (neutrons cm-'kw-ls-l) (neutrons cm-2kw-1s-1) 0.811 1.000 1.200 1.600 2.000 3.000 4.DO0 6.000 8.000 10.000 12.000 16.000 1.500 3.000 1.ooo 1.200 1.600 2.000 3.000 4.000 6.000 8.000 10.000 12.000 16.000 20.000 15.000 12.000 9.04E (-1) 7.31E (-1) 9.73E (-1) 6.02E (-1) 5.55E (-1) 1.64E (-1) 2.45E (-1) 1.44E (-1) 2.938 (-2) 7.25E (-3) 3.37E (-3) 4.74E (-4) 1.96E (0) 5.89E (-1) 3.44E (-3) 2.45E (-3) 3.81E (-3) 2.81E (-3) 5.05E (-3) 4.08E (-3) 5.26B (-3) 3.34E (-3) 1.291 (-3) 6.39E (-4) 7.781 (-4) 8.68E (-4) 2.39E (-2) 1.46E (-2)

18. I Table 3. Neutron fluxes (50 kev to 1.4 MeV) on centerline at 51.1 CAI behind the graphite (36.4 CI behind the lead) (Item VI-A): Runs 1542A. 1541B. 1541A. N Energy Boundary Flux Error (MeV) (Neutron cm-2mev-1kw-1s-1) (%) Run 1542A 1 2 3 4 5 6 7 8 9 0.0542 0.0633 0.0762 0.0890 0.1037 0.1221 0.1441 0.1698 0.1992 0.0633 0.0762 0.0890 0.1037 0.1221 0.1441 0.1698 0.1992 0.2359 2.77E 1.92E 1.64E 1.35E 1.14E 9.98E 7.69E 6.51E 5.45E 1.32 1.42 1.82 2.06 2.03 2.03 2.39 2.61 2.52 Run 1541B 1 2 3 4 5 6 7 0.1672 0.1993 0.2359 0.2771 0.3230 0.3825 0.4466 0.1993 0.2359 0.2771 0.3230 0.3825 0.4466 0.5291 6.13E (4) 5.22E (4) 4.19E (4) 3.46E (4) 2.70E (4) 2.04E (4) 1.73E (4) 0.85 0.93 1.10 1.27 1.26 1.64 1.48 Run 1541A 1 2 3 4 5 6 7 8 0.3793 0.4448 0.5291 0.6227 0.7258 0.8569 1.0067 1.1846 0.4448 0.5291 0.6227 0.7258 0.8569 I. 0067 1.1846 1.4000 2.14E (4) 1.78E (4) 1.30E (4) 9.39E (3) 5.83E (3) 4.16E (3) 3.07E (3) 2.17E (3) 0.82 0.77 0.95 1.21 1.49 1.86 2.09 2.33

4 -> 19 Table 4. Neutron fluxes (50 kev to 1.4 MeV) on centerline at 63.2 cm beyondthe graphite in the configuration (Item VI-F): Runs 1544A. 1544B. 1545A. N Energy Boundary Flux Error (MeV) (Neutron cm-2mev-1kw-1s-1 ) (% 1 Run 1544A 1 2 3 4 5 6 7 8 9 0.0536 0.0630 0.0743 0.0875 0.1026 0.1214 0.1421 0.1666 0 e 1967 0.0630 0.0743 0.0875 0.1026 0.1214 0.1421 0.1666 0.1967 0.2324 3.62E (1) 3.43E (1) 3.28E (1) 2.52E (1) 1.94E (1) 1.84E (1) 1.62E (1) 1.53E (1) 1.32E (1) 7.65 7.46 7.37 9.25 10.55 11.39 12.06 11.27 11.96 Run 1544B 1 2 3 4 5 6 7 0.1696 0.1989 0.2324 0.2743 0.3204 0.3790 0.4460 0.1989 0.2324 0.2743 0.3204 0.3790 0.4460 0.5256 1.37E (1) 1.34E (1) 1.17E (1) 1.09E (1) 9.24E (0) 7.88E (0) 8.69E (0) 5.47 5.45 5.50 6.06 6.06 6.94 5.72 Run 1545A 1 2 3 4 5 6 7 8 0.3767 0.4512 0.5256 0.6186 0.7302 0.8605 1-0093 1.1860 0,4512 0.5256 0.6186 0.7302 0.8605 1.0093 1.1860 1.4000 7.81E (0) 8.32E (0) 7.31E (0) 6.66E (0) 5.48E (0) 4.43E (0) 3.33E (0) 2.36E (0) 2.20 2.34 2.26 2.19 2.40 2.70 3.04 3.50

20 i Table 5. Bonner Ball measurements on centerline at 30 cm behind a series of configurations (Items VI-A - VI-P, VII-A - VII-D). Bonner Ball count rates (s-', w-') co ti f igurat iona bare CD-covered 3-inch 5-inch 8-inch 10-inch detector detector diam ball diam ball diam ball diam ball VI -A VI-A VI-0 VI -B VI-c VI-c VI-D VI-D vr -E VI -E VI-F VI-F VI I-A VI I-B vri-c VI I-D VII-D 2.87 (l)b 2.48 (1)' 8.40 (1) 7.65 (1)' 1.19 (2) 1.08 (2)' 1.13 (2) 1.05 (2)' 9.70 (1) 9.19 (1)C 7.52 (1) 7.49 (1)C 1.01 (-2) 6.39 (-3)' 1.25 (1) 2.01 (2) 5.15 (2) 2.61 (2) 1.10 (2) 1.30 (1) 1.35 (2) 2.46 (2) 1.03 (2) 4.25 (1) 7.42 (0) 6.30 (1) 9.45 (1) 3.62 (1) 1.47 (1) 3.09 (0) 2.23 (1) 2.97 (1) 1.06 (1) 4.32 (0) 1.08 (0) 7.44 (0) 9.04 (0) 3.08 (0) 1.25 (0) 3.39 (-1) 2.10 (0) 2.42 (0) 8.44 (-1) 3.58 (-1) 6.57 (1) 2.61 (2) 1.69 (2) 7.77 (1) 1.92 (1) 7.69 (1) 4.64 (1) 2.13 (1) 3.04 (-1) 1.61 (0) 1.08 (0) 5.03 (-1) 4.00 (-3) 1.52 (-1) 5.46 (-1) 3.11 (-1) 1.37 (-1) asee experimental program plan on Appendix A for description of configurations. bread: 2.87 x lo1. 'Cadmium enclosure that surrounded the detector except on the side of the last slab in the configuration.

h t" Table 6. Bonner Ball measurements on centerline at 304.8 cm from the center of the reactor (Items VI-A - VI-F, VII-A - VII-D). VI-A 8 44 (Old 3 16 (01 2 62 (01 3 53 1-11 4 06 (11 3 77 (0) 100 (2) 7 07 (0) 5 IO (11 2 BY (0) 2 22 Ill 1 25 VI-A 5 51 (01' VI-0 2 10 (1) 106 (0) 2 95 (01 2 23 ( I) 2 98 11) 2 00 (01 5 42 (0 3 I7 (01 2 26 (11 I 14 (01 9 dl (01 9 68 ( 11 VI-8 5 54 (0)t VI-c 3 11 (1) 3 I7 (0) I88 10) 9 00 ( 11 I57 (I) 6 65 1-11 2 34 (I) 9 55 1-11 9 00 (01 3 45 I I1 3 61 (01 1 15 I I ) VI-c 3 08 (ole VI-D 3 33 (11 2 60 (0) a 80 ( I) 3 22 1 2) 6 27 IO) 2 20 (-1) 8 23 (ol 2 87 1-11 3 02 (0) 9 41 (-2) I 21 101 3 08 21 VI-D I 12 (Ole VI-E 3 28 (11 I 80 (0) 3 fin I 11 8 97 I 31 2 41 IOI 5 63 1-21 z 96 (0) 7 oa 1-2) I 02 10) 2 30 1-21 4 13 1-11 1 10 1-21 VI-E 6 21 VI-e 2 88 (1) 1 10 (0) I 29 1 1) 2 01 (-3) 8 05 1-11 I 28 (-2) 9 86 1-1) 156 1-2) 3 23 ( I1 5 42 (-31 137 ( I ) 2 54 1-31 VI-P 2 62 l-lle VII-A 155 (1) I 78 (01 5 90 (1) 4 18 (0) 3 74 (1) 2 40 (01 I 70 (1) 8 98 1-11 VII-8 5 61 (01 5 03 (-1) 2 12 (1) I 21 (0) I 30 (1) 5 33 (-1) 5 88 (0) 2 55 (-11 VII-c 1 26 (-I) 8 11 1-31 E 21 (-1) 2 04 I 11 4 26 (-1) 9 81 (-31 2 02 1-11 4 39 (-31 VI I -of 9.12 (-3) 2 68 (-3) 3 05 (-3) 2 81 1-41 I 04 ( 1) 3 25 1-31 3 TI 1-11 6 98 (-31 2 08 1-11 2 98 (-3) 9 I7 1-21 1 40 I 31 VII-D 6 38 I-3Ie asec experimental program plan I" Apvendli A for descrlptlon of confipurntians bneutron flux without shadow shleld between detcctor and confleuratlon 'Neutron flux *It shadow shleld between detector and ConflyUratlOn dread 8 44 x 10' ;Cadmium over face of last slab In confleuratlon Backeround taken at 311 5 E.

Table 7. 5-inch Bonner Ball horizontal traverses through midplane at 30 cm behind a series of configurations (Items VI-A, VI-8, VI-D, VI-P, VXI-A - VII-C). Illstance from Ronncr Ball count rates (s-lw-') centerline (cm) Item VI-A~ Item VI-R" Item VI-D" Item VI-F~ Item VII-A~ Item VII-B~ Item VII-C" 76.2s 60 45 30 15 0 15 30 45 60 76.2N 1.78 (2)b 7.99 2.79 (2) 1.26 3.80 (2) 1.69 4.55 (2) 2.08 5.12 (2) 2.34 5.38 (2) 2.43 5.06 (2) 2.36 4.50 (2) 2.08 3.53 (2) 1.67 2.58 (2) 1.23 1.62 (2) 7.93 9.60 1.55 2.13 2.66 2.99 3.10 2.98 2.63 2.12 1.53 9.48 7.63 1.24 1.71 2.11 2.37 2.45 2.34 2.05 1.64 1.16 7.31 (-1) 9.63 (1) (0) 1.43 (2) (0) 1.89 (2) (0) 2.26 (2) (0) 2.51 (2) (0) 2.64 (2) (0) 2.51 (2) (0) 2.19 (2) (0) 1.79 (2) (0) 1.32 (2) (-1) 8.90 ( I) 2.58 (1) 4.01 ( 1) 5.39 (1) 6.52 (1) 7.24 ( 1) 7.53 (1) 7.05 ( I) 6.28 (1) 5.09 (1) 3.74 (1) 6.24 (-1) 9.62 (-1) 1.27 (0) 1.50 (0) 1.64 (0) 1.65 (0) 1.57 (0) 1.39 (0) 1.14 (0) 8.44 (-1) 5.62 (-1) 2.36 (1) 1 blead: 1.18 x IO2. N IU

23 Table 8. Bonner Ball measurements on centerline at NE-213 location (Items VI-A, P) Bonner -1-1 Conf i gura t i ona Ball Bonner Ball count rates (s w ) VI-A VI -F VI -A VI -F 4-inch 3-inch 5-inch 5-inch 2.56 (2) 4.51 (-3) 2.82 (2) 2.22 (-2) VI -A 10-inch 6.00 (1) VI -F 10-inch 1.12 (-2) asee experimental program plan in Appendix A for description of configurations.

24 Table 9. Calculation-to-Experiment Ratios for the 5-in. Bonner ball on Centerline Behind Various JASPER Configurations Calculation-to-Experiment Ratios at 304.8 cm At Spectrum Confinuration at 30 cm from Core Location I.A 1.03 0.96 0.97 1I.A 0.92 0.85 1I.B 0.83 0.83 1I.C 0.69 0.63 1I.D 0.59 0.56 1I.E 0.60 0.67 111.A 0.99 0.95 111. B 0.91 0.83 111. c 0.89 0.82 1II.D 0.83 0.78 1II.E 0.83 0.75 V.A 1.08 0.90 V.B 1.02 0.97 v.c 1.04 0.90 V.D 1.07 1.00 V.E 1.14 0.98 V. F 1.06 0.97 V. G 1.13 1.04 V.H 1.19 1.01 v. I 1.24 1.09 V.J 1.28 1.23 VI.A 0.86 0.76 V1.B 0.78 0.72 v1.c 0.70 0.63 V1.D 0.62 0.59 V1.E 0.54 0.49 0.51 0.75 V1.F 0.47 0.41 0.39