Neutrino Sources in the Universe

Similar documents
Neutrinos in Astrophysics and Cosmology

Spontaneous Symmetry Breaking in Supernova Neutrinos

Supernova Explosions and Neutrinos

Supernova 1987A and the Birth of Neutrino Astronomy

Introduction Core-collapse SN1987A Prospects Conclusions. Supernova neutrinos. Ane Anema. November 12, 2010

Neutrinos: What we ve learned and what we still want to find out. Jessica Clayton Astronomy Club November 10, 2008

Zakopane, Tatra Mountains, Poland, May Supernova Neutrinos. Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Type II Supernovae Overwhelming observational evidence that Type II supernovae are associated with the endpoints of massive stars: Association with

Recent Discoveries in Neutrino Physics

1. Neutrino Oscillations

Solar Neutrinos: Status and Prospects. Marianne Göger-Neff

Astrophysical Nucleosynthesis

Stellar Interior: Physical Processes

Ryan Stillwell Paper: /10/2014. Neutrino Astronomy. A hidden universe. Prepared by: Ryan Stillwell. Tutor: Patrick Bowman

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Astroparticle physics

Supernova Neutrinos Georg Raffelt, MPI Physics, Munich 2nd Schrödinger Lecture, University Vienna, 10 May 2011

Neutrino Oscillations

Agenda for Ast 309N, Sep. 6. The Sun s Core: Site of Nuclear Fusion. Transporting Energy by Radiation. Transporting Energy by Convection

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

The new Siderius Nuncius: Astronomy without light

Supernova Neutrinos in Future Liquid-Scintillator Detectors

Proton decay and neutrino astrophysics with the future LENA detector

Neutrino Oscillations

Stellar Explosions (ch. 21)

Cosmological neutrinos. The neutrino sector. Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen)

Recent advances in neutrino astrophysics. Cristina VOLPE (AstroParticule et Cosmologie APC, Paris)

1. Introduction on Astroparticle Physics Research options

11 Neutrino astronomy. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

Oklahoma State University. Solar Neutrinos and their Detection Techniques. S.A.Saad. Department of Physics

Neutrinos and the Stars II

Supernovae, Neutron Stars, Pulsars, and Black Holes

Late stages of stellar evolution for high-mass stars

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

arxiv: v1 [hep-ex] 22 Jan 2009

Outline. The Sun s Uniqueness. The Sun among the Stars. Internal Structure. Evolution. Neutrinos

A1199 Are We Alone? " The Search for Life in the Universe

F. TASNÁDI LINKÖPING UNIVERSITY THEORETICAL PHYSICS NEUTRINO OSCILLATIONS & MASS

Limb Darkening: The Inside of the Sun: What keeps the Sun shining? What keeps the Sun from collapsing? Gravity versus Pressure. Mechanical Structure

Reading Clicker Q 2/7/17. Topics for Today and Thur. ASTR 1040: Stars & Galaxies

Neutrino Physics: an Introduction

Windows on the Cosmos

Conceptos generales de astrofísica

Wolfgang Hillebrandt. Garching. DEISA PRACE Symposium Barcelona May 10 12, 2010

The Death of Stars. Today s Lecture: Post main-sequence (Chapter 13, pages ) How stars explode: supernovae! White dwarfs Neutron stars

Neutrinos and Beyond: New Windows on Nature

Neutrino Astrophysics

Stars and their properties: (Chapters 11 and 12)

Detectors for astroparticle physics

Neutrinos as a Cosmic Messenger

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

The Sun = Typical Star

Andrey Formozov The University of Milan INFN Milan

Other Physics with Geo-Neutrino Detectors

Neutrino Physics: Lecture 1

Solar Neutrinos. Learning about the core of the Sun. Guest lecture: Dr. Jeffrey Morgenthaler Jan 26, 2006

Master focus in physics

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

MAJOR NUCLEAR BURNING STAGES

Introduction to exploding stars and pulsars

Supernova Neutrino Detectors: Current and Future. Kate Scholberg, Duke University June 24, 2005

Particle Physics: Neutrinos part I

Those invisible neutrinos

Tuesday, January 25, Phobos, a moon of mars

Neutrino oscillation experiments: Recent results and implications

The Story of Neutrinos. Naba K Mondal DAE Raja Ramanna Fellow Saha Institute of Nuclear Physics, Kolkata

Neutrino Physics: an Introduction

Metallicities in stars - what solar neutrinos can do

Review of Solar Neutrinos. Alan Poon Institute for Nuclear and Particle Astrophysics & Nuclear Science Division Lawrence Berkeley National Laboratory

The Problem of the Missing Neutrinos

Applied Anti-neutrino Workshop Introduction

Fossil Records of Star Formation: John Beacom, The Ohio State University

Neutrinos and Supernovae

Neutrino June 29 th Neutrino Probes of Extragalactic Supernovae. Shin ichiro Ando University of Tokyo

Stellar Interiors Nuclear Energy ASTR 2110 Sarazin. Fusion the Key to the Stars

Hydrogen Burning in More Massive Stars and The Sun.

Interactions. Laws. Evolution

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars

Perspectives on Nuclear Astrophysics

Multi-messenger Astronomy. Elisa Resconi ECP (Experimental Physics with Cosmic Particles) TU München

6-8 February 2017 Hotel do Mar Sesimbra. Hands on Neutrinos

Particle Physics WS 2012/13 ( )

Neutrinos and the Universe

Lesson 1: The Sun. Reading Assignment. Summary of Fundamental Forces

LIFE CYCLE OF A STAR

Neutrino Signatures from 3D Models of Core-Collapse Supernovae

Stellar Evolution. Stars are chemical factories The Earth and all life on the Earth are made of elements forged in stars

The Stars. Chapter 14

PROBING THE MASS HIERARCHY WITH SUPERNOVA NEUTRINOS

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

GAMMA-RAY LIMIT ON AXION-LIKE PARTICLES FROM SUPERNOVAE. Alessandro MIRIZZI University of BARI & INFN BARI, Italy

Chapter CHAPTER 11 ORIGIN OF THE ELEMENTS

High Energy Neutrino Astronomy

UNIT1: Experimental Evidences of Neutrino Oscillation Atmospheric and Solar Neutrinos

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Solar neutrinos and the MSW effect

Compton Lecture #4: Massive Stars and. Supernovae. Welcome! On the back table:

Announcements. - Homework #5 due today - Review on Monday 3:30 4:15pm in RH103 - Test #2 next Tuesday, Oct 11

Ay 1 Lecture 8. Stellar Structure and the Sun

C. Spiering, CERN School Zeuthen, Sept.2003

Transcription:

Crab Nebula Neutrino Sources in the Universe Georg G. Raffelt Max-Planck-Institut für Physik, München

Where do Neutrinos Appear in Nature? Nuclear Reactors Sun Particle Accelerators Supernovae (Stellar Collapse) SN 1987A Earth Atmosphere (Cosmic Rays) Astrophysical Accelerators Earth Crust (Natural Radioactivity) Cosmic Big Bang (Today 330 n/cm 3 ) Indirect Evidence

Grand Unified Neutrino Spectrum Georg Raffelt, MPI Physik, München Slide adapted from Christian Spiering Sino-German GDT Symposium, Ringberg Castle, 19 Oct 2015

Grand Unified Neutrino Spectrum underground optical: - deep water - deep ice - air showers - radio - acoustics Georg Raffelt, MPI Physik, München Slide adapted from Christian Spiering Sino-German GDT Symposium, Ringberg Castle, 19 Oct 2015

Missing Solar Neutrinos in Many Experiments Chlorine Gallium Water n e + e n e + e Heavy Water n e + d p + p + e 8 B CNO 8 B 7 Be 8 B 8 B CNO 7 Be pp Homestake Gallex/GNO SAGE (Super-) Kamiokande SNO

Neutrino Flavor Oscillations Pontecorvo & Gribov (1968) on the Solar Neutrino Problem Neutrinos are superposition of mass eigenstates ν e = +cos Θ ν 1 + sin Θ ν 2 ν μ = sin Θ ν 1 + cos Θ ν 2 Different speed of propagation Phase difference δm2 L causes oscillations 2E Similar to optical activity in the propagation of light Probability ν e ν μ Bruno Pontecorvo (1913 1993) sin 2 (2θ) L Oscillation Length 4πE δm 2 = 2.5 m E MeV ev 2 δm 2 Vladimir Gribov (1930 1997)

SNO Proposal Herbert Hwa Chen (1942 1987) Proposal 1984: Heavy water as target Can see all neutrino flavors Available in Canada as a loan from strategic reserve of CANDU reactor programme Formation of Sudbury Neutrino Observatory project (SNO) H. Chen passes away on 7. Nov. 1987 and Art McDonald (then Princeton) takes on leadership Measurement of the full solar neutrino flux in 2002 Nobel prize for Art McDonald 2015

Sudbury Neutrino Observatory (SNO) 1999 2006 1000 tons of heavy water Normal (light) water H 2 0 Heavy water D 2 0 Nucleus of hydrogen (proton) Nucleus of heavy hydrogen (deuterium)

Sudbury Neutrino Observatory (SNO) 1999 2006 1000 tons of heavy water Normal (light) water H 2 0 Heavy water D 2 0 Nucleus of hydrogen (proton) Nucleus of heavy hydrogen (deuterium)

Sudbury Neutrino Observatory (SNO) 1999 2006 1000 tons of heavy water Normal (light) water H 2 0 Heavy water D 2 0 Nucleus of hydrogen (proton) Nucleus of heavy hydrogen (deuterium)

Sudbury Neutrino Observatory (SNO) 1999 2006 Heavy hydrogen (deuterium) Heavy hydrogen (deuterium) Electron neutrinos All neutrino flavors

SNO Results (2002) Missing electron neutrinos indeed arrive in the form of other flavors! Phys. Rev. Lett. 89:011301, 2002 (http://arxiv.org/abs/nucl-ex/0204008)

SNO Results (2002) Missing electron neutrinos indeed arrive in the form of other flavors! Arthur McDonald Queen s University, Canada Phys. Rev. Lett. 89:011301, 2002 (http://arxiv.org/abs/nucl-ex/0204008)

Reactor Neutrino Oscillations (KamLAND, Japan) Oscillation pattern for anti-electron-neutrinos as a function of energy at fixed distance (ca 180 km) http://arxiv.org/abs/1303.4667 ν e survival probability Measurements Expected survival probability based on reactor distances Distance/energy (km/mev) KamLAND Scintillator-Detector (1000 t)

Reactor- and Geo-Neutrinos in KamLAND (Japan) Overall 116 +28 27 Geo-neutrinos (plus 24 +7 6 in Borexino) Earthquake & Tsunami (2011) All reactors switched off Counts per day Backgrounds Neutrinos from reactors Measurements http://arxiv.org/abs/1303.4667 (adaptiert) Year Scintillator purification Building KamLAND-Zen Beginning of geophysics with neutrinos! http://www.ipgp.fr/fr/evenements/neutrino-geoscience-2015-conference

Plate Tectonics, Convection, Geo-Dynamo Potassium-40 (Half life 1.25 billion years) Thorium-232 (14 billion years) Uranium-238 (4.5 billion years) Radioactive decays are the driving force!

Geo-Neutrino Fluss Glenn Jocher (Neutrino Geoscience, Paris 2015)

SNO+ (800 t) to begin 2016 Borexino (300 t) Geo-Neutrino Detektoren KamLAND since 2007 (1000 t) since 2002 Hanohano (10 000 t) For oceanic crust (Idea of principle, not a project) JUNO (20 000 t) to begin 2020

Crab Nebula Remnant of SN 1054 Crab Nebula Remnant of SN 1054 Chinese Supernova Crab Pulsar Chandra x-ray images

Stellar Collapse and Supernova Explosion Main-sequence star Helium-burning star Hydrogen Burning Helium Burning Hydrogen Burning

Stellar Collapse and Supernova Explosion Main-sequence Onion structure star Collapse Helium-burning (implosion) star Degenerate iron core: r 10 9 g cm -3 T 10 10 K M Fe 1.5 M sun R Fe 3000 km Hydrogen Burning Helium Burning Hydrogen Burning

Stellar Collapse and Supernova Explosion Newborn Neutron Star Collapse Explosion (implosion) ~ 50 km Proto-Neutron Star r ~ r nuc = 3 10 14 g cm -3 T ~ 10 MeV

Stellar Collapse and Supernova Explosion Newborn Neutron Star ~ 50 km Gravitational binding energy E b 3 10 53 erg 17% M SUN c 2 Neutrino cooling by diffusion This shows up as 99% Neutrinos 1% Kinetic energy of explosion 0.01% Photons, outshine host galaxy Neutrino luminosity Proto-Neutron Star r ~ r nuc = 3 10 14 g cm -3 T ~ 10 MeV L n ~ 3 10 53 erg / 3 sec ~ 3 10 19 L SUN While it lasts, outshines the entire visible universe

Exploding 3D Garching Model (20 M SUN ) Melson, Janka, Bollig, Hanke, Marek & Müller, arxiv:1504.07631

Variability to be seen in Neutrinos (3D Model) Tamborra, Hanke, Müller, Janka & Raffelt, arxiv:1307.7936 See also Lund, Marek, Lunardini, Janka & Raffelt, arxiv:1006.1889

Sanduleak -69 202 Sanduleak -69 202 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Sanduleak -69 202 Sanduleak -69 202 Supernova 1987A 23 February 1987 Tarantula Nebula Large Magellanic Cloud Distance 50 kpc (160.000 light years)

Neutrino Signal of Supernova 1987A Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Russia) 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s Within clock uncertainties, all signals are contemporaneous

Operational Detectors for Supernova Neutrinos SNO+ (300) HALO (tens) LVD (400) Borexino (100) Baksan (100) Super-K (10 4 ) KamLAND (400) Daya Bay (100) IceCube (10 6 ) In brackets events for a fiducial SN at distance 10 kpc

IceCube Neutrino Telescope at the South Pole Digital Optical Module

Three Types of High-Energy Messengers Cosmic rays (charged particles) Gamma Rays Neutrinos

Discovery of the Year (2013)

Astrophysical IceCube Neutrinos No clear astrophysical sources more neutrinos needed!

Global Neutrino Network (GNN) Antares KM3NeT GVD http://www.globalneutrinonetwork.org IceCube Gen-2

Neutrinos at the center