Ultra-High Energy Cosmic Rays (III)

Similar documents
On the measurement of the proton-air cross section using air shower data

Hadronic Interaction Models and Accelerator Data

Anisotropy studies with the Pierre Auger Observatory

High Energy Cosmic Ray Interactions

The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Ultra High Energy Cosmic Rays: Observations and Analysis

Overview: UHECR spectrum and composition Arrival directions and magnetic field Method for search for UHE nuclei sources Application to the Auger data

The Pierre Auger Observatory Status - First Results - Plans

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

OVERVIEW OF THE RESULTS

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Ultra- high energy cosmic rays

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

ULTRA-HIGH ENERGY COSMIC RAYS

Multi-Messenger Astonomy with Cen A?

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

Mass Composition Study at the Pierre Auger Observatory

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

Intergalactic Magnetic Field and Arrival Direction of Ultra-High-Energy Protons

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector.

Charged Cosmic Rays and Neutrinos

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

An Auger Observatory View of Centaurus A

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Recent results on UHECRs from the Pierre Auger Observatory. Olivier Deligny (IPN Orsay), on behalf the Pierre Auger Collaboration

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

UltraHigh Energy Cosmic Rays Corrected for Galaxy Magnetic Field Models: FRIs & BL Lacs (Galactic Plane sources?)

Air Shower Measurements from PeV to EeV

The Pierre Auger Observatory in 2007

High-energy cosmic rays

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

Ultrahigh Energy cosmic rays II

Experimental Constraints to High Energy Hadronic Interaction Models using the Pierre Auger Observatory Part II

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

The Pierre Auger Observatory

Results from the Pierre Auger Observatory. Paul Sommers, Penn State August 7, 2008, SSI

arxiv:astro-ph/ v1 28 Oct 2004

NEW VIEWS OF THE UNIVERSE. Recent Studies of Ultra High Energy Cosmic Rays. Alan Watson University of Leeds, UK (regular KICP Visitor)

Cosmogenic neutrinos II

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Results from the Telescope Array Experiment

Theory of Hadronic Interactions and Its Application to Modeling of Cosmic Ray Hadronic Showers

Latest results and perspectives of the KASCADE-Grande EAS facility

Ultra High Energy Cosmic Rays I

Measurement of air shower maxima and p-air cross section with the Telescope Array

Ultra High Energy Cosmic Rays. Malina Kirn March 1, 2007 Experimental Gravitation & Astrophysics

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

A few grams of matter in a bright world

First Results from the Pierre Auger Project

Simulating magnetic fields within large scale structure an the propagation of UHECRs

The Highest Energy Cosmic Rays

Cosmic Rays - in Poland

Recent Results from the KASCADE-Grande Data Analysis

Cosmic ray studies at the Yakutsk EAS array: energy spectrum and mass composition

Looking Beyond the Standard Model with Energetic Cosmic Particles

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

The Pierre Auger Project: Status and Recent Results. Pierre Auger Project. Astrophysical motivation

Cosmic-ray energy spectrum around the knee

Cosmic Rays in large air-shower detectors

Ultra-High Energy Cosmic Rays: Results, and Prospects

Recent measurements of ultra-high energy cosmic rays and their impact on hadronic interaction modeling

Ultrahigh Energy Cosmic Rays propagation II

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah

Seeing the moon shadow in CRs

Cosmic Rays, Photons and Neutrinos

STUDY ON MASS COMPOSITION OF EXTENSIVE AIR SHOWER WITH ULTRA HIGH ENERGY COSMIC RAYS USING Q PARAMETER AND THEIR MUON COMPONENT

The Pierre Auger Observatory

ULTRA HIGH ENERGY COSMIC RAYS

Searches for cosmic ray anisotropies at ultra-high energies

Questions 1pc = 3 ly = km

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Is the search for the origin of the Highest Energy Cosmic Rays over? Alan Watson University of Leeds, England

Secondary particles generated in propagation neutrinos gamma rays

The air-shower experiment KASCADE-Grande

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

Search for clustering of ultra high energy cosmic rays from the Pierre Auger Observatory

Studies on UHECR composition and hadronic interactions by the Pierre Auger Observatory

Cosmic Rays. M. Swartz. Tuesday, August 2, 2011

Ultra-High Energy AstroParticles!

Status KASCADE-Grande. April 2007 Aspen workshop on cosmic ray physics Andreas Haungs 1

pa at the LHC and Extensive Air Shower Development

arxiv: v1 [astro-ph.he] 8 Apr 2015

Status and results from the Pierre Auger Observatory

Recent results from the Pierre Auger Observatory

News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Cosmic ray indirect detection. Valerio Vagelli I.N.F.N. Perugia, Università degli Studi di Perugia Corso di Fisica dei Raggi Cosmici A.A.

Hadronic Interactions and Cosmic Ray Particle Physics

Numerical study of the electron lateral distribution in atmospheric showers of high energy cosmic rays

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Results from the Pierre Auger Observatory

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

COSMIC RAYS AND AGN's

Transcription:

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Ultra-High Energy Cosmic Rays (III) Ralph Engel Forschungszentrum Karlsruhe & Karlsruhe Institute of Technology

Outline Brief overview (experimental results) UHECR sources & injection spectra Propagation: energy loss processes Model predictions for fluxes Propagation: magnetic fields Physics of extensive air showers (composition)

Propagation: role of magnetic fields Part 1: Galactic fields

Arrival direction distribution E > 2 ev +6 o +3 o 24 h GC h 12 h!3 o AGASA: 5 doublets, 1 triplet for Δθ < 2.5, E > 4x 19 ev HiRes: no confirmation (different statistics & systematics) > 19 ev!6 o

AGASA auto-correlation function + Δb E > 19 ev E > 19.15 ev E > 19.7 ev - Δl ~3.5 σ - Z + (Cosmic rays from outer Galaxy region) ξ( l, b) = dldb ρ(l,b) ρ(l l,b b) (Teshima et al., ICRC21) ρ(l,b) = i [ 1 exp (l l i) 2 2πσ l,i σ b,i σ 2 l,i (b b i) 2 σ 2 b,i ]

Possible interpretation of correlation Source with continuous injection spectrum Source NGP z F E >E 1 2 l= y l=27 E 1 v B E 2 x b 1 b 2 > l=18 Observer l=9 (Alvarez-Muniz et al., ApJ 22)

Magnetic fields in our Galaxy (I) Rotation measure of pulsars projected onto Galactic plane (open/filled symbols: negative/positive RM) (Han et al., 25)

Magnetic fields in our Galaxy (II) halo disk Galactic Center Sun 3 pc 15 kpc 2-4 kpc Disk field: bisymmetrical spiral 8 kpc Bðr jj ; Þ ¼ B Halo field: A dynamo B x ¼ 3l G sin cos cos =r 3 B y ¼ 3l G sin cos sin =r 3 ; B z ¼ l G ð1 3 sin 2 Þ=r 3 ; R r jj ð jj cos ln r jj r Þ ¼ ¼ ¼

Map of expected deflection angles Deflection E > 4x 19 ev 6 3 36-3 Galactic coordinates (Stanev, ApJ 479, 1997) -6 strong deflection near Galactic Center

Correlation studies 2.14E+3 Deflection angle 3.92E+3 1.6E+3 1.6E+3-5 5.27E+2-9.22E+ -5!l (deg) 5 2.94E+3 1.96E+3-5 9.74E+2 - - -9.42E+ -5!l (deg) 5 5 1.39E+3 9.24E+2-5 4.57E+2!b (deg) 5-9.36E+ -5!l (deg) 5!b (deg) 5 - - 1.86E+3 3.2E+3 5 2.4E+3 1.6E+3 "5 7.94E+2 " " "5!l (deg) 5 1.56E+3 5 2.62E+3 1.74E+3-5 8.66E+2 Point source at 2 kpc 1.3E+3-5 5.12E+2 3.49E+3 (Alvarez-Muniz et al., ApJ 22) - -9.26E+ - -9.41E+ (+4) b=-15 (+3) b= (+2) b=15 (+) 3 2 l=157.5 b=-45 4-9.39E+ 2.8E+3!b (deg)!b (deg) deflection!" - - 5 (deg.) 5!b (deg)!b (deg) 6 19 b=45 19.5 energy 2 2.5 log( E/eV ) Galactic mag. field can be used for cosmic ray charge measurement 21

Galactic center as cosmic ray source? Significance map of AGASA data E > 18 ev ~ 4σ excess Galactic center outside FOV ~ 4σ deficit (AGASA, APP, 1999)

Energy dependence of anisotropy Statistical significance: AGASA P chance = exp( K) Data set: 114, events Dipole amplitude: 4% for E > 18 ev Cannot be checked by HiRes (aperture, statistics) (AGASA, APP, 1999)

Neutron point source model Neutron decay length: AGASA Full Sky d dec 9kpc ( E ) 18 ev Anisotropy (%) Field-of-view limitation Proton gyro-radius ~.4 kpc Galactic Center: TeV γ-ray source (H.E.S.S.) hadron accelerator neutron point source 1 17.6 17.7 17.8 17.9 18 18.1 18.2 18.3 18.4 log(e/ev) (Medina-Tanco & Watson ICRC 21; Bossa et al., JPG29, 23)

Auger data: Galactic Center AGASA SUGAR Auger 26: much higher statistics AGASA local excess excluded limit on neutron point source N 1-4 -3-2 -1 1 2 3 4 Significance (Auger, 26) Z Emax E min Φ source de ξ.8km 2 yr 1 (95% CL)

Comparison in numbers AGASA event numbers (2 circular region): n obs /n exp = 56/413.6 = 1.22 ±.5, Auger event numbers (same region): E min [ev] E max [ev] n obs /n exp 17.9 18.3 3179/3153.5 = 1.1 ±.2(stat) ±.1(syst) 18 18.4 2116/2159.5 =.98 ±.2(stat) ±.1(syst) (Auger, 26) e 1 18.1 18.5 1375/1394.5 =.99 ±.3(stat) ±.1(syst)

Propagation: role of magnetic fields Part 2: extra-galactic fields

Propagation in inter-galactic mag. field

Deflection angle distribution 7 dn/d!, sr -1 6 5 4 3 2 2 Mpc 8 Mpc 32 Mpc B = 1nG lcoh = kpc 128 Mpc Protons, E = 21.5 ev Simulation of propagation with energy loss Turbulent mag. field with Kolmogorov spectrum 1-1 -2-1 1 2 arrival angle! arr, deg 512 Mpc Flux isotropic after propagation over GZK distance (Stanev et al., PRD62, 2)

Proton propagation (magnetic fields) Diffusion theory ( ) B 2 ( ) E 2 ( )( ) t del 3.1 5 yr Z 2 lcoh D 2 1nG 2 ev 1Mpc Mpc ) 1/2 ( α rms 3.5 Z ( B )( E ) 1 ( lcoh 1nG 2 ev 1Mpc (Achterberg et al., 1999) ) D 1/2 Mpc

Magnetic fields in structured universe Clusters mag. field strength Voids Unconstrained simulation of large scale structure (z=6, Gaussian fluctuations) Large deflection in and near clusters and filaments (Sigl, Miniati, Enßlin, 25)

Cosmological simulation with ideal MHD Dolag et al., 24: constrained structure formation simulation (Gadget 2) MHD simulation for mag. field amplification Initial (z=2) dark matter distribution constrained by observed galaxy distribution Saturation Seed field: B = B(z ini )(1 + z ini ) 2.2...1 11 G Shear Shear + Turbulence + Major Merger relative baryon density

Total deflection angle Virgo Coma Centaurus Hydra A3627 Perseus Pavo Deflection of protons E = 4x 19 ev, 1 Mpc distance, no energy loss (Dolag et al. 24)

Cosmic ray composition

Extensive air showers: overview X shower size N e 12 km 2 7 X max α ln(e /A) N e(max) α E Z h ρ air dl = X(h) 6 km slant depth (g/cm 2 ) 3 12 sea level vertical shower sea level zenith angle of 3 deg. Shower particles mainly e ±, γ 8-95% of initial energy converted to ionization energy Up to 11 particles

Proton-initiated air shower

Iron-initiated air shower

Photon-initiated air shower

Heitler s model for em. showers depth X E After n generations: λ int X = n λ int N part = 2 n = 2 X/λint E part = E 2 X/λ int Assumption: cascade stops at E part E crit N max = E /E crit X max λ int ln(e /E crit )

Muon production in hadronic showers E Primary particle proton E /n tot n tot = n ch+ n neut π decay immediately 2 tot E /(n ) ( n ch ) 2 π ± initiate new cascades E /(n ) tot n (n ch ) n N µ = ( E E dec ) α Assumptions: cascade stops at E part = E dec each hadron produces one muon α = lnn ch lnn tot.82...95

Superposition model Characteristics of proton showers: N max = E /E crit X max λ int ln(e ) N µ = ( E E dec ) α Assumption: Nucleus with mass A and total energy E can be replaced by A nucleons of energy En = E/A N A max = AE n /E crit = E /E crit X A max λ int ln(e n ) λ int ln(e /A) N A µ = A ( En E dec = A 1 α N µ ) α

Composition analysis using shower profiles ) 9 Number of charged particles (x 8 7 6 5 4 3 2 1 12 8 19 proton, E= Auger shower ev 6 Height a.s.l. (m) 4 2 ) 9 Number of charged particles (x 8 7 6 5 4 3 2 1 12 8 19!-ray, E= Auger shower ev 6 Height a.s.l. (m) 4 2 2 3 4 5 6 7 8 9 2 Slant depth (g/cm ) 2 3 4 5 6 7 8 9 2 Slant depth (g/cm ) ) 9 8 12 8 6 Height a.s.l. (m) 4 2 Example: event measured by Auger Collab. (ICRC 23) Number of charged particles (x 7 6 5 4 3 2 1 19 iron, E= Auger shower ev Energy well determined Primary particle type: mean and fluctuations of shower depth of maximum 2 3 4 5 6 7 8 9 2 Slant depth (g/cm )

X max (g/cm 2 ) 12 1 Fly s Eye HiRes-MIA HiRes 24 Yakutsk 1993 Yakutsk 21 CASA-BLANCA gamma with preshower Interpretation strongly model dependent 9 8 7 HEGRA-AIROBICC SPASE-VULCAN DICE TUNKA gamma proton 6 Mean depth of 5 shower maximum 4 iron DPMJET 2.55 nexus 2 QGSJET 1 SIBYLL 2.1 nexus 3 14 15 16 17 18 19 2 21 E lab (ev)

Electron-muon number correlation Model prediction for Ne-Nμ Very good agreement with expectations from superposition model Number of muons N µ (E µ >1 GeV) 8 7 6 5 4 3 QGSJet, proton iron 14 ev 15 ev 16 ev 2 2 3 4 5 6 7 8 9 Shower size N e (E e >1 MeV) 18 ev 17 ev

Hybrid measurement: HiRes-MIA HiRes (prototype): shower profile MIA: muon density at ground Phys.Rev.Lett. 84(2)4276 Shower profile: composition changes to protons Muon density: very heavy, iron-like composition

Example: Auger stereo-hybrid event LDF fit Signal [VEM] 2.5 1 1.5 2 2.5 3 r [km]

Hybrid measurement: A n g l e Pierre Auger Observatory S h o w e r p l a n e 29th International Cosmic Ray Conference Pune (25), 1 6 First Estimate of the Primary Cosmic Ray Energy Spectrum above 3 EeV from the Pierre Auger Observatory The Pierre Auger Collaboration Presenter: P. Sommers (sommers@physics.utah.edu) F l y ' s E y e w i t h activated phototubes Measurements of air showers are accumulating at an increasing rate while construction proceeds at the Pierre Auger Observatory. Although the southern site is only half complete, the cumulative exposure is already similar to those achieved by the largest forerunner experiments. A measurement of the cosmic ray energy spectrum in the southern sky is reported here. The methods are simple and robust, exploiting the combination of fluorescence detector (FD) and surface detector (SD). The methods do not rely on detailed numerical simulation or any assumption about the chemical composition. I m p a c t p o i n t C e r e n k o v t a n k s Simulation: particles at ground would correspond to 25% higher shower energy than measured shower profile P. Sommers et al. astro-ph/5715 Caution: within current systematic uncertainty

Equivalent c.m. energy s pp (GeV) ) 1.5 sec -1 sr -1 ev 19 18 17 2 ATIC PROTON RUNJOB 3 4 KASCADE (QGSJET 1) KASCADE (SIBYLL 2.1) MSU Akeno 5 HiRes-MIA HiRes I HiRes II AGASA Auger 25 6 J(E) (m 2.5-2 16 Scaled flux E 15 14 fixed target (p-a) HERA (!-p) RHIC (p-p) Tevatron (p-p) LHC (p-p) LHC (C-C) 13 12 13 14 15 Energy 16 17 (ev/particle) 18 19 2 Statistical errors only!

Summary / Outline Experimental results UHECR sources & injection spectra Propagation: energy loss processes Model predictions for fluxes Propagation: magnetic fields Physics of extensive air showers (composition) Little known so far -- very exciting times ahead!