Chapter 3 - Vector Calculus

Similar documents
Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

2.20 Fall 2018 Math Review

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

One side of each sheet is blank and may be used as scratch paper.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Introduction and Vectors Lecture 1

Gradient, Divergence and Curl in Curvilinear Coordinates

Vector Calculus. A primer

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Vector Calculus. Dr. D. Sukumar. February 1, 2016

EELE 3331 Electromagnetic I Chapter 3. Vector Calculus. Islamic University of Gaza Electrical Engineering Department Dr.

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus: Synopsis

Mathematical Concepts & Notation

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

Lecture 3: Vectors. Any set of numbers that transform under a rotation the same way that a point in space does is called a vector.

MATH 332: Vector Analysis Summer 2005 Homework

CURRENT MATERIAL: Vector Calculus.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

MATH H53 : Final exam

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

Math 31CH - Spring Final Exam

Lecture II: Vector and Multivariate Calculus

Mathematical Notes for E&M Gradient, Divergence, and Curl

G G. G. x = u cos v, y = f(u), z = u sin v. H. x = u + v, y = v, z = u v. 1 + g 2 x + g 2 y du dv

APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

Math 23b Practice Final Summer 2011

AN INTRODUCTION TO CURVILINEAR ORTHOGONAL COORDINATES

Before seeing some applications of vector calculus to Physics, we note that vector calculus is easy, because... There s only one Theorem!

Divergence Theorem December 2013

Math 234 Exam 3 Review Sheet

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Divergence Theorem Fundamental Theorem, Four Ways. 3D Fundamental Theorem. Divergence Theorem

ENGI Gradient, Divergence, Curl Page 5.01

Ma 1c Practical - Solutions to Homework Set 7

Review of Vector Analysis in Cartesian Coordinates

lim = F F = F x x + F y y + F z

Practice problems **********************************************************

Green s, Divergence, Stokes: Statements and First Applications

UNIT 1. INTRODUCTION

EE2007: Engineering Mathematics II Vector Calculus

Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Solutions for the Practice Final - Math 23B, 2016

Vector Analysis. Electromagnetic Theory PHYS 401. Fall 2017

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Exercise 1 (Formula for connection 1-forms) Using the first structure equation, show that

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

3: Mathematics Review

Topic 3. Integral calculus

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

CURRENT MATERIAL: Vector Calculus.

Coordinates 2D and 3D Gauss & Stokes Theorems

Course Outline. 2. Vectors in V 3.

The Divergence Theorem Stokes Theorem Applications of Vector Calculus. Calculus. Vector Calculus (III)

Math Exam IV - Fall 2011

MATH 52 FINAL EXAM SOLUTIONS

Dr. Allen Back. Dec. 3, 2014

Appendix: Orthogonal Curvilinear Coordinates. We define the infinitesimal spatial displacement vector dx in a given orthogonal coordinate system with

Figure 25:Differentials of surface.

e x2 dxdy, e x2 da, e x2 x 3 dx = e

A Brief Revision of Vector Calculus and Maxwell s Equations

Brief Review of Vector Algebra

Chapter 1. Vector Algebra and Vector Space

Lecture 2 : Curvilinear Coordinates

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

APPM 2350 FINAL EXAM FALL 2017

Lecture 04. Curl and Divergence

Vector Calculus. Dr. D. Sukumar. January 31, 2014

Unit 6 Line and Surface Integrals

MAT 211 Final Exam. Spring Jennings. Show your work!

ELE3310: Basic ElectroMagnetic Theory

Lecture 2: Review of Vector Calculus

Math 11 Fall 2018 Practice Final Exam

Major Ideas in Calc 3 / Exam Review Topics

Department of Mathematics, IIT Bombay End-Semester Examination, MA 105 Autumn-2008

MATHS 267 Answers to Stokes Practice Dr. Jones

Class 4 : Maxwell s Equations for Electrostatics

Math 234 Final Exam (with answers) Spring 2017

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Vector fields and differential forms. William G. Faris

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Stokes s Theorem 17.2

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Physics 6303 Lecture 2 August 22, 2018

Ideas from Vector Calculus Kurt Bryan

MULTIVARIABLE CALCULUS

McGill University April 16, Advanced Calculus for Engineers

Electromagnetism HW 1 math review

Main Results of Vector Analysis

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

Transcription:

Chapter 3 - Vector Calculus Gradient in Cartesian coordinate system f ( x, y, z,...) dr ( dx, dy, dz,...) Then, f f f f,,,... x y z f f f df dx dy dz... f dr x y z df 0 (constant f contour) f dr 0 or f is the direction to this contour, and it is the direction of maximum rate of change in f

Basis vectors in other orthogonal coordinate systems Polar coordinates e er er cose sine 2 e sine cose 2 Spherical coordinates er sin cos e sin sin e cos e 2 3 e cos cos e cos sin e sin e e sine cose 2 3 2 er e e

Differentials of basis vectors in orthogonal coordinate systems Polar coordinates er cosesine2 e er e sine cose 2 r sin cos 2 cos sin 2 de e e d e d de e e d erd d dt d er e, e er dt r rer dr dr er r der er dr e rd For any f(r,) f df f dr dr r f f f er e r r f d Gradient f is the direction of the steepest change in f

Spherical coordinates er e e er sin cos e sin sin e cos e 2 3 e cos cos e cos sin e sin e e sine cose 2 3 2 der e d esin d de er d ecos d de er sin d e cos d r rer dr dr er r der er dr e r d e r sin d d d d er e e sin, e er e cos, e er sin e cos dt dt dt For any f(r,,ϕ) df f f f f dr dr d d r f f f f er e e r r r sin

Scale Factors in three dimensions y dy dx x h, h r r

Scale Factors in three dimensions r dθ h, h r, h r sin r h, h r, h r z

Generally for all orthogonal systems Length element : d r e h dq e h dq e h dq q q2 2 2 q3 3 3 Area element : d s e h dq h dq e h dq h dq e h dq h dq Volume element : dv h dq h dq q 2 2 3 3 q2 3 3 q3 2 2 h dq 2 2 3 3 f f f f( q, q2, q3) eq e q e 2 q3 h q h q h q 2 2 3 3 h i here are the scale factors that turn the increments in the new coordinates into the corresponding lengths. E.g., in spherical coordinates, h h h h r h h r r, 2, 3 sin f f f f er e e r r r sin

Divergence and Curl in Cartesian coordinates Divergence f f2 f3 f ( x, y, z) x y z Example: f ( r) r ( x, y, z) f 3 r Example: f f ( r) ( y, x,0) f 0 dispersion 2 2 2 2 f 2 2 2 x y z f Laplacian f Curl 3 f2 f f3 f2 f f ( x, y, z),, y z z x x y Example: f ( r) ( y, x,0) f (0,0,2) Example: f ( r) r ( x, y, z) f 0 circulation 2 0, f f f f

Generally for all orthogonal systems dr e h dq e h dq e h dq q q2 2 2 q3 3 3 Area element : d s e h dq h dq e h dq h dq e h dq h dq Volume element : dv h dq h dq q 2 2 3 3 q2 3 3 q3 2 2 h dq 2 2 3 3 f f f f ( q, q2, q3) eq e q e 2 q3 h q h q h q 2 3 i, j, k 2 2 3 f fhh 2 3 hh 2h3 q q f eq i h h f h h h q ijk i k k j f h h f h h 2 3 3 2 2 q3 2 h2h3 f h3h f hh 2f f hh 2h3 q h q q2 h2 q2 q3 h3 q3 3

Line integrals Vector field (e.g., force or an EM field) W f dr lim f ( ri) r n i i r n r 0 Similar to a contour integral f () z dz but f ( x, y) is NOT f(x+iy) = f(z) and thus generally no anti-derivative exists. Thus it is generally path-dependent! Fool-proof way to evaluate it is to parametrize the path. ri W is path-independent f ( r) F( r) for some F(r)

Surface integrals I f d s lim f s S Vector field (e.g., E or B) n n i i (flux) ds For an open surface, the direction of ds ( to surface element) must be explicitly defined. For a closed surface, it is outward normal by convention. When the surface is parallel to a plane of Cartesian axes, use dx, dy, dz for the integral. E.g., if ds//e z, For general surface, parametrize it, e.g., by r = r(u,v), and d s S ezdxdy, f d s S f dxdy r r r r d s du dv, f ds f ( r) du dv u v S U u v where U is the domain of (u,v) 3

Surface integral of a scalar field r r I f ( r) ds f ( r) du dv S u v U ds where both the integrand f(r) and the surface element ds are taken to be scalars Example: Surface area of z = g(x,y) r r r( u, v) ( u, v, g( u, v)) (,0, gx), (0,, g y) u v r r ( gx, gy,) u v A ds g g du dv 2 2 x y S T

Divergence and Curl in Cartesian coordinates Divergence f f2 f3 f ( x, y, z) x y z Example: f ( r) r ( x, y, z) f 3 r Example: f f ( r) ( y, x,0) f 0 dispersion 2 2 2 2 f 2 2 2 x y z f Laplacian f Curl 3 f2 f f3 f2 f f ( x, y, z),, y z z x x y Example: f ( r) ( y, x,0) f (0,0,2) Example: f ( r) r ( x, y, z) f 0 circulation 2 0, f f f f

Generally for all orthogonal systems dr e h dq e h dq e h dq q q2 2 2 q3 3 3 Area element : d s e h dq h dq e h dq h dq e h dq h dq Volume element : dv h dq h dq q 2 2 3 3 q2 3 3 q3 2 2 h dq 2 2 3 3 f f f f ( q, q2, q3) eq e q e 2 q3 h q h q h q 2 3 i, j, k 2 2 3 f fhh 2 3 hh 2h3 q q f eq i h h f h h h q ijk i k k j f h h f h h 2 3 3 2 2 q3 2 h2h3 f h3h f hh 2f f hh 2h3 q h q q2 h2 q2 q3 h3 q3 3

On planar surface y S xy f dr S xy f x f y 2 dxdy S S xy in (xy-)plane x Stokes s Theorem S S f dr f d s S any surface ds S Example: 0 D 0 D B dr I I B d s j j d s S S S B j j 0 D differential form of Ampère s Law

Divergence Theorem z SV w ds V wdv V is any volume and S is the surface that encloses V. Surface element ds points outward. x y Example: S V 0 V 0 V 0 Qenclosed E d s E dv dv E differential form of Gauss s Law

Laplacian of /r 2 To see this: 2 r 4 ( r) f b and So we see that: r r b r b 2 2 2 2 3/ 2 2 3b 2 0 ( r 0) f b 2 2 5/ 2 2 2 r b r b ( r 0) f dv f ds 4 b V S V b b 0 b 0 r b r 2 2 lim 4 b0 2 2 r (Another approach would be to combine the Gauss s Law for inverse square central fields with the regularization of an integral by spreading out the sources of the field.)