MA6351-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES. Department of Mathematics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

Similar documents
0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Frequency-domain Characteristics of Discrete-time LTI Systems

CITY UNIVERSITY LONDON

1 Tangent Line Problem

PhysicsAndMathsTutor.com

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

y udv uv y v du 7.1 INTEGRATION BY PARTS

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

CHAPTER 2: Boundary-Value Problems in Electrostatics: I. Applications of Green s theorem

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Sharjah Institute of Technology

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

National Quali cations AHEXEMPLAR PAPER ONLY

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

PROGRESSIONS AND SERIES

POWER SERIES R. E. SHOWALTER

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

BC Calculus Review Sheet

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

National Quali cations SPECIMEN ONLY

Chapter 7 Infinite Series

Math 3B Midterm Review

Name of the Student:

(200 terms) equals Let f (x) = 1 + x + x 2 + +x 100 = x101 1

sin m a d F m d F m h F dy a dy a D h m h m, D a D a c1cosh c3cos 0

Indices and Logarithms

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

2.1.1 Definition The Z-transform of a sequence x [n] is simply defined as (2.1) X re x k re x k r

Course 121, , Test III (JF Hilary Term)

Important Facts You Need To Know/Review:

Approximate Integration

82A Engineering Mathematics

MAS221 Analysis, Semester 2 Exercises

Surds, Indices, and Logarithms Radical

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

Topic 4 Fourier Series. Today

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

Name of the Student:

Add Maths Formulae List: Form 4 (Update 18/9/08)

( a n ) converges or diverges.

Fourier Series and Applications

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

DIGITAL SIGNAL PROCESSING LECTURE 5

EXERCISE a a a 5. + a 15 NEETIIT.COM

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Schrödinger Equation Via Laplace-Beltrami Operator

[Q. Booklet Number]

Review of Sections

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION. (2014 Admn. onwards) III Semester. B.Sc. Mathematics CORE COURSE CALCULUS AND ANALYTICAL GEOMETRY

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

Mathematics Extension 2

Review of the Riemann Integral

Crushed Notes on MATH132: Calculus

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Hamid R. Rabiee Arman Sepehr Fall 2010

Linear Programming. Preliminaries

The Definite Integral

Mathematics Extension 2

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

LEVEL I. ,... if it is known that a 1

ELEG 5173L Digital Signal Processing Ch. 2 The Z-Transform

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

Discrete Mathematics I Tutorial 12

lecture 16: Introduction to Least Squares Approximation

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

ALGEBRA II CHAPTER 7 NOTES. Name

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Sequence and Series of Functions

PHY226 Topic 4 Fourier series (Lectures 5-8) Online Problems

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

MTH 146 Class 16 Notes

Section 6.3: Geometric Sequences

Unit 1. Extending the Number System. 2 Jordan School District

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

Limit of a function:

Limits and an Introduction to Calculus

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

Simpson s 1/3 rd Rule of Integration

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

Chapter System of Equations

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

1.3 Continuous Functions and Riemann Sums

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Things I Should Know In Calculus Class

BC Calculus Path to a Five Problems

Lesson-2 PROGRESSIONS AND SERIES

Notes 17 Sturm-Liouville Theory

Transcription:

MA635-TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS SUBJECT NOTES Deprtmet of Mthemtics FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY MADURAI 65, Tmildu, Idi

Bsic Formule DIFFERENTIATION &INTEGRATION FORMULAE Fuctio f ( ) Differetitio d d log 3 si cos 4 cos si 5 e e 6 C (costt) 7 t sec 8 sec sec t 9 cot cos ec cos ec cos ec cot si 3 cos 4 t 5 sec 6 cosec 7 cot 8 log Pge Deprtmet of Mthemtics FMCET MADURAI

9. If uv, the d du dv v u d d d. If du dv v u u v, the d d d d v Pge3 Deprtmet of Mthemtics FMCET MADURAI

. d e. e d e, e d & e d e 3. si d cos & si d 4. cos d si & cos d cos si 5. t d log sec log cos d 6. sec t d 7. d t d 8. d log d 9. d si. d d sih. d d cosh. d si 3. d sih 4. d cosh d 5. log d 6. log Pge4 Deprtmet of Mthemtics FMCET MADURAI

7. log d log 8. d 3 3 9. d 3 3. d e. e cosbd cosb bsi b b e. e si bd si b bcosb b 3. udv uv u v u v u v3... 4. f ( ) d f ( ) d whe f() is eve 5. f ( ) d whe f() is odd 6. e cos bd b b 7. e sibd b TRIGNOMETRY FORMULA. si A si Acos A.cos cos si A A A si A A cos Pge5 Deprtmet of Mthemtics FMCET MADURAI

3. cos cos cos & si 4. si( A B) si Acos B cos Asi B si( A B) si Acos B cos Asi B cos( A B) cos Acos B si Asi B cos( A B) cos Acos B si Asi B 5.si Acos B si( A B) si( A B) cos Asi B si( A B) si( A B) cos Acos B cos( A B) cos( A B) si Asi B cos( A B) cos( A B) A 4 A A A 4 A A 3 6. si 3si si 3 3 cos 3cos cos 3 7.si A A A si cos cos A A A cos si A A si cos A si LOGRATHEMIC FORMULA Pge6 Deprtmet of Mthemtics FMCET MADURAI

log m log m log log m log m log log m log m log log log e log UNIT - PARTIAL DIFFRENTIAL EQUATIONS PARTIAL DIFFERENTIAL EQUTIONS Nottios p q r s t Formtio PDE b Elimitig rbitrr fuctios Suppose we re give f(u,v) = The it c be writte s u = g(v) or v = g(u) LAGRANGE S LINEAR EQUATION (Method of Multipliers) Geerl form Pp + Qq = R Subsidir Equtio d d d P Q R Pge7 Deprtmet of Mthemtics FMCET MADURAI

d d d m P Q R P mq R Where (, m,) re the Lgrgi Multipliers Choose, m, such tht P + mq + R = The d + m d + d = O Itegrtio we get solutio u = Similrl, We c fid other solutio v = for other multiplier The solutio is (u, v) = TYPE (Clirut s form) Geerl form Z = p + q + f(p,q) () Complete itegrl Put p = & q = b i (), We get () Which is the Complete itegrl Sigulr Itegrl Diff () Prtill w.r.t We get (3) Diff () Prtill w.r.t b We get (4) Usig (3) & (4) Fid & b d sub i () we get Sigulr Itegrl REDUCIBLE FORM F( m p, q) = () (or) F( m p, q, )= () If m & the X = -m & Y = - m p = P(-m) & q = Q(-) Usig the bove i ()we get F(P,Q) = (or) F(P,Q,) = F( k p, k q)= If k the Z = k+ k Q q k Usig the bove i () We get F(P,Q) = Pge8 Deprtmet of Mthemtics FMCET MADURAI

If m= & = the X= log & Y= log p = P & q = Q Usig the bove i () we get F(P,Q) (or) F(P, Q, ) = If k =- the Z = log p P & q Q Usig the bove i () we get F(P,Q) = Pge9 Deprtmet of Mthemtics FMCET MADURAI

STANDARD TYPES TYPE TYPE 3() TYPE 3(b) TYPE 3(c) TYPE 4 Geerl form F(p,q) = () Complete Itegrl Put p = d q = b i () Fid b i terms of The sub b i = + b + c we get () which is the Complete Itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,p,q) = () Complete Itegrl Put q = i () The, fid p d sub i d = p d + q d Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,p,q) = () Complete Itegrl Put p = i () The, fid q d sub i d = p d + q d Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,p,q) = () Complete Itegrl Put q = p i () The, fid p d sub i d = p d + q d Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurdthere is o Sigulr Itegrl Geerl form F(,,p,q) = () Complete Itegrl () C be writte s, f(,p) =f(,q) = The, fid p d q sub i d = p d + qd Itegrtig, We get () which is the Complete itegrl Sigulr Itegrl Diff () prtill w.r.t cwe get, = (bsurd There is o Sigulr Itegrl Geerl Itegrl Put c = () i ()We get (3)Diff (3) prtill w.r.t We get (4)Elimitig from (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3)Diff (3) prtill w.r.t We get (4)Elimitig rom (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3) Diff (3) prtill w.r.t We get (4) Elimitig from (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3)Diff (3) prtill w.r.t We get (4)Elimitig from (3) d (4) we get Geerl Itegrl Geerl Itegrl Put c = () i ()We get (3) Diff (3) prtill w.r.t We get (4)Elimitig from (3) d (4) we get Geerl Itegrl Pge Deprtmet of Mthemtics FMCET MADURAI

HOMOGENEOUS LINEAR EQUATION Geerl form 3 3 ( ) (, ) D bd D cdd dd f () To Fid Complemetr Fuctio Auilir Equtio Put D = m & D = i () Solvig we get the roots m, m, m 3 Cse () If the roots re distict the C.F. = ( m ) ( m) 3( m3 ) Cse () If the roots re sme the C.F. = ( m) ( m) ( m ) 3 Cse (3) If the two roots re sme d oe is distict, the C.F = ( m) ( m) 3( m 3 ) Fuctio F(,) = e +b F(,)= si(+b)(or) Cos (+b) F(,) = r s PI = (, ) F( D, D ) F Put D = & D = b Put D ( ), DD ( b)& D ( b ) PI= F( D, D ) r s Epd d opertig D & D o r s F(,) = e +b f(,) Put D = D+ & D = D +b Pge Deprtmet of Mthemtics FMCET MADURAI

Prticulr Itegrl F(,)=e + cosh(+) F(,)= e e F(,)=e + sih(+) F(, ) = e e F(,)=si cos F(, ) si( ) si( ) F(,)= cos si F(, ) si( ) si( ) F(,)= cos cos F(, ) cos( ) cos( ) F(,)= si si F(, ) cos( ) cos( ) Note: D represets differetitio with respect to D represets differetitio with respect to D represets itegrtio with respect to D represets itegrtio with respect to Pge Deprtmet of Mthemtics FMCET MADURAI

PARTIAL DIFFRENTIAL EQUATIONS. Elimite the rbitrr costts & b from = ( + )( + b) Aswer: = ( + )( + b) Diff prtill w.r.to & here p & q p = ( + b) ; q = ( + ) ( + b) = p/ ; ( + ) = q/ = (p/)(q/) 4 = pq. Form the PDE b elimitig the rbitrr fuctio from = f() Aswer: = f() Diff prtill w.r.to & here p & q p = f ( ). q = f ( ). p/q = / p q = 3. Form the PDE b elimitig the costts d b from = + b Aswer: = + b Diff. w.r. t. d here p & q p = - ; q = b - Pge3 Deprtmet of Mthemtics FMCET MADURAI

p ; b q p q p q 4. Elimite the rbitrr fuctio f from f d form the PDE Aswer: f Diff. w.r. t. d here p & q p f p. q f q. p p. q q p pq q pq p q 5. Fid the complete itegrl of p + q =pq Aswer: Put p =, q = b p + q =pq +b=b b b = - b The complete itegrl is = + +c Pge4 Deprtmet of Mthemtics FMCET MADURAI

6. Fid the solutio of p q Aswer: = +b+c ----() is the required solutio give p q -----() put p=, q = b i () b b b ( ) ( ) c 7. Fid the Geerl solutio of p t + q t = t. Aswer: d d d t t t cot d cot d cot d tke cot d cot d cot d cot d log si log si log c log si log si log c c si si c si si si si, si si 8. Elimite the rbitrr fuctio f from f d form the PDE. Aswer: f p f q f p q p ; ( ) q 9. Fid the equtio of the ple whose cetre lie o the -is Aswer: Geerl form of the sphere equtio is Pge5 Deprtmet of Mthemtics FMCET MADURAI

c r () Where r is costt. From () +(-c) p= () +(-c) q = (3) From () d (3) p q Tht is p -q = which is required PDE.. Elimite the rbitrr costts Aswer: b b p ; q b p q p q b b d form the PDE.. Fid the sigulr itegrl of p q pq Aswer: The complete solutio is b b b ; b b ; ( ) ( ) (. ). Fid the geerl solutio of p+q= Aswer: The uilir equtio is d d d Pge6 Deprtmet of Mthemtics FMCET MADURAI

From d d o simplifig c. Itegrtig we get d d c log = log + log c Therefore, is geerl solutio. 3. Fid the geerl solutio of p +q = Aswer: d d d The uilir equtio is d d From d d Also Itegrtig we get c Itegrtig we get c Therefore, is geerl solutio. 4. Solve Aswer: Auilir equtio is D DD 3D m m 3 m 3 m m, m 3 The solutio is f f 3 Pge7 Deprtmet of Mthemtics FMCET MADURAI

5. Solve Aswer: Auilir equtio is D 4DD 3D e PI m m 4 3 m 3 m m, m 3 The CF is CF f f 3 D 4DD 3D e Put D, D Deomitor =. PI e D 4D e Z=CF + PI f f 3 e 6. Solve. D 3DD 4D e Aswer: Auilir equtio is m m C.F is = f ( + 4) + f ( - ) 3 4 m 4 m PI e e e D 3DD 4D 3 4 6 7. Fid P.I D 4DD 4D e Aswer: PI e D 4DD 4D Put D, D PI D D e e e 6 Pge8 Deprtmet of Mthemtics FMCET MADURAI

8. Fid P.I Aswer: PI D D DD 6D D D D D D D 6D D 3 3 4 5 6 9. Fid P.I Aswer: si PI Si Put D DD Si Si D DD, ()( ). Solve Aswer: Auilir equtio is 3 3 D 3DD D Z 3 m m 3 m m m m m m m, m The Solutio is CF f f f3 FOR PRACTICE:. Elimitig rbitrr costts b c. Solve si 3. Fid the complete the solutio of p. d.e 4. Form p.d.e elimitig rbitrr fuctio from p q pq 4, Pge9 Deprtmet of Mthemtics FMCET MADURAI

5. Fid the sigulr sol of p q p q. (i) Solve (ii) Solve p q p q. (i) Solve m l l m (ii) Solve 3 4 p 4 q 3 3. (i) Solve p q (ii) Solve p q 4. (i) Solve p q (ii) Solve p q 5. Solve 6. Solve 7. Solve 3 D DD D e 3 si(3 ) cos cos D DD 6D cos 8. Solve D DD 3D e 6 9. Solve D 6DD 5D e sih. Solve D 4DD 4D e. Solve 3 3 D D D DD D e cos( ). Solve (i) p q p q (ii) p q p q 3. Solve p q Pge Deprtmet of Mthemtics FMCET MADURAI

4. Solve 5. Solve (i) (ii) ( p q ) ( p q ) ( p q ) UNIT - FOURIER SERIES f b ( ) cos si (, ) ( -, ) Eve (or) Hlf rge Fourier co sie series Odd (or) Hlf rge Fourier sie series Neither eve or odd Pge Deprtmet of Mthemtics FMCET MADURAI

f ( ) d f ( ) d f ( ) d f ( )cos d f ( )cos d f ( )cos d b f ( )sid b = b f ( )sid b f ( )sid f b ( ) cos si (, ) ( -, ) Eve (or) Hlf rge Fourier cosie series Odd (or) Hlf rge Fourier sie series Neither eve or odd f ( ) d f ( ) d f ( ) d f ( )cos d f ( )cos d f ( )cos d b f ( )si d b = b f ( )si d b f ( )si d Eve d odd fuctio: Eve fuctio: f(-)=f() eg : cos,,,, si, cos re eve fuctios Odd fuctio: Pge Deprtmet of Mthemtics FMCET MADURAI

f(-)=-f() eg : si, 3,sih, t re odd fuctios For deductio I the itervl (, ) if = or = the f() = f( ) = f() f( ) I the itervl (, ) if = or = the f() = f( ) = f() f( ) I the itervl (-, ) if = - or = the f(- ) = f( ) = f( ) f( ) I the itervl (-, ) if = - or = the f(- ) = f( ) = f( ) f( ) HARMONIC ANALYSIS f()= + cos +b si + cos + b si for form cos, cos b si b, si f()= + cos +b si + cos + b si ( form) Pge3 Deprtmet of Mthemtics FMCET MADURAI

cos cos b si, b si. Defie R.M.S vlue. If let f() be fuctio defied i the itervl (, b), the the R.M.S vlue of f() is defied b b f ( ) d b. Stte Prsevl s Theorem. Let f() be periodic fuctio with period l defied i the itervl (c, c+l). l 4 c l o f ( ) d b c Where o, & b re Fourier costts 3. Defie periodic fuctio with emple. If fuctio f() stisfies the coditio tht f( + T) = f(), the we s f() is periodic fuctio with the period T. Emple:- i) Si, cos re periodic fuctio with period ii) t is re periodic fuctio with period 4. Stte Dirichlets coditio. (i) f() is sigle vlued periodic d well defied ecept possibl t Fiite umber of poits. (ii) f () hs t most fiite umber of fiite discotiuous d o ifiite Discotiuous. (iii) f () hs t most fiite umber of mim d miim. 5. Stte Euler s formul. Pge4 Deprtmet of Mthemtics FMCET MADURAI

Aswer: I ( c, c l) o f cos bsi where o c l c c l l f ( ) d f ( )cos d c c b f ( )si d c 6. Write Fourier costt formul for f() i the itervl (, ) Aswer: o f ( ) d f ( )cos d b f ( )si d 7. I the Fourier epsio of f() =,, i (-π, π ), fid the vlue of b Sice f(-)=f() the f() is eve fuctio. Hece b = 8. If f() = 3 i π < < π, fid the costt term of its Fourier series. Aswer: Give f() = 3 Hece f() is odd fuctio f(-) = (- ) 3 = - 3 = - f() The required costt term of the Fourier series = o = Pge5 Deprtmet of Mthemtics FMCET MADURAI

9. Wht re the costt term d the coefficiet of cos i the Fourier Epsio Aswer: Give f() = 3 f() = 3 i π < < π Hece f() is odd fuctio f(-) = - - (- ) 3 = - [ - 3 ] = - f() The required costt term of the Fourier series = =. Fid the vlue of for f() = ++ i (, ) Aswer: o f ( ) d 3 ( ) d 3 4 8 8 3 3 3. (i)fid b i the epsio of s Fourier series i (, ) (ii)fid b i the epsio of si Fourier series i (, ) Aswer: (i) Give f() = f(-) = = f() Hece f() is eve fuctio I the Fourier series b = (ii) Give f() = si f(-) = (-)si(-) = si = f() Hece f() is eve fuctio I the Fourier series b = Pge6 Deprtmet of Mthemtics FMCET MADURAI

. Obti the sie series for f l / l l / l Give f l / l l / l Aswer: Give f l / l l / l Fourier sie series is l b f ( )si d l l l l f b si l si d ( l )si d l l l l l cos si cos si l l () l l l( l ) l l ( ) l l l l l cos l si l cos l l si l l si 4lsi l Fourier series is f 4l si si l 3. If f() is odd fuctio i ll,. Wht re the vlue of & Aswer: If f() is odd fuctio, o =, = Pge7 Deprtmet of Mthemtics FMCET MADURAI

4. I the Epsio f() = s Fourier series i (-. ) fid the vlue of Aswer: Give f() = Hece f() is eve fuctio f(-) = - = = f() o d 5. Fid hlf rge cosie series of f() =, i Aswer: o d cos si si d () Fourier series is cos o f cos cos 6. Fid the RMS vlue of f() =, Aswer: Give f() = Pge8 Deprtmet of Mthemtics FMCET MADURAI

R.M.S vlue l f ( ) d d l 5 5 5 7. Fid the hlf rge sie series of f ( ) i (, ) Aswer: b f ( )si d cos si si d () ( ) ( ) Hlf rge Fourier sie series is ( ) f si 8. Fid the vlue of i the cosie series of f ( ) i (, 5) Aswer: 5 5 5 o d 5 5 5 5 9. Defie odd d eve fuctio with emple. Aswer: (i) If f ( ) f ( ) the the fuctio is eve fuctio. eg : cos,,, si, cos re eve fuctios (ii) If f ( ) f ( ) the the fuctio is odd fuctio. eg : si, 3,sih, t re odd fuctios Pge9 Deprtmet of Mthemtics FMCET MADURAI

. Write the first two hrmoic. Aswer: The first two hrmoics re o f cos b si cos b si FOURIER SERIES. Epd f( ) (, ) (, ) s Fourier series d hece deduce tht... 3 5 8. Fid the Fourier series for f() = i (-. ) d lso prove tht (i)... 3 6 (ii)... 3 3. (i) Epd f() = cos s Fourier series i (-. ). (ii) Fid cosie series for f() = i (, Show tht 4 4 4 4... 3 9 4. (i) Epd f() = si s Fourier series i (, ) ) use Prsevls idetit to (ii) Epd f() = s Fourier series i (-. ) d deduce to 5. If f( )... 3 5 8, (,) si, (, ) Fid the Fourier series d hece deduce tht....3 3.5 5.7 4 6. (i) Fid the Fourier series up to secod hrmoic X 3 4 5 Y 9 8 4 8 6 (ii)fid the Fourier series up to third hrmoic Deprtmet of Mthemtics FMCET MADURAI Pge3

X π/3 π/3 π 4π/3 5π/3 π F() 4 9 7 5 7. (i) Fid the Fourier epsio of f ( ) ( ) i (, ) d Hece deduce tht... 3 6 (ii). Fid Fourier series to represet i the rge (,3) f ( ) with period 3 (ii) Fid the Fourier series of f e i (, ). (ii) Fid the Fourier series for f i (, ) i (, ) d hece show tht... 3 5 8 8. (i) Fid the the hlf rge sie series for f i the itervl (, ) d deduce tht 3 3 3... 3 5 (ii) Obti the hlf rge cosie series for f i (,) d lso deduce tht... 3 6 9. (i) Fid the Fourier series for f() = i (-. ) d lso prove tht... 4 4 9 4 (use P.I) (ii) Fid the Fourier series for f() = i (-. ) d lso prove tht... 4 4 3 96 4 (use P.I) Pge3 Deprtmet of Mthemtics FMCET MADURAI

(i)obti the sie series for f l c, l c l, l (ii). Fid the Fourier series for the fuctio f k, l k l l, l.(i).fid the Fourier series for the fuctio f i (, ) d lso deduce tht... 3 6 (ii) Fid the Fourier epsio of f() =,, i (-π, π ), d lso deduce tht... 3 5 8 Pge3 Deprtmet of Mthemtics FMCET MADURAI

UNIT - 3 APPLICATIONS OF P.D.E S. N O VELOCITY MODEL STEP- Oe Dimesiol wve equtio is t ONE DIMENSIONAL WAVE EQUATION INITIAL POSITION MODEL STEP- Oe Dimesiol wve equtio is t STEP- Boudr coditios. (,t) = for t. (, t) = for t 3. (,) = for < < 4. t = f() for < < t STEP- Boudr coditios. (,t) = for t. (, t) = for t 3. t = for < < t 4. (,) = f() for < < Pge33 Deprtmet of Mthemtics FMCET MADURAI

3 STEP-3 The possible solutios re (,t) = (A e + B e - ) (C e t + D e - t ) (,t) = (A cos + B si )( C cos t + D si t) (,t) = (A + B) ( Ct + D) STEP-3 The possible solutios re (,t) = (A e + B e - ) (C e t + D e - t ) (,t) = (A cos + B si )( C cos t + D si t) (,t) = (A + B) ( Ct + D) 4 STEP-4 The suitble solutio for the give boudr coditio is (,t) = (Acos +B si )(Ccos t+d si t) () 5 STEP-5 Usig Boudr coditio (,t) = The () becomes, (,t) = (A cos +B si ) ( C cos t + Dsi t) = (A) ( C cos t + D si t)= A = Usig A = i () (,t) = ( B si ) ( C cos t + D si t) (3) STEP-4 The suitble solutio for the give boudr coditio is (,t) = (Acos +B si )(Ccos t+d si t) () STEP-5 Usig Boudr coditio (,t) = The () becomes, (,t) = (A cos +B si ) ( C cos t + D si t) = (A) ( C cos t + D si t)= A = Usig A = i () (,t) = ( B si ) ( C cos t + D si t) (3) 6 STEP-6 Usig Boudr coditio (,t) = The (3) becomes, (,t) = (B si ) ( C cos t + D si t)= (B si ) ( C cos t + D si t)= STEP-6 Usig Boudr coditio (,t) = The (3) becomes, (,t) = (B si ) ( C cos t + D si t)= (B si ) ( C cos t + D si t)= = The (3) becomes, t t (, t) Bsi( ) C cos( ) Dsi( ) (4) = The (3) becomes, t t (, t) Bsi( ) C cos( ) Dsi( ) (4) 7 STEP-7 Usig Boudr coditio 3 (,) = The (4) becomes, STEP-7 Usig Boudr coditio 3 Pge34 Deprtmet of Mthemtics FMCET MADURAI

(, t) Bsi( ) C cos Dsi Bsi( ) C C = The (4) becomes, t (, t) Bsi( ) Dsi( ) The most geerl solutio is t (, t) B si( )si( ) (5) = t t = The (4) becomes, Differetitig (5) prtill w.r.to t d put t = t t B si( ) C si( ) D cos( t t Bsi( ) D D = The (4) becomes, t (, t) Bsi( ) C cos( ) The most geerl solutio is t (, t) B si( )cos( ) (5) 8 STEP-8 Differetitig (5) prtill w.r.to t t B si( )cos( ) t Usig Boudr coditio (4), = f() t t f ( ) B si( ) This is the Hlf Rge Fourier Sie Series. B f ( )si( ) B f ( )si( ) d 9 STEP-9 The required solutio is t (, t) B si( )si( ) Where B f ( )si( ) d STEP-8 Usig Boudr coditio (4), (,) = f() (,) B si( )cos() f ( ) B si( ) This is the Hlf Rge Fourier Sie Series. B f ( )si( ) STEP-9 The required solutio is t (, t) B si( )si( ) Where B f ( )si( ) d Pge35 Deprtmet of Mthemtics FMCET MADURAI

ONE DIMENSIONAL HEAT EQUATION The oe dimesiol het equtio is u u t Boudr coditios.u(,t) = for t.u(,t) = fort 3.u(,t) = f() for << TWO DIMENSIONAL HEAT FLOW EQUATION The two Dimesiol equtio is u u Boudr coditios.u(,) = for <<.u(,) = for << 3.u(, ) = for << 4.u(,) = f() for << 3 The possible solutios re t u(, t) ( Ae Be ) Ce u(, t) ( Acos Bsi ) Ce u(, t) ( A B) C t The possible solutios re u(, ) ( Ae Be )( C cos Dsi ) u(, ) ( Acos Bsi )( Ce De ) u(, ) ( A B)( C D) 4, The most suitble solutio is t u(, t) ( Acos Bsi ) Ce () 5 Usig boudr coditio u(,t) = t u(, t) ( Acos Bsi) Ce = t ( A) Ce = A = The () becomes t u(, t) ( Bsi ) Ce (3) The most suitble solutio is (, ) ( cos si )( u A B Ce De ) () Usig boudr coditio u(,) = u(, ) ( Acos Bsi )( Ce De ) u(, ) ( A)( Ce Be ) A = The () becomes (, ) ( si )( u B Ce De ) (3) 6 Usig boudr coditio u(l,t) = t u(, t) ( Bsi ) Ce = t ( Bsi ) Ce The (3) becomes t u(, t) Bsi( ) Ce The most geerl solutio is u(, t) B si( ) e t (4) Usig boudr coditio u(l,t) = u(, ) ( Bsi )( Ce De ) ( si )( B Ce De ) The (3) becomes u(, ) ( Bsi )( Ce De ) (4) Pge36 Deprtmet of Mthemtics FMCET MADURAI

7 Usig Boudr coditio 3 u(,) = f() u(,) B si( ) f ( ) B si( ) This the Hlf rge Fourier sie series B f ( )si( ) d 8 The required solutio is u(, t) B si( ) e Where t B f ( )si( ) d Usig Boudr coditio 3 u(, ) = u(, ) ( Bsi )( Ce De ) ( Bsi )( C D ) C= the (3) becomes u(, ) ( Bsi )( De ) The most geerl solutio is u(, ) B si( ) e Usig Boudr coditio 4 (,) = f() u(,) B si( ) e f ( ) B si( ) (5 This the Hlf rge Fourier sie series B f ( )si( ) d The required solutio is u(, ) B si( ) e Where B f ( )si( ) d QUESTION WITH ANSWER. Clssif the Prtil Differetil Equtio i) Aswer: u u Pge37 Deprtmet of Mthemtics FMCET MADURAI

u u here A=,B=,&C=- B - 4AC=-4()(-)=4> The Prtil Differetil Equtio is hperbolic. Clssif the Prtil Differetil Equtio Aswer: u u u here A=,B=,&C= u u u B -4AC=-4()()=> The Prtil Differetil Equtio is hperbolic 3. Clssif the followig secod order Prtil Differetil equtio u u u u Aswer: u u u u B -4AC=-4()()=-4< here A=,B=,&C= The Prtil Differetil Equtio is Elliptic 4. Clssif the followig secod order Prtil Differetil equtio 4 u u u u u 4 6 8 Aswer: 4 u u u u u 4 6 8 here A= 4,B =4, & C = B -4AC =6-4(4)() = The Prtil Differetil Equtio is Prbolic 5. Clssif the followig secod order Prtil Differetil equtio i) u u u u 3u Pge38 Deprtmet of Mthemtics FMCET MADURAI

ii) u u u u 7 Aswer: i) Prbolic ii) Hperbolic (If = ) iii)elliptic (If m be +ve or ve) 6. I the wve equtio Aswer: c t t c wht does c stds for? here T m T-Tesio d m- Mss 7. I oe dimesiol het equtio u t = α u wht does α stds for? Aswer:- u t u = k c is clled diffusivit of the substce Where k Therml coductivit - Desit c Specific het 8. Stte two lws which re ssumed to derive oe dimesiol het equtio Aswer: i) Het flows from higher to lower temp ii) The rte t which het flows cross re is proportiol to the re d to the temperture grdiet orml to the curve. This costt of proportiolit is kow s the coductivit of the mteril. It is kow s Fourier lw of het coductio Pge39 Deprtmet of Mthemtics FMCET MADURAI

9. A tightl stretched strig of legth is fsteed t both eds. The midpoit of the strig is displced to distce b d relesed from rest i this positio. Write the iitil coditios. Aswer: (i) (, t) = (ii) (,t) = (iii) t t (iv) (, ) = b b ( ). Wht re the possible solutios of oe dimesiol Wve equtio? The possible solutios re Aswer: (,t) = (A e + B e - ) (C e t + D e - t ) (,t) = (A cos + B si )( C cos t + D si t) (,t) = (A + B) ( Ct + D). Wht re the possible solutios of oe dimesiol hed flow equtio? Aswer: The possible solutios re u(, t) ( Ae Be ) Ce t u(, t) ( Acos Bsi ) Ce u(, t) ( A B) C t. Stte Fourier lw of het coductio Aswer: Q u ka (the rte t which het flows cross re A t distce from oe ed of br is proportiol to temperture grdiet) Pge4 Deprtmet of Mthemtics FMCET MADURAI

Q=Qutit of het flowig k Therml coductivit A=re of cross sectio ; u =Temperture grdiet 3. Wht re the possible solutios of two dimesiol hed flow equtio? Aswer: The possible solutios re u(, ) ( Ae Be )( C cos Dsi ) u(, ) ( Acos Bsi )( Ce De ) u(, ) ( A B)( C D) 4. The sted stte temperture distributio is cosidered i squre plte with sides =, =, = d =. The edge = is kept t costt temperture T d the three edges re isulted. The sme stte is cotiued subsequetl. Epress the problem mthemticll. Aswer: U(,) =, U(,) =,U(,) =, U(,) = T 5. A isulted rod of legth 6cm hs its eds A d B mitied C d 8 C respectivel. Fid the sted stte solutio of the rod Aswer: Here = C & b=8 C I Sted stte coditio The Temperture u(, t) 8 6 b l u(, t) 6. Write the D Alembert s solutio of the oe dimesiol wve equtio? Aswer: Pge4 Deprtmet of Mthemtics FMCET MADURAI

t t t v( ) d here f g v f g 7. Wht re the boudr coditios of oe dimesiol Wve equtio? Aswer: Boudr coditios t. (,t) = for t. (, t) = for t 3. (,) = for < < 4. t = f() for < < t 8. Wht re the boudr coditios of oe dimesiol het equtio? Aswer: Boudr coditios.u(,t) = for t.u(,t) = fort 3.u(,t) = f() for << 9. Wht re the boudr coditios of oe dimesiol het equtio? Aswer: Boudr coditios.u(,) =.u(,) = 3.u(, ) = 4.u(,) = f() for << for << for << for << Pge4 Deprtmet of Mthemtics FMCET MADURAI

.T he eds A d B hs 3cm log hve their tempertures 3c d 8c util sted stte previls. If the temperture A is rised to4c d Reduced to 6C, fid the trsiet stte temperture Aswer: Here =3 C & b=8 C I Sted stte coditio The Temperture u(, t) Here =4 C & b=6 C b l u t 6 4 4 4 3 3 PART-B QUESTION BANK APPLICATIONS OF PDE. A tightl stretched strig with fied ed poits = d = l is iitill t rest i its equilibrium positio. If it is set vibrtig givig ech poit velocit 3 (l-). Fid the displcemet.. A strig is stretched d fsteed to two poits d prt. Motio is strted b displcig the strig ito the form = K(l- ) from which it is relesed t time t =. Fid the displcemet t poit of the strig. 3. A tut strig of legth l is fsteed t both eds. The midpoit of strig is tke to height b d the relesed from rest i tht positio. Fid the displcemet of the strig. 4. A tightl stretched strig with fied ed poits = d = l is iitill t rest i its 3 positio give b (, ) = si. If it is relesed from rest fid the displcemet. l 5. A strig is stretched betwee two fied poits t distce l prt d poits of the c < < l strig re give iitil velocities where V Fid the c ( l ) < < l displcemet. 6. Derive ll possible solutio of oe dimesiol wve equtio. Derive ll possible solutio of oe dimesiol het equtio. Derive ll possible solutio of two dimesiol het equtios. 7. A rod 3 cm log hs its ed A d B kept t o C d 8 o C, respectivel util sted stte coditio previls. The temperture t ech ed is the reduced to o C d kept so. Fid the resultig temperture u(, t) tkig =. Pge43 Deprtmet of Mthemtics FMCET MADURAI

8. A br cm log, with isulted sides hs its ed A & B kept t o C d 4 o C respectivel util the sted stte coditio previls. The temperture t A is suddel rised to 5 o C d B is lowered to o C. Fid the subsequet temperture fuctio u(, t). 9. A rectgulr plte with isulted surfce is 8 cm wide so log compred to its width tht it m be cosidered s ifiite plte. If the temperture log short edge = is u (,) = si < <. While two edges = d = 8 s well s the other short 8 edges re kept t o C. Fid the sted stte temperture.. A rectgulr plte with isulted surfce is cm wide so log compred to its width tht it m be cosidered s ifiite plte. If the temperture log short edge = is give 5 b u d ll other three edges re kept t o C. Fid the sted ( ) 5 stte temperture t poit of the plte. Pge44 Deprtmet of Mthemtics FMCET MADURAI

Uit - 4 FOURIER TRANSFORMS FORMULAE. Fourier Trsform of f() is. The iversio formul F[ f ( )] f()e -is f ( ) F( s)e ds 3. Fourier cosie Trsform F c [f()] = F c (s) = 4. Iversio formul f() = - F ( )cos c s sds 5. Fourier sie Trsform (FST) F s [f()] = F s (s) = 6. Iversio formul f() = 7. Prsevl s Idetit Fs ( s)si sds f ( ) d F( s) ds - is d f ( )cos sd f ( )si sd 8. Gmm fuctio e d, & 9. e cos bd b e sibd b b. si d Pge45 Deprtmet of Mthemtics FMCET MADURAI

. e d & e d e e e e 3. cos & si i i i i ORKING RULE TO FIND THE FOURIER TRANSFORM Step: Write the FT formul. Step: Substitute give f() with their limits. Step3: Epd is e s cos s + isi s d use Eve & odd propert Step4: Itegrte b usig Beroulli s formul the we get F(s) WORKING RULE TO FIND THE INVERSE FOURIER TRANSFORM Step: Write the Iverse FT formul Step: Sub f() & F(s) with limit, i the formul Step3: Epd Step4: Simplif we get result is e s cos s -isi s d equte rel prt WORKING RULE FOR PARSEVAL S IDENTITY If F(s) is the Fourier trsform of f() the f ( ) d F( s) ds is kow s Prsevl s idetit. Step: Sub f() & F(s) With their limits i the bove formul Step: Simplif we get result WORKING RULE TO FIND FCT Step: Write the FCT formul & Sub f() with its limit i the formul Step: Simplif, we get F ( S ) C WORKING RULE TO FIND INVERSE FCT Pge46 Deprtmet of Mthemtics FMCET MADURAI

Step: Write the iverse FCT formul & Sub F ( ) Step: Simplif, we get f() WORKING RULE TO FIND FST C S with its limit i the formul Step: Write the FST formul & Sub f() with its limit i the formul Step: Simplif, we get F ( S ) WORKING RULE TO FIND INVERSE FCT S Step: Write the iverse FST formul & Sub Fs ( S) with limit i the formul Step: Simplif, we get f() WORKING RULE FOR f() = e Step: First we follow the bove FCT & FST workig rule d the we get this result F c (e - ) = s B Iversio formul, s F s (e - ) = s B Iversio formul, cos s ds s e s s si sds e TYPE-I : If problems of the form i) ii), the use Iversio formul TYPE-II: If problems of the form i) d d ii), the use Prsevl s Idetit TYPE-III d b, the use f ( ) g( ) d F f ( ) F g( ) d C C Pge47 Deprtmet of Mthemtics FMCET MADURAI

UNIT - 4 FOURIER TRANSFORM. Stte Fourier Itegrl Theorem. Aswer: If f( ) is piece wise cotiuousl differetible d bsolutel o, the, i( t) s f ( ) f t e dt ds. Pge48 Deprtmet of Mthemtics FMCET MADURAI

. SttedproveModultio F f cos F s F s Proof: is F f cos f cos e d theorem. i i e e is f e d i( s ) i( s ) f e d f e d F s F s F f cos F s F s 3. Stte Prsevl s Idetit. Aswer: If F s is Fourier trsform of f, the F s ds f d 4. Stte Covolutio theorem. Aswer: The Fourier trsform of Covolutio of f d g is the product of their Fourier trsforms. F f g F s G s 5. Stte d prove Chge of scle of propert. Pge49 Deprtmet of Mthemtics FMCET MADURAI

Aswer: If F s F f, the is F f f e d F f F s i s t dt f t e ; where t F f F s d 6. Prove tht if F[f()] = F(s) the F f ( ) ( i) F( s) ds Aswer: is F s f e d Diff w.r.t s times d is F s f i e d ds is f ( i) ( ) e d d is ( ) F s f e d () i ds d is ( i) F s ( ) f e d ds d ds F f i F s 7. Solve for f() from the itegrl equtio Aswer: f ( )cos sd e s Pge5 Deprtmet of Mthemtics FMCET MADURAI

f ( )cos sd e s F f f cos s d c F f e c s f ( ) F f coss ds c e s cos s ds e cosb d b s e cos s ds, b 8. Fid the comple Fourier Trsform of f( ) Aswer: is F f f e d ; Pge5 Deprtmet of Mthemtics FMCET MADURAI

is F f e d (coss isi s) d si s (cos s) d s si s s [Use eve d odd propert secod term become ero] 9. Fid the comple Fourier Trsform of f( ) Aswer: is F f f e d is e d ; (coss i si s) d i cos s si s ( ( isi s) d () s s i s cos s si s s [Use eve d odd propert first term become ero] Pge5 Deprtmet of Mthemtics FMCET MADURAI

. Write Fourier Trsform pir. Aswer: If f( ) is defied i,, the its Fourier trsform is defied s is F s f e d If F s is Fourier trsform of f, the t ever poit of Cotiuit of f, we hve is f F s e ds.. Fid the Fourier cosie Trsform of f() = e - Aswer: F f f cos s d c F e e cos s d F c c e s e cos b d b. Fid the Fourier Trsform of Aswer: f( ) im e, b, otherwise Pge53 Deprtmet of Mthemtics FMCET MADURAI

is F f f e d b im is i m s e e d e d b i m s e i m s i m s b e i m s b e i m s 3. Fid the Fourier sie Trsform of. Aswer: F f f si s d F s s si s d 4. Fid the Fourier sie trsform of Aswer: e F f f si s d s F e e si s d F s s e s s e si b d b b 5. Fid the Fourier cosie trsform of Aswer: e e Pge54 Deprtmet of Mthemtics FMCET MADURAI

F f f cos s d c Fc e e e e coss d e cos s d e cos s d s 4 s s 4 s 6. Fid the Fourier sie trsform of f( ) Aswer: F f f si s d s, F f f si s d f si s d s cos s si s d s cos s s Pge55 Deprtmet of Mthemtics FMCET MADURAI

7. Obti the Fourier sie trsform of, o f ( ),., Aswer: F f f si s d s si s d si s d F f s cos s si s cos s si s s s s s cos s si s si s cos s si s s s s s s si s si s s 8. Defie self reciprocl d give emple. If the trsform of f is equl to f s, the the fuctio f is clled self reciprocl. e is self reciprocl uder Fourier trsform. Pge56 Deprtmet of Mthemtics FMCET MADURAI

9. Fid the Fourier cosie Trsform of f( ) Aswer: F f f coss d coss d c si s cos s cos s si s s s s s s s si s cos s s. Fid the Fourier sie trsform of. Aswer: L et f e F s e s s Usig Iverse formul for Fourier sie trsforms e s s si s ds s ( ie) si s ds e, s Pge57 Deprtmet of Mthemtics FMCET MADURAI

Chge d s, we get si s d e s F s si s d s e e s. (i)fid the Fourier Trsform of FOURIER TRANSFORM PART-B f( ) if if d hece cos si 3 deduce tht (i) cos 3 d 6 (ii) si cos 3 d 5 (ii). Fid the Fourier Trsform of f( ). hece si cos deduce tht 3 d 4. Fid the Fourier Trsform of f( ) if if d hece evlute i) si d ii) si d 4. Fid Fourier Trsform of f( ) if if d hece evlute i) si d ii) si 4 d Pge58 Deprtmet of Mthemtics FMCET MADURAI

5. Evlute i) d d ii) 6 i). Evlute () d b d ii). Evlute () 4 (b) (b) d b t dt t 4 t 9 7. (i)fid the Fourier sie trsform of f( ) (ii) Fid the Fourier cosie trsform of f( ) si ; whe o ; whe cos ; whe o ; whe 8. (i) Show tht Fourier trsform e is e s (ii)obti Fourier cosie Trsform of e 9. (i) Solve for f() from the itegrl equtio d hece fid Fourier sie Trsform e f ( )cos d e, t (ii) Solve for f() from the itegrl equtio f ( )si t d, t. (i) Fid Fourier sie Trsform of e (ii) Fid Fourier cosie d sie Trsform of e cos si tht ( i) d e ( ii) d e 6 8 6 8 8 8, t, > d hece deduce tht 4 si d, > d hece deduce.(i)fid F e & F e S c (ii) Fid F S e & F c e (iii) Fid the Fourier cosie trsform of f ( ) e cos Pge59 Deprtmet of Mthemtics FMCET MADURAI

Z - TRANSFORMS Defiitio of Z Trsform Let {f()} be sequece defied for Z Trsform is defied s =,, d f() = for < the its Z f ( ) F f ( ) (Two sided trsform) Z f ( ) F f ( ) (Oe sided trsform) Uit smple d Uit step sequece The uit smple sequece is defied s follows ( ) for for The uit step sequece is defied s follows Properties u ( ) for for Pge6 Deprtmet of Mthemtics FMCET MADURAI

. Z Trsform is lier (i) Z { f() + b g()} = Z{f()} + b Z{g()}. First Shiftig Theorem (i) If Z {f(t)} = F(), the t Z e f t F e T (ii) If Z {f()} = F(), the Z f F 3. Secod Shiftig Theorem If Z[f()]= F() the (i)z[f( +)] = [ F() f()] (ii)z[f( +)] = [ F() f()-f() ] (iii)z[f( +k)] = k [ F() f()-f() - f() ( k ) - f(k-) ] (iv) Z[f( -k)] = k F() 4. Iitil Vlue Theorem If Z[f()] = F() the f() = lim F ( ) 5. Fil Vlue Theorem If Z[f()] = F() the lim f ( ) lim( ) F( ) PARTIAL FRACTION METHODS Pge6 Deprtmet of Mthemtics FMCET MADURAI

Model:I A B b b Model:II b A B C b ( b) Model:III A B C b b Covolutio of Two Sequeces Covolutio of Two Sequeces {f()} d {g()} is defied s { f ( )* g( )} f ( K) g( K ) K Covolutio Theorem If Z[f()] = F() d Z[g()] = G() the Z{f()*g()} = F().G() WORKING RULE TO FIND INVERSE Z-TRANSFORM USING CONVOLUTION THEOREM Step: Split give fuctio s two terms Step: Tke Step: 3 Appl both terms formul Step: 4 Simplifig we get swer Note:... Pge6 Deprtmet of Mthemtics FMCET MADURAI

... ( ) Solutio of differece equtios Formul i) Z[()] = F() ii) Z[( +)] = [ F() ()] iii) Z[( +)] = [ F() ()- () ] iv) Z[( +3)] = 3 [ F() ()- () + () ] WORKING RULE TO SOLVE DIFFERENCE EQUATION: Step: Tke trsform o both sides Step: Appl formul d vlues of () d (). Step: 3 Simplif d we get F(Z) Step:4 Fid () b usig iverse method Z - Trsform Tble No. f() Z[f()].. 3. ( ) 4. ( ) 3 Pge63 Deprtmet of Mthemtics FMCET MADURAI

6. 7. 8. 9. e.!. Cos. si log ( ) log ( ) log ( ) ( e ) e ( cos ) cos si cos 3. cos si 4. f(t) ( ) Z(f(t) t T ( ). t T ( ) 3 ( ) 3 e t 4. Si t T ( e ) si T cos T Pge64 Deprtmet of Mthemtics FMCET MADURAI

5. cos t ( cos T) cos T TWO MARKS QUESTIONS WITH ANSWER. Defie Z trsform Aswer: Let {f()} be sequece defied for =,, d f() = for < the its Z Trsform is defied s Z f ( ) F f ( ) (Two sided trsform) Z f ( ) F f ( ) (Oe sided trsform) Fid the Z Trsform of Aswer: Z f f Z ()... Z. Fid the Z Trsform of Aswer: Pge65 Deprtmet of Mthemtics FMCET MADURAI

Z f f Z 3 3... 3. Fid the Z Trsform of. Aswer: d Z Z Z d, b the propert, d d ( ) ( ) 4 3 4. Stte Iitil & Fil vlue theorem o Z Trsform Iitil Vlue Theorem Fil Vlue Theorem If Z [f ()] = F () the f () = lim F ( ) If Z [f ()] = F () the lim f ( ) lim( ) F( ) 6. Stte covolutio theorem of Z- Trsform. Deprtmet of Mthemtics FMCET MADURAI Pge66

Aswer: Z[f()] = F() d Z[g()] = G() the Z{f()*g()} = F() G() 7. Fid Z Trsform of Aswer: Z f f Z 3 3... 8. Fid Z Trsform of cos d si Aswer: We kow tht Z Z f f cos cos cos Z cos cos cos Pge67 Deprtmet of Mthemtics FMCET MADURAI

Z si Similrl si cos Z si si cos 9. Fid Z Trsform of Aswer: Z f f Z 3 3... log log log. Fid Z Trsform of Aswer:! Pge68 Deprtmet of Mthemtics FMCET MADURAI

Z f f Z!! 3...!!! 3! e e. Fid Z Trsform of Aswer: Z f f Z ( ) 3 3... log log. Fid Z Trsform of Pge69 Deprtmet of Mthemtics FMCET MADURAI

Aswer: Z f f Z 3... 3. Stte d prove First shiftig theorem t Sttemet: If Z f t F, the Z e f () t F e Proof: Z e f ( t) e f ( T ) t T As f(t) is fuctio defied for discrete vlues of t, where t = T, the the Z-trsform is Z f ( t) f ( T ) F( ) ). t T T Z e f ( t) f ( T ) e F( e ) T 4. Defie uit impulse fuctio d uit step fuctio. The uit smple sequece is defied s follows: for ( ) for The uit step sequece is defied s follows: Pge7 Deprtmet of Mthemtics FMCET MADURAI

u ( ) for for 5. Fid Z Trsform of Aswer: t Z e t T T T Z e e e e T e [Usig First shiftig theorem] 6. Fid Z Trsform of Aswer: Z te t Z te t Z t e T T e T e Te T T [Usig First shiftig theorem] t 7. Fid Z Trsform of Z e cost Aswer: t Z e cos t Z cos t e T e T cos T T e e cost cos T cost e T e [Usig First shiftig theorem] Pge7 Deprtmet of Mthemtics FMCET MADURAI

8. Fid Z Trsform of Aswer: t T Z e Let f (t) = e t, b secod siftig theorem ( t T) Z e Z f t T F f ( ) ( ) () e e T e T T 9. Fid Z Trsform of Z si t T Aswer: Let f (t) = sit, b secod siftig theorem Z si( t T) Z f ( t T) F( ) f () si t si t t t cos cos. Fid Z trsform of Aswer: Z f f Z Z Z 3 3 3 3 Pge7 Deprtmet of Mthemtics FMCET MADURAI

QUESTION BANK Z-TRANSFORMS. (i)fid Z (ii) Fid Z ( )(4 ) 8 ( )( b) & Z & Z ( )(4 ) 8 b covolutio theorem. b covolutio theorem ( )( 3). (i) Fid Z ( ) & Z ( ) b covolutio theorem 3. (i ) Stte d prove Iitil & Fil vlue theorem. (ii) Stte d prove Secod shiftig theorem (i) Fid the Z trsform of ( )( ) & 3 ( )( ) 4. (i) Fid Z ( 4) b residues. (ii) Fid the iverse Z trsform of 5. (i) Fid Z 6. (i)fid the Z trsform of (ii) Fid & Z f( )! 7 ( ) Hece fid b prtil frctios. Z d ( )! Z d lso fid the vlue of si( ) d cos( ).! 7. (i)solve 6 9 with & (ii) Solve 4 4 () =,() = 8. (i )Solve 3 4, give () 3& () (ii) Solve 3 3, 4, & 8, 9. (i)fid Z cos & Z si d lso fid Z cos & Z si Z. ( )! Pge73 Deprtmet of Mthemtics FMCET MADURAI