Bossier Parish Community College Master Syllabus. Course Prefix and Number: BLGY 101 Credit Hours: 3

Similar documents
Bossier Parish Community Master Syllabus. Course and Prefix Number: BLGY 102 Credit Hours: 3

Second Semester Biology Study Guide

Biology EOC Review Study Questions

GACE Biology Assessment Test I (026) Curriculum Crosswalk

Biology Spring Final Exam Study Guide

Study Guide: Fall Final Exam H O N O R S B I O L O G Y : U N I T S 1-5

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Biology regimented study plan

Virginia Western Community College BIO 101 General Biology I

Peddie Summer Day School

10/4/ :31 PM Approved (Changed Course) BIO 10 Course Outline as of Summer 2017

Honors Biology Final Exam Highlights First Semester Final Review, 200 Multiple Choice Questions, 200 Points

Contra Costa College Course Outline

Name: Date: Period: Final Exam Schedule: May 28 May 29 May 30 Wednesday Thursday Friday Bell Schedule 8:30 a.m. - 10:00 a.m

Biology 1 EOC Study Guide

EOC Study Guide. CELLS SB1. Students will analyze the nature of the relationships between structures and functions in living cells.

2. Draw two water molecules. Using a dotted line, show a hydrogen bond that could form between them.

Philipsburg-Osceola Area School District Science Department. Standard(s )

Standards: A, C, E; A; A, B; B; B; C; A; B; A

Bio 101 General Biology 1

Administrative - Master Syllabus COVER SHEET

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SCOPE AND SEQUENCE COURSE TITLE: 10th Grade Biology (Trimester 1)

BIOLOGY STANDARDS BASED RUBRIC

EOC MILESTONE REVIEW

Content Standards Learning and Performance Expectations Assessment of Learning

Biology Final Review Ch pg Biology is the study of

Chetek-Weyerhaeuser High School

EASTERN ARIZONA COLLEGE General Biology I

Do all living things grow, move, and breathe? All living things are made of what?

End of Course Review. Review sheet

#404 MCAS BIOLOGY GRADE: 10 LEVEL: 1/2 CREDITS: 5 PREREQUISITES: Instructor s Approval BASIC TEXT: Glencoe Biology 2007 SUPPLEMENTAL READINGS:

Biology Fall Final Review 2005/2006 Mrs. Nuño

Teacher: Cheely/ Harbuck Course: Biology Period(s): All Day Week of: 1/12/15 EOCEP Lesson Plan/5E s

Teaching Licensure: Biology

C. Schedule Description: An introduction to biological principles, emphasizing molecular and cellular bases for the functions of the human body.

Biology 126 Syllabus Exploring Biology: Cycles of Life

COWLEY COLLEGE & Area Vocational Technical School

Biology, Ongoing Expectations

Biology 126 Syllabus Exploring Biology: Cycles of Life

Introduction to Biology

Biology Pacing Guide

AP* Biology Prep Course

Norton City Schools Standards-Based Science Course of Study 2003

Name Period. 3. How many rounds of DNA replication and cell division occur during meiosis?

Cell Structure and Function

Please be aware that any form of plagiarism will result in penalties consistent with the CCPS Academic Dishonesty Policy.

Grade Level: Biology I Grading Period: 1 st 9 weeks

Name Date Period Unit 1 Basic Biological Principles 1. What are the 7 characteristics of life?

SCOPE AND SEQUENCE COURSE TITLE: 10th Grade Honors Biology (Trimester 1)

PRESCOTT UNIFIED SCHOOL DISTRICT District Instructional Guide

Name: Hour: Cumulative Final Exam Review Guide

Honors Biology Midterm Exam Study Guide--January 2019

Basic Biology. Content Skills Learning Targets Assessment Resources & Technology

Honors Biology Fall Final Exam Study Guide

Central Maine Community College Auburn, Maine Course Syllabus: Introduction to General Biology Instructor Lloyd Crocker

CORE CONCEPTS & TERMINOLOGY FALL 2010

Biology Science Crosswalk

Name Period. 2. Name the 3 parts of interphase AND briefly explain what happens in each:

Biology Cumulative Final Exam Review Sheet Format:

AP Biology - Summer Assignment

Lassen Community College Course Outline

Milford Public Schools Curriculum Department: Science Course Name: HIGH SCHOOL BIOLOGY

Norton City Schools Standards-Based Science Course of Study 2003

GREENCASTLE ANTRIM SCHOOL DISTRICT Planned Course Board Approved February 16, 2012 Course Title: Biology Grade Level(s) 10 11th

2. What properties or characteristics distinguish living organisms? Substance Description Example(s)

2015 FALL FINAL REVIEW

Biology Final Study for Multiple Choice Questions USE YOUR STUDY GUIDES & NOTES!!! Be able to explain, de<ine, & give examples for appropriate terms.

Cells and Their Processes. 1. What element do organic compounds have that inorganic compounds do not?

W/F = 10:00 AM - 1:00 PM Other times available by appointment only

Missouri Educator Gateway Assessments

Name Period. Final Exam Study Guide

GREENWOOD PUBLIC SCHOOL DISTRICT Genetics Pacing Guide FIRST NINE WEEKS Semester 1

Biology Scope and Sequence

Unit # - Title Intro to Biology Unit 1 - Scientific Method Unit 2 - Chemistry

Stamford Public Schools Science Department District Midterm Examination REVIEW

Vance County Early College High School Pacing Guide Course: Introduction to Biology (Semester I)

Biology. February 2009

Lamar University College of Arts and Sciences. Hayes Building Phone: Office Hours: T 2:15-4:00 R 2:15-4:00

Formative/Summative Assessments (Tests, Quizzes, reflective writing, Journals, Presentations)

Course Information for Introductory Biology I: Biology at the Microscopic Level

Name Period. Final Exam Study Guide. 1. What are chromosomes? How many do we have? 2. What is an autosome and how many pairs do we have?

e e = expected individuals with observed genotype Unit 1- Intro to AP and Taxonomy

Miller Levine Biology

COURSE OF STUDY GUIDE LOWER CAPE MAY REGIONAL SCHOOL DISTRICT

BIO 181 GENERAL BIOLOGY I (MAJORS) with Lab (Title change ONLY Oct. 2013) Course Package

Name: Date: Period: Biology End of Course Vocabulary 1. This is an organism s unique role in the environment that includes the habitat, function, and

District Office Pacing Calendar Biology September 2017 Monday Tuesday Wednesday Thursday Friday 1

Grade Level: AP Biology may be taken in grades 11 or 12.

ADVANCED PLACEMENT BIOLOGY

Compare cellular structure and their functions in prokaryote and eukaryote cells.

Objective 3.01 (DNA, RNA and Protein Synthesis)

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

I. Molecules and Cells: Cells are the structural and functional units of life; cellular processes are based on physical and chemical changes.

Biology I Fall Semester Exam Review 2014

Range of Competencies

Biology Semester 1 Study Guide

Grade 7 Science Learning Standards

Total Hrs Lecture Total Hrs Lab 0.00 Total Course Hrs Total Student Hrs

Hampton High School Biology Competencies & Requisite Skills

Transcription:

Bossier Parish Community College Master Syllabus Course Prefix and Number: BLGY 101 Credit Hours: 3 Course Title: General Biology I Course Prerequisites: None Textbooks: Mader, S. and M. Windelspecht; Biology, 12th edition Course Description: Introduction to the principles of biology for the science major. Topics include a history of biology, scientific method, general concepts and principles of biological molecules, cell structure and function, photosynthesis, cell respiration, cell reproduction, genetics, evolution and ecology. Learning Outcomes: At the end of this course students will: A. integrate knowledge of basic chemistry and cell structure and function with an understanding of the basic biological principles; B. relate basic genetic principles to DNA structure and common patterns of inheritance; C. critique the theory of natural selection with respect to its relationship to evolutionary theory; D. relate the organization and structure of the biosphere to its impact on living organisms; and E. integrate knowledge of basic biological principles. To achieve the learning outcomes, the student will: 1. list some of the major scientists and their contribution to the understanding of the major biological principles. (A,B,C) 2. list and explain 5 characteristics of life. (A,B,C) 3. classify organisms into the correct kingdom based on their characteristics. (D) 4. outline the steps of the scientific method. (A) 5. apply the scientific method to solve a problem. (A) 6. explain the relationship between a hypothesis, a theory, and a law. (A) 7. name and describe the subatomic particles of an atom. (A) 8. describe and discuss the energy levels of an atom. (A) 9. draw a simplified atomic structure of an atom with an atomic number less than 20. (A) 10. distinguish between covalent, ionic and hydrogen bonds. (A) 11. describe the properties of water and their importance to living things. (A) 12. define an acid and a base; describe the ph scale, and state the significance of buffers. (A)

13. categorize organic compounds into the four major groups and list characteristics and functions of each group. (A,B,) 14. define isomer and give examples. (A) 15. give examples of monosaccharides, disaccharides, and polysaccharides. (A) 16. relate the 4 levels of structure of proteins to the bonding patterns observed at each level. (A) 17. compare the structure of DNA to RNA. (B) 18. recall the basic concepts of Cell Theory. (A) 19. identify basic cell structures and explain the function of each organelle. (A) 20. list the organizational levels from atoms to ecosystems. (A,D) 21. compare the structure of a prokaryotic and eukaryotic cell. (A) 22. list 4 evidences for the endosymbiotic theory. (A,C) 23. define diffusion and osmosis, and explain their relevance to cell biology. (A) 24. describe the appearance of a plant cell and an animal cell in isotonic, hypotonic and hypertonic solutions. (A) 25. contrast endocytosis and exocytosis. Give examples of endocytosis. (A) 26. state and explain the 1 st and 2 nd laws of thermodynamics. (A) 27. describe the structure and function of enzymes. (A) 28. explain feedback inhibition and how it controls some metabolic pathways. (A) 29. explain the relationship of coenzymes to enzymes and chemical reactions. (A) 30. describe the structure and function of ATP. (A) 31. give examples of the importance of photosynthesis to living things. (A) 32. relate the visible light range to photosynthesis, and describe the role of chlorophyll. (A) 33. describe the structure and function of a chloroplast. (A) 34. explain the terms: light-dependent and light-independent reactions and describe their relationship to each other. (A) 35. contrast the Calvin cycle to the C4 and CAM pathways. (A) 36. describe the general function of cellular respiration. (A) 37. list the major events of glycolysis, transition, and Kreb s cycle. (A) 38. distinguish between oxidative phosphorylation and substrate-level phosphorylation. (A) 39. discuss the structure and function of the electron transport chain. (A) 40. calculate the yield of ATP molecules per glucose molecule for aerobic respiration and fermentation. (A) 41. discuss the concept of a metabolic pool and how the breakdown of carbohydrate, proteins, and fats contributes to the pool. (A) 42. relate cell division to the reproduction of unicellular organisms and the growth and repair of multicellular organisms. 43. state the stages of the cell cycle of a eukaryotic cell, and describe what happens during each stage. 44. draw a series of diagrams illustrating the phases of mitosis and tell what happens in each phase. 45. state at least two differences between plant and animal mitosis. 46. describe the prokaryotic chromosome and the process of binary fission. (A.B) 47. state the general role of meiosis in plant and animal. (A) 48. describe and state the significance of homologous chromosome pairs. (A) 49. describe synapsis and tell how crossing-over occurs.

50. compare meiosis to mitosis. 51. compare spermatogenesis to oogenesis. 52. state Mendel s laws of segregation and independent assortment. 53. solve genetics problems using Punnett square. (monohybrid and dihybrid). (B) 54. explain the use of a testcross to determine the genotype of an individual. (B) 55. recognize and solve genetics problems involving degrees of dominance. (B) 56. describe the normal chromosomes makeup of human males and females. (B) 57. solve problems involving gene-linkage and sex-linkage. (B) 58. identify gene location by using the results of crosses involving linked genes. 59. give examples of mutations caused by changes in chromosome number and explain how this could happen. (B) 60. give examples of mutations caused by changes in chromosome structure and explain how this could happen. (B) 61. describe how a karyotype is prepared, of what it consists and how it is used. (B) 62. list and describe different types of sex chromosomal abnormalities seen in humans. (B) 63. give examples and describe the most common autosomal genetic disorders in humans. 64. give examples and describe the most common X-linked genetic disorders in humans. 65. describe the polygene inheritance pattern and give examples of traits that are most likely controlled by polygenes. (B) 66. describe the transformation experiment of Griffith, including his surprising results. 67. tell how Avery showed that DNA is the transforming substance. (B) 68. describe the experiments of Hershey and Chase with T2 bacterophages. (B) 69. describe the Watson and Crick model of DNA, and tell how it fits the Chargaff and Franklin data. (B) 70. describe the semiconservative manner in which DNA replicates. 71. contrast the process of DNA replication in prokaryotes and eukaryotes. 72. list the biochemical differences between RNA and DNA. (B) 73. show that the DNA triplet codes are almost universal. 74. describe the process by which RNA becomes complementary to DNA. 75. describe the roles of ribosomes, mrna, trna, and amino acids during protein synthesis. (B) 76. determine the mrna codons, possible trna anticodons, and sequence of amino acids in the resulting protein when given a DNA coding strand and table of codons. 77. list and define the components of an operon. 78. contrast the pre-darwinian view on evolution to post-darwinian. (B,C) 79. describe LaMarck s theory and point out the fallacies in his theory. (C) 80. list the major influences on Darwin leading to his theory of natural selection. (C) 81. explain how the fossil record, biogeography, comparative anatomy, comparative embryology and comparative biochemistry support the hypothesis of common descent. (C) 82. state the sources of variation in a population of sexually reproducing diploid organisms. (C,D) 83. explain the Hardy-Weinberg rule. (C,D)

84. list and discuss the agents of evolutionary change. (C) 85. distinguish between directional, stabilizing, and disruptive selection by giving examples. (D) 86. explain the biological definition of a species. (C,D) 87. explain the process of adaptive radiation and give examples. (D) 88. calculate the rate of natural increase for a population when given the number of individuals in the population, the birth rate, and the death rate. (D) 89. contrast a J-shaped growth with an S-shaped growth curve. (D) 90. describe the growth curve for the world s population. (D) 91. discuss the effect that interspecific competition can have on population size. (C,D) 92. state the competitive exclusion principle, and relate this principle to the diversity of organisms. (D) 93. distinguish between the niche and the habitat of an organism. (D) 94. discuss the effect that predation can have on the size of the prey population and on the diversity of the community. (D) 95. give examples to show that human interference can upset the natural balance of a community. (D) 96. explain the principle of mimicry, and give two examples. (D) 97. give examples of the three types of symbiotic relationships, and explain the effect they can have on population size. (D) 98. give an example of a food web, and define trophic level. (D) 99. summarize scientific articles related to course content. (A,B,C,D) 100. complete a scientific literature assignment, that requires the student to summarize a current literature article using correct grammar, punctuation, and organization, as well as, use computer databases to find a current peer-reviewed journal article related to that chosen topic. (E) Course Requirements: To earn a grade of C or higher the student must earn 70% of the total points for the course and meet all of the following course requirements. minimum of 60% on each section exam or 60% on a comprehensive final exam Course Grading Scale: A- 90% or more of the total points possible for the semester; and meet all minimum course requirements B- 80% or more of the total points possible for the semester; and meet all minimum course requirements C- 70% or more of the total points possible for the semester; and meet all minimum course requirements D- 60% or more of the total points possible for the semester; and meet all minimum course requirements.

F- less than 60% of the total points possible for the semester; and/or failure to meet one or more of the minimum course requirements Attendance Policy: The college attendance policy is available at http://www.bpcc.edu/catalog/current/academicpolicies.html Nondiscrimination Statement Bossier Parish Community College does not discriminate on the basis of race, color, national origin, gender, age, religion, qualified disability, marital status, veteran's status, or sexual orientation in admission to its programs, services, or activities, in access to them, in treatment of individuals, or in any aspect of its operations. Bossier Parish Community College does not discriminate in its hiring or employment practices. Title VI, Section 504, and ADA Coordinator Sarah Culpepper, Coordinator Disability Services, D-112 6220 East Texas Street Bossier City, LA 71111 Phone: 318-678-6539 Email: sculpepper@bpcc.edu Hours: 8:00 a.m.-4:30 p.m. Monday - Friday, excluding holidays and weekends. Equity/Compliance Coordinator Teri Bashara, Director of Human Resources Human Resources Office, A-105 6220 East Texas Street Bossier City, LA 71111 Phone: 318-678-6056 Hours: 8:00 a.m.-4:30 p.m. Monday - Friday, excluding holidays and weekends. Reviewed by J. Coston/ April 2017