Gamma-Rays from Supernovae

Similar documents
Roland Diehl. MPE Garching

Gamma-Ray Astrophysics

II. Observations. PoS(NIC-IX)257. Observatoire de Genève INTEGRAL Science Data Center

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

arxiv:astro-ph/ v1 19 Feb 1999

Abundance Constraints on Sources of Nucleosynthesis, and on the Chemical Evolution of the Universe and its Components

Reassessment of the 56Co emission from SN 1991T

Prospects in space-based Gamma-Ray Astronomy

Gamma-Ray Spectroscopy with INTEGRAL - Observations and their Interpretations -

Spectral analysis of the 511 kev Line

A NEW GENERATION OF GAMMA-RAY TELESCOPE

Gamma- Rays from SN2014J

Gamma-Ray Astronomy. Astro 129: Chapter 1a

Discovery and long-term study of hard X-ray emission of SN1987A with MIR/KVANT. S.A. Grebenev Space Research Institute, RAS

Satellite Experiments for Gamma-Ray Astrophysics

Positron Annihilation throughout the Galaxy

Gamma-ray nucleosynthesis. Predictions - Gamma-ray nuclei - Production sites Observations - Point sources - Diffuse emission

Research Day of Universe Cluster: 44 Ti

Are Ti44-Producing Supernovae Exceptional?

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics

WHAT DO X-RAY OBSERVATIONS

Positron Annihilation in the Milky Way

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

The structure and evolution of stars. Learning Outcomes

Positron Annihilation in the Milky Way and beyond

Internal conversion electrons and SN light curves

Supernova remnants: X-ray observations with XMM-Newton

Are 44 Ti -Producing Supernovae Exceptional?

Spectral Variability of Cyg X-1 at Energies Above 1 MeV

Radio Observations of TeV and GeV emitting Supernova Remnants

Astrophysical Quantities

Supernova Remnant Science with AXIS. Brian Williams & Hiroya Yamaguchi

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002

Gas 1: Molecular clouds

The cosmic distance scale

High Redshift Universe

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

A. Takada (Kyoto Univ.)

INTEGRAL Observations of the Galactic 511 kev Emission and MeV Gamma-ray Astrophysics K. Watanabe, NASA/Goddard Space Flight Center

Supernova events and neutron stars

The Origin of the 511 kev Positron Annihilation Emission Morphology

Perspectives on Nuclear Astrophysics

Mass loss from stars

Explosive Events in the Universe and H-Burning

Einführung in die Astronomie II

Science Olympiad Astronomy C Division Event Golden Gate Invitational February 11, 2017

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 30. The Galactic Center

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

What do we know after 6 years of Integral?

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it.

A Detailed Look at Cas A: Progenitor, Explosion & Nucleosynthesis

Study of Long-lived Radioactive Sources in the Galaxy with INTEGRAL/SPI

Scientific goal in Nuclear Astrophysics is to explore:

Lecture 11: Ages and Metalicities from Observations A Quick Review

observation of Galactic sources

Supernovae from massive stars

Stellar Explosions (ch. 21)

Cosmic rays in the local interstellar medium

The INTEGRAL view of 511 kev annihilation line in our Galaxy

Particle Acceleration in the Universe

2019 Astronomy Team Selection Test

COMPTON OBSERVATORY OSSE OBSERVATIONS OF SUPERNOVA 1991T ABSTRACT. The Oriented Scintillation Spectrometer Experiment on the Compton Observatory

Physics of the hot evolving Universe

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Stellar evolution Part I of III Star formation

Part two of a year-long introduction to astrophysics:

The High-Energy Interstellar Medium

arxiv:astro-ph/ v1 13 Dec 2005

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Stars, Galaxies & the Universe Lecture Outline

Star systems like our Milky Way. Galaxies

Campus Observatory. 7pm. you are here

Detectors for 20 kev 10 MeV

Galactic Supershells and GSH Vanessa A. Moss Parkes 50th Symposium 3rd November

Astr 5465 Feb. 5, 2018 Kinematics of Nearby Stars

The Origin of the Elements between Iron and the Actinides Probes for Red Giants and Supernovae

High Energy Astrophysics

Pulsar Wind Nebulae as seen by Fermi-Large Area Telescope

The Large Area Telescope on-board of the Fermi Gamma-Ray Space Telescope Mission

Binary Evolution Novae, Supernovae, and X-ray Sources

Physics HW Set 3 Spring 2015

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

COMPTEL OBSERVATIONS OF CYGNUS X-1. M. McConnell, A. Connors, D. Forrest, J. Ryan Space Science Center, University of New Hampshire, Durham, NH 03824

The Death of Stars. Ra Inta, Texas Tech University

Transient Events from Neutron Star Mergers

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

Radio Nebulae around Luminous Blue Variable Stars

Dark Energy: Measuring the Invisible with X-Ray Telescopes

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Astronomy 242: Review Questions #3 Distributed: April 29, 2016

Nucleosynthesis in classical novae

Where are oxygen synthesized in stars?

The Dusty Universe. Joe Weingartner George Mason University Dept of Physics and Astronomy

The Origin of Type Ia Supernovae

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Transcription:

Gamma-Rays from Supernovae Roland Diehl MPE Garching Gamma-Ray Line Astronomy and Supernovae Specific Objects Thermonuclear Supernovae ( 56 Co; SN1991T, SN1998bu) Core-Collapse Supernovae ( 44 Ti; Cas A; 26 Al and 60 Fe) Prospects with The COMPTEL Team: Hans Bloemen, Robert Georgii, Wim Hermsen, Jürgen Knödlseder, Giselher Lichti, Dan Morris, Uwe Oberlack, Stefan Plüschke, Jim Ryan, Andrew Strong, Volker Schönfelder, et al. and Karsten Kretschmer, Nikos Prantzos, Dieter Hartmann, Mark Leising, Frank Timmes, Georges Meynet, the SPI Team, et al.

Supernova Gamma-Ray Astronomy: Lines of Interest Radioactive Isotopes Isotope Decay Time > Source Dilution Time Yields > Instrumental Sensitivities Mean Lifetime Decay Chain γ -Ray Energy (kev) Source 7 Be 77 d 7 Be 7 Li* 478 Novae 56 Ni 111 d 56 Ni 56 Co* 56 Fe*+e + 158, 812; 847, 1238 Supernovae 57 Ni 390 d 57 Co 57 Fe* 122 Supernovae 22 Na 3.8 y 22 Na 22 Ne* + e + 1275 Novae 44 Ti 89 y 44 Ti 44 Sc* 44 Ca*+e + 78, 68; 1157 Supernovae 26 Al 1.04 10 6 y 26 Al 26 Mg* + e + 1809 Stars, Novae Supernovae 60 Fe 2.0 10 6 y 60 Fe 60 Co* 60 Ni* 59, 1173, 1332 Supernovae, Stars e +. 10 5 y e + +e - Ps γγ.. 511, <511 Supernovae, Novae,

Gamma-Ray Astronomy: Instruments Photon Counters and Telescopes Simple Detector (& Collimator) (e.g. HEAO-C, SMM, CGRO-OSSE) Spatial Resolution (=Aperture) Defined Through Shield Coded Mask Telescopes (Shadowing Mask & Detector Array) (e.g. SIGMA, INTEGRAL) Spatial Resolution Defined by Mask & Detector Elements Sizes Focussing Telescopes (Laue Lens & Detector Array) (CLAIRE, MAX) Spatial Resolution Defined by Lens Diffraction & Distance Compton Telescopes (Coincidence-Setup of Position-Sensitive Detectors) (e.g. CGRO-COMPTEL, LXeGRiT, MEGA, ACS) Spatial Resolution Defined by Detectors Spatial Resolution Achieved Sensitivity: ~10-5 ph cm -2 s -1, Angular Resolution deg

SN1987A: First Supernova Gamma-Rays SN1987A 56 Co Decay Gamma-Rays Detected Earlier Than Expected; First Proof of Supernova 56 Ni Synthesis (SMM; Matz et al. 1988) SN1987A 57 Co Decay Gamma-Ray Detection Used to Infer Co Isotopic Ratio (~1.5 x solar) (OSSE; Kurfess et al. 1992; Clayton et al. 1992) SN1987A 56 Co Line at 847 kev Used for Line Shape Analysis (GRIS; Teegarden et al. 1988)

56 Ni Decay Gamma-Rays 0+ τ =8.8 d 56 Ni 1+ 0+ 2+ e - -capture (98%) γ 750 kev (50%) γ 270+480 kev (36%) γ 812 kev (86%) 3+ 4+ γ 158 kev (100%) τ = 111.3 d 56 Ni 8.8d 56 Co* 111d 56 Fe*+e + 158, 812; 847, 1238 kev γ-rays Early Envelope γ-transparency (e.g. SNIa within ~30-100d) Direct Measurement of SN Driver γ 847 kev (100%) 56 Fe 4+ 2+ 0+ e - - capture (81%) β + - decay 3,4+ (19%,E~0.6MeV) γ s 3.2,2.8,2.0,1.04, 1.4,1.8 MeV 56 (2-16%) Co γ 1238 kev (68%)

SN1991T SN1991T: in NGC4527 on 10 Apr 1991 Distance 9..11..13..17 Mpc Peculiar SNIa early: no Si absorption, Fe emission instead; overluminous; late: ~standard SNIa; overluminous COMPTEL Measurement: Observations at Days 66-79, 176-190 3-5σ Significance of Line Detection: 11.7 (±3.2 ±2.7) 10-5 ph cm -2 s -1 (all combined) 9(±3) 10-5 ph cm -2 s -1 (847 kev day 70) 6(±2) 10-5 ph cm -2 s -1 (1238 kev day 70) Inferred 56 Ni Mass: ~ 1.65 M o (0.7...2.6 M o ) (cmp 1.14 M o from Bolometric Lightcurve, Contardo et al. 2000) Large Uncertainties of Gamma-Ray Flux Measurement Inadequate Spectral Resolution Morris et al., 1995, 1997, 2002

SN1998bu SN on May 1..2, 1998 Discovery on May 9.9, Ia Identification on May 14 Host Galaxy M96 / NGC 3368 in Leo I (RA 10 46.8 Dec 11 50; l=234.5, b=57.0) ~Closest SNIa: D~8...12 Mpc (D 98bu ~0.7 D 91T ) (Ceph.8.2 by Tanvir et al. 1995(!); Tully-F.~8.1; HST-Ceph.11.6±0.8; PN 9.6±0.6) Standard Type-Ia Lightcurve & Spectra <V Bmax >=11.89 -> M v =-19.42 Unusual Reddening (Host Galaxy Dust?) ; Extinction A V ~0.94 ±0.2 mag Whipple Obs; Jha et al., ApJS 125 (1999) Roland Diehl Szuntzeff et al., AJ 117 (1999) The Physics of Supernovae, Garching (D) 29-31 July 2002

SN1998bu: COMPTEL Limits on 56 Ni Decay Lines Georgii et al., 2002 14 Weeks of CGRO Observations (May 19 - Sep 22 1998) No Gamma-Ray Line Signal 847 kev Line I spectral <4.1 10-5 ph cm -2 s -1 I imaging <3.3 10-5 ph cm -2 s -1 1238 kev Line I spectral <2.3 10-5 ph cm -2 s -1 I imaging <3.2 10-5 ph cm -2 s -1 (for 11.3 Mpc; 2σ Limits) I 56Co Lines < 3.3 10-5 ph cm -2 s -1 M 56Ni-visible < 0.35 M o (τ=0 idealized) (bolometric lightcurve -> 0.77 M o, Leibundgut 2000) Fast / Large-Mixing Models (He Cap, W7DT) Unlikely

SN1998bu: COMPTEL Limits on 56 Ni Decay Lines Georgii et al., 2002 56 Ni Mass versus γ-ray Flux I 56Co Lines < 3.3 10-5 ph cm -2 s -1 M 56Ni-visible < 0.35 M o (τ=0 idealized) (bolometric lightcurve -> 0.77 M o, Leibundgut 2000) Fast / Large-Mixing Models (He Cap, W7DT) Unlikely

Supernova 56 Ni Gamma-Rays Early Envelope γ-transparency (e.g. SNIa within ~30-100d) Gamma-Ray Transport Comparatively Straightforward Line Ratio Diagnostics -> Envelope Structure; Mixing Line Shape Diagnostics -> Velocities of Inner SN Ejecta Instrumental Range: ~15 Mpc (Ia; ~Virgo Cluster) ~ Galaxy & LMC/SMC (Ib/c,II) -> Rare Opportunities Timely Observations are Critical No Real Help on SN Physics Yet, Let s Hope for INTEGRAL et al.

Core-Collapse Supernovae: 44 Ti from Cas A Iyudin et al., 1994; The et al. 1996; Rothchild et al. 1998; Vink et al. 2000 5 44 Ti Decay Gamma-ray Fluxes from Cas A τ =89y, EC 4 44 Ti 44 Sc τ = 5.4 h, β + I * 10-5 ph cm -2 s -1 3 2 1 44 Ca 0 COMPTEL 1999 OSSE 1996 RXTE 1997 SAX 2000 44 Ti Decay: τ~89y Difficult γ-ray Region (78, 68, 1157 kev) -> Young SNR -> Uncertain Iγ -> 44 Ti Ejected Mass ~0.8-2.5 10-4 M o

44 Ti from Cas A / cc-snae: The Issue Timmes et al., 1996 Consistency of Cas A cc-sn Model: 44 Ti Yield in Models: ~2-4 10-5 M o 44 Ti Estimate for SN1987A: ~5-20 10-5 M o 44 Ti Estimate from γ-rays for Cas A: ~8-25 10-5 M o 44 Ti Ejection Should Be Correlated to High-Entropy Material -> a-rich Freeze-Out Large Explosion Energy Large Mass of Ejected 56 Ni (Bright Supernova)

Cas A: A Well-Studied Young Nearby SNR Chandra ISO XMM-Newton ~330 year-old SNR at ~3.4 kpc Massive Progenitor (10-25 M o ) Filaments, Fast Ejecta (knots), Fe-rich Clumps, No Onion-Shell- Like Elemental Morphology, Jet: Asymmetric Explosion Unseen SN -> CSM Dust Central Object (NS/BH?) 44 Ti (and 56 Ni) Ejection => (?) Non-Typical Core Collapse SN, Asymmetries The SN with Proven 44 Ti Ejection HST

Search for 44Ti from Galactic cc-supernovae The et al., 2000 No 44Ti Sources in Inner Galaxy Parent Distribution of Sources ~ Monte-Carlo Study -> 44Ti SNR Number Low 26Al Small-Number Statistics? Observational Bias? Metallicity Anticorrelation? Roland Diehl The Physics of Supernovae, Garching (D) 29-31 July 2002

44 Ti Emission from cc-snae: Open Issues Consistency of Cas A cc-sn Model: 44 Ti from Models/SN1987A/γ-Rays: ~2-25 10-5 M o 44 Ti Ejection Should Be Correlated to High-Entropy Material -> a-rich Freeze-Out Large Explosion Energy Large Mass of Ejected 56 Ni (Bright Supernova) No 44 Ti Sources in Inner Galaxy Parent Distribution of Sources ~ 26 Al Monte-Carlo Study -> 44 Ti SNR Number Low Small-Number Statistics? Observational Bias? Metallicity Anticorrelation? The et al., 2000 Can 44 Ti Sources Reveal... Inner SN Velocity Profiles? Ionization-Inhibited Decay (EC)? ( 44 Ti Line Shape!) Asymmetric Core Collapses?

The Sky at 1809 kev: 26 Al Sco-Cen? Auriga/α Per? Cygnus Inner-Galaxy Ridge Carina Vela Orion Eridanus Complete CGRO Mission (Plüschke et al. 2001)

26 Al Map & Possible Source Tracers RD with Knödlseder, Prantzos, Oberlack, Plüschke, Bloemen, et al. (1996...2002) CO map of molecular gas IR map at 240 µm, dust Radio map at 53 GHz, free electrons H α Emission from Ionized Gas Massive Stars are the Plausible Sources Map Irregularity and Scale Height, Bright Spiral-Arm Tangents Correlated with Star-Forming Gas Correlated with Warm Dust Correlated with Diffuse Ionized Gas 26 Al Ejection by WR Stars or by cc-snae?

Modeling 26 Al from Star Clusters Plüschke Ph D Thesis, 2001 Stellar Content (OB Association Richness, IMF) Stellar Evolution Lifetime WR Phase 26 Al Yields per Star yields 1.809 MeV Light Curve for a Massive-Star Cluster plus other Observables UV / Ionization (-> free-free Emission) Kinetic Energy / X Brightness WR Stars cc-snae -> Plüschke et al., 2001; Cerviño et al. 2002

26 Al from Nearby Supernovae: The Vela Region Model Emissivity Along Galactic Plane 10.00 8.00 COMPTEL 1.8 MeV C1-9 IR240/10 IR240/4 free-free/10 free-free/4 rod 05/2000 Model Amplitude 6.00 4.00 2.00 0.00 180 150 120 90 60 30 0-30 -60 Galactic Longitude -90-120 -150-180 Interesting Nearby Sources in front of Vela Molecular Ridge Vela SNR (d~250 pc) RXJ0852 (200pc<d<1500pc) γ 2 Velorum (WR11) (d~258/400pc) Extended Diffuse 26 Al Emission None of These Close SNR Clearly Seen in 26 Al

26 Al from Supernovae: Help from 60 Fe? Production in SNae (and Stars) through n Capture on 56,58 Fe (s-process; 13 C/ 22 Ne(α,n)) 26 Al/ 60 Fe Flux Ratio Limits Decay Time 2 Myr + SN Yields -> I γ60fe ~0.16 I γ26al for 26 Al from SN only 60 Fe from 26 Al Sources? ~Little. I( 60 Fe)/I( 26 Al) 0.60 0.50 0.40 0.30 0.20 01/1999: new bgd model; 0.3 syst error, 2sig stat error Predicted from Theory R Diehl 1/99 0.10 0.00 COMP'99 COMPTEL GRIS SMM OSSE SN Debris in Solar System? 60 Fe Detected in Seefloor Sediment => Nearby SN ~ 3-5 My ago 26 Al in Sediment, too?

Gamma-Ray Lines from Supernovae: Summary Specific Supernova Nucleosynthesis 56 Ni 44 Ti 44 Ti Decay Gamma-ray Fluxes from Cas A 5 4 I * 10-5 ph cm -2 s -1 3 2 1 0 COMPTEL 1999 OSSE 1996 RXTE 1997 SAX 2000 Accumulated Nucleosynthesis in ISM 26 Al e + 511 kev Linie

Gamma-Ray Lines from Cosmic Nuclei: Prospects Questions: Origin of 26 Al, e+, 60 Fe Distinguish Massive Stars/SNae Core Collapse SNae: Inner Explosion, Asymmetries Thermonuclear SNae: Deflagration/Detonation Transition Opportunities: Gamma-Ray Line Shapes -> INTEGRAL Launch Oct2002, 1.5 Msec on Cas A, SN87A Surveys at Improved Sensitivity Deep SN Measurements -> MEGA, ACT -> Laue Tel.

γ-ray Line Conference / Workshop Opportunities... May 26-31, 2003: Kloster Seeon, Germany Astronomy with Radioactivities IV Feb 16-20, 2004: 5 th INTEGRAL Workshop... München, Germany