Deformations of calibrated D-branes in flux generalized complex manifolds

Similar documents
Flux vacua in String Theory, generalized calibrations and supersymmetry breaking. Luca Martucci

D-branes on generalized complex flux vacua

Generalized N = 1 orientifold compactifications

Generalized complex geometry and topological sigma-models

Periodic monopoles and difference modules

David R. Morrison. String Phenomenology 2008 University of Pennsylvania 31 May 2008

Instanton effective action in - background and D3/D(-1)-brane system in R-R background

On Flux Quantization in F-Theory

Possible Advanced Topics Course

Techniques for exact calculations in 4D SUSY gauge theories

A Landscape of Field Theories

Lie n-algebras and supersymmetry

On D-brane moduli stabilisation

Little strings and T-duality

Calabi-Yau Fourfolds with non-trivial Three-Form Cohomology

Heterotic Torsional Backgrounds, from Supergravity to CFT

String Phenomenology ???

2 Type IIA String Theory with Background Fluxes in d=2

Flux Compactification of Type IIB Supergravity

String Theory and Generalized Geometries

Instantons and Donaldson invariants

Topics in Geometry: Mirror Symmetry

Weyl Anomalies and D-brane Charges

M-Theory on Spin(7) Manifolds

Maximally Supersymmetric Solutions in Supergravity

On Special Geometry of Generalized G Structures and Flux Compactifications. Hu Sen, USTC. Hangzhou-Zhengzhou, 2007

t Hooft Loops and S-Duality

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

Moduli of heterotic G2 compactifications

Topological reduction of supersymmetric gauge theories and S-duality

Non-Kähler Calabi-Yau Manifolds

Knot Homology from Refined Chern-Simons Theory

THE MODULI SPACE OF TRANSVERSE CALABI YAU STRUCTURES ON FOLIATED MANIFOLDS

F-theory effective physics via M-theory. Thomas W. Grimm!! Max Planck Institute for Physics (Werner-Heisenberg-Institut)! Munich

Constructing compact 8-manifolds with holonomy Spin(7)

Lecture 9: RR-sector and D-branes

Black hole near-horizon geometries

Black Hole Microstate Counting using Pure D-brane Systems

Flux compactifications and SUSY-breaking

F O R SOCI AL WORK RESE ARCH

Topological Strings and Donaldson-Thomas invariants

Singular Monopoles and Instantons on Curved Backgrounds

Supersymmetric Gauge Theories in 3d

Topological DBI actions and nonlinear instantons

Bubbling Geometries for Half BPS Wilson Lines. Satoshi Yamaguchi (IHES) S. Yamaguchi, hep-th/ S. Yamaguchi, to appear

Fixing all moduli in F-theory and type II strings

PROGRAM. Monday Tuesday Wednesday Thursday Friday. 11:00 Coffee Coffee Coffee Coffee Coffee. Inverso. 16:00 Coffee Coffee Coffee Coffee Coffee

Refined Donaldson-Thomas theory and Nekrasov s formula

String cosmology and the index of the Dirac operator

String Theory. A general overview & current hot topics. Benjamin Jurke. Würzburg January 8th, 2009

Stringy Instantons, Backreaction and Dimers.

HITCHIN KOBAYASHI CORRESPONDENCE, QUIVERS, AND VORTICES INTRODUCTION

I. Why Quantum K-theory?

MIFPA PiTP Lectures. Katrin Becker 1. Department of Physics, Texas A&M University, College Station, TX 77843, USA. 1

The Geometry behind Nongeometric Fluxes

Double Field Theory at SL(2) angles

Ω-deformation and quantization

Open String Wavefunctions in Flux Compactifications. Fernando Marchesano

D-branes as a single object. SIS Dubna, Edvard Musaev

Branes in Flux Backgrounds and Dualities

Generalized Global Symmetries

Spectral Networks and Their Applications. Caltech, March, 2012

Modern Geometric Structures and Fields

Instantons in string theory via F-theory

A Localization Computation in Confining Phase

2d N = (2, 2) supersymmetry with U(1) RV in curved space

SUPERSTRING REALIZATIONS OF SUPERGRAVITY IN TEN AND LOWER DIMENSIONS. John H. Schwarz. Dedicated to the memory of Joël Scherk

Heterotic type IIA duality with fluxes and moduli stabilization

The u-plane Integral And Indefinite Theta Functions

T-duality & noncommutative geometry

Ricci-flat metrics on complex cones

Kähler Potentials for Chiral Matter in Calabi-Yau String Compactifications

Half BPS solutions in type IIB and M-theory

A-field and B-field from Freed-Witten anomaly

First Year Seminar. Dario Rosa Milano, Thursday, September 27th, 2012

Generalized Cohomologies and Supersymmetry

4d N=2 as 6d N=(2,0) compactified on C

and Localization Kazutoshi Ohta (Meiji Gakuin University)

Chapter 3: Duality Toolbox

Exact Half-BPS Solutions in Type IIB and M-theory

Theory III: String Theory. presented by Dieter Lüst, MPI and LMU-München

Counting black hole microstates as open string flux vacua

Self-Dual Yang-Mills Fields in Eight Dimensions

All symmetric AdS n>2 solutions of type II supergravity

LECTURE 28: VECTOR BUNDLES AND FIBER BUNDLES

Higgs Bundles and Character Varieties

Non-Abelian holographic superfluids at finite isospin density. Johanna Erdmenger

Disk Instantons, Mirror Symmetry and the Duality Web

M-Theory and Matrix Models

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

Superstring in the plane-wave background with RR-flux as a conformal field theory

η = (e 1 (e 2 φ)) # = e 3

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA DIPARTIMENTO DI FISICA G.OCCHIALINI CORSO DI DOTTORATO IN FISICA E ASTRONOMIA

Dualities and Topological Strings

Dynamics of Multiple Kaluza-Klein Monopoles in M- and String Theory

arxiv:hep-th/ v1 31 Oct 2006

10 Interlude: Preview of the AdS/CFT correspondence

Aspects of (0,2) theories

Rigid Schubert classes in compact Hermitian symmetric spaces

8.821 String Theory Fall 2008

Transcription:

Deformations of calibrated D-branes in flux generalized complex manifolds hep-th/0610044 (with Luca Martucci) Paul Koerber koerber@mppmu.mpg.de Max-Planck-Institut für Physik Föhringer Ring 6 D-80805 München Germany Paul Koerber, MPI p.1/22

Motivation Generalized complex geometry µ tailored to describe susy Å ½ Å background sugra solutions with fluxes In the same way: supersymmetric µ D-branes generalized calibrations Open string moduli µ deformations of generalized calibrations Paul Koerber, MPI p.2/22

Calibrations A way to find minimal volumes surface in a curved space Second-order equations µ first-order equations Analogous to self-duality solves Yang-Mills equations Or more generally BPS equations solve equations of motion Paul Koerber, MPI p.3/22

Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Paul Koerber, MPI p.4/22

Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Calibrated submanifold : Saturates bound: Ô ÌÔ ÌÔ (3) Paul Koerber, MPI p.4/22

Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Calibrated submanifold : Saturates bound: Ô ÌÔ ÌÔ (3) For ¾ ½ Paul Koerber, MPI p.4/22

¾ Ô Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Calibrated submanifold : Saturates bound: Ô ÌÔ ÌÔ (3) For ¾ ½ Vol ¾ µ Paul Koerber, MPI p.4/22

¾ Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Calibrated submanifold : Saturates bound: Ô ÌÔ ÌÔ (3) For ¾ ½ Vol ¾ µ Ô ¾µ ¾ Paul Koerber, MPI p.4/22

Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Calibrated submanifold : Saturates bound: Ô ÌÔ ÌÔ (3) For ¾ ½ Vol ¾ µ Ô ¾µ ¾ ½µ ¾ µ ½ ½ Ô Vol ½ µ Paul Koerber, MPI p.4/22

Calibrations Calibration form : ¼ (1) Bound: Ô ÌÔ ÌÔ (2) (bound must be such that it can be saturated) Calibrated submanifold : Saturates bound: Ô ÌÔ ÌÔ (3) Calibration forms from invariant spinors: e.g. Å ½ Paul Koerber, MPI p.4/22

Generalized calibrations Introduce bulk fields À and RR on the D-brane, where ¾«¼ such À that Paul Koerber, MPI p.5/22

Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Paul Koerber, MPI p.6/22

Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Papadopoulos and Gutowski Paul Koerber, MPI p.6/22

Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Generalized geometry Paul Koerber, MPI p.6/22

Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Calibrated D-brane µ: Saturates bound: Ô Ì Ô Ì Ô For À µ ¾ ¾ µ ½ ½ µ Paul Koerber, MPI p.6/22

¾ Ô ¾ Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Calibrated D-brane µ: Saturates bound: Ô Ì Ô Ì Ô For À µ ¾ ¾ µ ½ ½ µ E ¾ ¾ µ Paul Koerber, MPI p.6/22

¾ ¾µ ¾ Ô ¾ Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Calibrated D-brane µ: Saturates bound: Ô Ì Ô Ì Ô For À µ ¾ ¾ µ ½ ½ µ µ ¾ E ¾ ¾ µ Paul Koerber, MPI p.6/22

¾ ¾µ ¾ Ô ¾ ½ Generalized calibrations Calibration polyform : À RR (1) Bound: Ô Ì Ô Ì Ô (2) (bound must be such that it can be saturated) Calibrated D-brane µ: Saturates bound: Ô Ì Ô Ì Ô For À µ ¾ ¾ µ ½ ½ µ µ ¾ E ¾ ¾ µ ½µ ½ µ E ½ ½ µ µ Paul Koerber, MPI p.6/22

Generalized calibrations Correspond to supersymmetric D-branes Calibration forms are the pure spinors Ê ½ ÁÑ ½ ¾ satisfying À Ê ½ À ÁÑ ½ ¼ À ¾ ¼ Paul Koerber, MPI p.7/22

Generalized calibrations Correspond to supersymmetric D-branes Calibration forms are the pure spinors Ê ½ ÁÑ ½ ¾ satisfying À Ê ½ À ÁÑ ½ ¼ À ¾ ¼ In the rest of the talk we will focus on space-filling D-branes Paul Koerber, MPI p.7/22

D-flatness and F-flatness conditions Saturating bound consists of two parts Ô «½, where «varying phase µ µ is generalized complex submanifold with respect to ¾ This becomes an F-flatness condition in the 4d-effective theory Paul Koerber, MPI p.8/22

D-flatness and F-flatness conditions Saturating bound consists of two parts Ô «½, where «varying phase µ µ is generalized complex submanifold with respect to ¾ This becomes an F-flatness condition in the 4d-effective theory ½ ¼: analogous to the special in special ÁÑ lagrangian This becomes a D-flatness condition in the 4d-effective theory Paul Koerber, MPI p.8/22

D-flatness and F-flatness conditions Saturating bound consists of two parts Ô «½, where «varying phase µ µ is generalized complex submanifold with respect to ¾ This becomes an F-flatness condition in the 4d-effective theory ½ ¼: analogous to the special in special ÁÑ lagrangian This becomes a D-flatness condition in the 4d-effective theory We will study the deformations of these conditions separately! Paul Koerber, MPI p.8/22

Some technology I Decomposition of forms Pure spinor: e.g. ¾ Ä ¾ : Null space or also -eigenspace of  ¾ Definition: forms in Í µ can be written as ½ ¾ with Ð ¾ Ä ¾ µ. They have -eigenvalue of  ¾ Paul Koerber, MPI p.9/22

µ PD µ Some technology II D-brane current µ : generalization of the Poincaré dual: Explicitly: µ Å Pure spinor and À µ ¼ Null space: generalized tangent bundle Ì µ Paul Koerber, MPI p.10/22

Ð ¾ Æ µ µ work on µ ½ µ Some technology III Generalized normal bundle: Æ µ Ì Å Ì Å µ Elements ¾ Æ µ look like Ì µ Æ µ Æ: a normal vector to µ geometric deformations Æ ¾ ½ µ µ deformations gauge field Paul Koerber, MPI p.11/22

Some technology IV Lie algebroid exterior derivative Pure spinor, null space Ä, natural Ç µ metric Á Paul Koerber, MPI p.12/22

Some technology IV Lie algebroid exterior derivative Pure spinor, null space Ä, natural Ç µ metric Á Isomorphism Ä ³ Ä: ¾ Ä Á µ Paul Koerber, MPI p.12/22

½ can be viewed as element of «¾ Ä Some technology IV Lie algebroid exterior derivative Pure spinor, null space Ä, natural Ç µ metric Á Isomorphism Ä ³ Ä: ¾ Ä Á µ Paul Koerber, MPI p.12/22

½ can be viewed as element of «¾ Ä À ½ µ ³ Ä «µ Some technology IV Lie algebroid exterior derivative Pure spinor, null space Ä, natural Ç µ metric Á Isomorphism Ä ³ Ä: ¾ Ä Á µ Paul Koerber, MPI p.12/22

½ can be viewed as element of «¾ Ä À ½ µ ³ Ä «µ Ä : Lie algebroid exterior derivative: for Î Ð ¾ ĵ Some technology IV Lie algebroid exterior derivative Pure spinor, null space Ä, natural Ç µ metric Á Isomorphism Ä ³ Ä: ¾ Ä Á µ Ä «Î ½ Î ½ µ ½µ Î µ«î ½ Î Î µ ½µ «Î Î À Î ½ Î Î Î µ Paul Koerber, MPI p.12/22

Deformations of gc submanifold Generalized complex submanifold: µ ¾ Í ¼ µ Paul Koerber, MPI p.13/22

Ä µ Í ¾ ¼, with Ä À À Deformations of gc submanifold Generalized complex submanifold: µ ¾ Í ¼ µ Deformation ¾ Æ µ : Paul Koerber, MPI p.13/22

Deformations of gc submanifold Generalized complex submanifold: µ ¾ Í ¼ µ Deformation ¾ Æ µ : Í ¾ ¼, with Ä À À Ä µ Becomes ¼½ µ µ ¼ À Paul Koerber, MPI p.13/22

Deformations of gc submanifold Generalized complex submanifold: µ ¾ Í ¼ µ Deformation ¾ Æ µ : Í ¾ ¼, with Ä À À Ä µ Becomes ¼½ µ µ ¼ À is a section of both Ä ¼½ ¾ Æ µ and : it acts on Ä µ Ä ¾ Ì µ Å Paul Koerber, MPI p.13/22

Ä µ ¼½ ¼ Deformations of gc submanifold Generalized complex submanifold: µ ¾ Í ¼ µ Deformation ¾ Æ µ : Í ¾ ¼, with Ä À À Ä µ Becomes ¼½ µ µ ¼ À is a section of both Ä ¼½ ¾ Æ µ and : it acts on Ä µ Ä ¾ Ì µ Å deformation that transforms gc submanifold into gc submanifold: Paul Koerber, MPI p.13/22

À ½ Ä µ µ Cohomology Gauge symmetry: Æ generated by ¼ µ In fact: deformation equation Ä µ ¼½ ¼ µ enhanced gauge symmetry: and  ¾ Divide out by Ä ¼½ Deformations classified by Meaning: imaginary gauge transformation: equivalent D-branes in topological string theory Kapustin,Li Paul Koerber, MPI p.14/22

Deformations of D-flatness Second condition: ÁÑ ½ ¼ (depends ½ ) Paul Koerber, MPI p.15/22

À ÁÑ ½ µ µ ¼ Deformations of D-flatness Second condition: ÁÑ ½ ¼ (depends ½ ) Deformations that preserve this condition: Paul Koerber, MPI p.15/22

Deformations of D-flatness Second condition: ÁÑ ½ ¼ (depends ½ ) Deformations that preserve this condition: À ÁÑ ½ µ µ ¼ Provides gauge fixing imaginary gauge transformations Paul Koerber, MPI p.15/22

 ¾ ÁÑ ½ Deformations of D-flatness Second condition: ÁÑ ½ ¼ (depends ½ ) Deformations that preserve this condition: À ÁÑ ½ µ µ ¼ Provides gauge fixing imaginary gauge transformations For calibration µ: natural metric on Æ µ : µ µ Paul Koerber, MPI p.15/22

µ define Ý Ä µ Â ¾ ÁÑ ½ Deformations of D-flatness Second condition: ÁÑ ½ ¼ (depends ½ ) Deformations that preserve this condition: À ÁÑ ½ µ µ ¼ Provides gauge fixing imaginary gauge transformations For calibration µ: natural metric on Æ µ : µ µ Paul Koerber, MPI p.15/22

Ý Ä µ ¼½ ¼ Deformations of D-flatness Deformations must keep D-flatness (+ gauge-fixing real gauge transformations): Paul Koerber, MPI p.16/22

Ý Ä µ ¼½ ¼ Ä µ ¼½ ¼ Deformations of D-flatness So for deformations to preserve total calibration condition: Paul Koerber, MPI p.17/22

Ý Ä µ ¼½ ¼ À ½ Ä µ µ Ä µ ¼½ ¼ Deformations of D-flatness So for deformations to preserve total calibration condition: The deformations are still classified by Paul Koerber, MPI p.17/22

Ý Ä µ ¼½ ¼ À ½ Ä µ µ Ä µ ¼½ ¼ Deformations of D-flatness So for deformations to preserve total calibration condition: The deformations are still classified by Depends only on the integrable ¾! Paul Koerber, MPI p.17/22

ÁÑÅ ¼ Ä µ ³ Ì Å, Ä µ Example I: deformations of SLag ½ Å, ¾, À ¼ in type IIA McLean µ ¾ Í ¼ µ µ ¼ Ä µ µ ¾ Ì Å ³ Result: À ½ µ Note: as opposed to McLean: also gauge deformations However, McLean also shows there are no obstructions Paul Koerber, MPI p.18/22

Example II: B-branes with fluxes ½, ¾ Å, À ¼ À ¼ ¼ in type IIB complex ¾¼ ¼¾ ¼ Ê ¼ Paul Koerber, MPI p.19/22

µ ¾ Ì ¼½ ¾ Æ ½¼ Example II: B-branes with fluxes ½, ¾ Å, À ¼ À ¼ ¼ in type IIB complex ¾¼ ¼¾ ¼ Ê ¼ Ä µ ¼ µ Paul Koerber, MPI p.19/22

µ ¾ Ì ¼½ ¾ Æ ½¼ Example II: B-branes with fluxes ½, ¾ Å, À ¼ À ¼ ¼ in type IIB complex ¾¼ ¼¾ ¼ Ê ¼ Ä µ ¼ µ ³ only as vector space Æ ½¼ ¼½ Ì Ä µ Paul Koerber, MPI p.19/22

½¼ Å ³ ÓÐ Ì µ ¾ Ì ¼½ ½¼ Æ ½¼ Ì ¾ Æ ½¼ Example II: B-branes with fluxes ½, ¾ Å, À ¼ À ¼ ¼ in type IIB complex ¾¼ ¼¾ ¼ Ê ¼ Ä µ ¼ µ ³ only as vector space Æ ½¼ ¼½ Ì Ä µ Paul Koerber, MPI p.19/22

½ Ä µ ³ ½ Ì ¼½ Æ ½¼ Ä µ ³ Æ µ È À ½¾ Ü Example II: B-branes with fluxes Paul Koerber, MPI p.20/22

½ Ä µ ³ ½ Ì ¼½ Æ ½¼ Ä µ ³ Æ µ È À ½¾ Ü Example II: B-branes with fluxes Kapustin Marchesano,Gomis,Mateos Paul Koerber, MPI p.20/22

½ Ä µ ³ ½ Ì ¼½ Æ ½¼ Ä µ ³ Æ µ È À ½¾ Ü ¼ À Æ ½¼ µ ÖÆÀ µ À ¼ ½¼ Æ µ À ¼¾ Ä µ Example II: B-branes with fluxes ½ Ä µ µ À ¼½ µ À ¼ À Æ ½¼ µ Ä µ µ Paul Koerber, MPI p.20/22

Example III: type-changing gcs Gcs: ½µ µ µ (type 1) ½µ ¼ at certain points µ local complex structure Susy D3-brane can only move on ½µ locus Analysis shows: deformations off the locus lifted Paul Koerber, MPI p.21/22

Future work Find more examples (non-ëí µ-structure case): depends also on non-trivial ËÍ µ ËÍ µ background examples Calibrated D-branes on Ë Å Instantons? Coinciding D-branes: hard problem! Paul Koerber, MPI p.22/22

The Future work Find more examples (non-ëí µ-structure case): depends also on non-trivial ËÍ µ ËÍ µ background examples Calibrated D-branes on Ë Å Instantons? Coinciding D-branes: hard problem! end The end T he end Paul Koerber, MPI p.22/22