Leibniz Notation. Math 184 section 922 5/31/11. An alternative to the notation f (x) or (x + 2) is the so-called Leibniz

Similar documents
f(x 0 + h) f(x 0 ) h slope of secant line = m sec

Parametric Equations, Function Composition and the Chain Rule: A Worksheet

MATH 105: PRACTICE PROBLEMS FOR CHAPTER 3: SPRING 2010

Chapter 5: Integrals

f( x) f( y). Functions which are not one-to-one are often called many-to-one. Take the domain and the range to both be all the real numbers:

Solutions to Math 41 Final Exam December 10, 2012

Math 480 The Vector Space of Differentiable Functions

1.4 Techniques of Integration

DIFFERENTIATION AND INTEGRATION PART 1. Mr C s IB Standard Notes

Solve for an unknown rate of change using related rates of change.

Math 221 Exam III (50 minutes) Friday April 19, 2002 Answers

2.5 The Chain Rule Brian E. Veitch

Guidelines for implicit differentiation

EconS 301. Math Review. Math Concepts

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

Exam Question 10: Differential Equations. June 19, Applied Mathematics: Lecture 6. Brendan Williamson. Introduction.

Chapter 4. Section Derivatives of Exponential and Logarithmic Functions

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

Review for Final Exam, MATH , Fall 2010

Chapter 5: Integrals

Implicit Differentiation and Related Rates

The Chain Rule. Composition Review. Intuition. = 2(1.5) = 3 times faster than (X)avier.

11.5. The Chain Rule. Introduction. Prerequisites. Learning Outcomes

Math 106: Calculus I, Spring 2018: Midterm Exam II Monday, April Give your name, TA and section number:

1 Limits and continuity

3.1 Derivative Formulas for Powers and Polynomials

MATH The Chain Rule Fall 2016 A vector function of a vector variable is a function F: R n R m. In practice, if x 1, x n is the input,

2.2 Graphs of Functions

Chapter 2 Derivatives

Review for the First Midterm Exam

Old Math 220 Exams. David M. McClendon. Department of Mathematics Ferris State University

Math Practice Exam 3 - solutions

Core Mathematics 3 Differentiation

MAT137 - Week 8, lecture 1

In economics, the amount of a good x demanded is a function of the price of that good. In other words,

Tangent Lines Sec. 2.1, 2.7, & 2.8 (continued)

1. There are 8 questions spanning 9 pages total (including this cover page). Please make sure that you have all 9 pages before starting.

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Main topics for the First Midterm

M155 Exam 2 Concept Review

Sin, Cos and All That

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at

Lecture 10. (2) Functions of two variables. Partial derivatives. Dan Nichols February 27, 2018

Derivatives and the Product Rule

Solving Quadratic & Higher Degree Equations

3.1 Day 1: The Derivative of a Function

Astronomy 102 Math Review

Section 11.3 Rates of Change:

Lesson 6-1: Relations and Functions

3.4 The Chain Rule. F (x) = f (g(x))g (x) Alternate way of thinking about it: If y = f(u) and u = g(x) where both are differentiable functions, then

Review for the Final Exam

Solutions to Math 41 Second Exam November 5, 2013

MATH 1241 Common Final Exam Fall 2010

Computational Graphs

Final Exam Review Packet

Final Exam Review Packet

Precalculus Unit 2 - Worksheet 1 1. The relation described by the set of points {( ) ( ) ( ) ( )} is NOT a function. Explain why.

2t t dt.. So the distance is (t2 +6) 3/2

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006

Math Lecture 4 Limit Laws

Unit IV Derivatives 20 Hours Finish by Christmas

Unit IV Derivatives 20 Hours Finish by Christmas

(x + 3)(x 1) lim(x + 3) = 4. lim. (x 2)( x ) = (x 2)(x + 2) x + 2 x = 4. dt (t2 + 1) = 1 2 (t2 + 1) 1 t. f(x) = lim 3x = 6,

( ) as a fraction. If both numerator and denominator are

Integration and antiderivatives

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

Exam 2 Solutions October 12, 2006

Complex Differentials and the Stokes, Goursat and Cauchy Theorems

Graphs of Antiderivatives, Substitution Integrals

Math 142 (Summer 2018) Business Calculus 5.8 Notes

Solutions for the Practice Final - Math 23B, 2016

The Chain Rule for Functions of Several Variables

T 1. The value function v(x) is the expected net gain when using the optimal stopping time starting at state x:

Page 1. These are all fairly simple functions in that wherever the variable appears it is by itself. What about functions like the following, ( ) ( )

2. If the values for f(x) can be made as close as we like to L by choosing arbitrarily large. lim

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

AP Calculus AB 2017 Free-Response Solutions

S56 (5.3) Further Calculus.notebook March 24, 2016

How to Use Calculus Like a Physicist

8.1 Solutions of homogeneous linear differential equations

The Chain Rule. Mathematics 11: Lecture 18. Dan Sloughter. Furman University. October 10, 2007

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

MATH 408N PRACTICE FINAL

Partial Differential Equations Summary

5.5. The Substitution Rule

MATH 408N PRACTICE FINAL

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

2.4 THE CHAIN RULE THE CHAIN RULE

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

I II III IV V VI VII VIII IX Total

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2.

1 Lecture 18: The chain rule

2.6 The microscope equation

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

n=0 ( 1)n /(n + 1) converges, but not

Rolle s Theorem. The theorem states that if f (a) = f (b), then there is at least one number c between a and b at which f ' (c) = 0.

TAYLOR POLYNOMIALS DARYL DEFORD

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

Transcription:

Leibniz Notation Math 184 section 922 5/31/11 An alternative to the notation f (x) or (x + 2) is the so-called Leibniz d d df d(x+2) notation, f(x) or (x + 2) (also written (x) or ). It tells us to dx dx dx dx differentiate the function to it s right (treating x as the variable). What is d dx (ex + 2) sin(x) State the quotient rule using Leibniz notation. 1

Note that the individual letters in the expression d don t have any mean- dx ing in isolation - we could have as easily written D x or D (x) or just D (some of these notations are used). In particular, d dx is not a fraction with numerator d and denominator dx, anymore than the percent sign % is a fraction with numerator and denominator (or numeraotr and denominator 0, depending on how you draw it). When applying the chain rule, you may break a complicated function up into several pieces, and differentiate each of those separately. To differentiate f(x) = (e x + 2), what two functions g and h should you write f as the composition g h of? How should you write ln(cos(e sin x ))?

When differentiating an expression like (e x ) 2 +sin(e x )+2e x, first note that it is good to give the implied function a name, say f(x) := (e x ) 2 +sin(e x )+2e x. When confronted with a problem like differentiate (e x ) 2 + sin(e x ) + 2e x, some students will write a variant of f ((e x ) 2 + sin(e x ) + 2e x ) - this is nonsense; you are not applying some unspecified function f to the expression (e x ) 2 + sin(e x ) + 2e x. Re-read that sentence if it is not clear. Now returning to mathematics. The function f(x) = (e x ) 2 + sin(e x ) + 2e x can be seen to be the function g(x) = x 2 +sin(x)+2x applied to the function h(x) = e x. That is, f(x) = g(h(x)) or f = g h. In this situation, to apply the chain rule requires you to take the derivative of g with respect to x, evaluate that derivative at h(x), and multiply by the derivative of h at x. Carry out the differentiation of f(x) = (e x ) 2 + sin(e x ) + 2e x

Sometimes though, it is convenient not to have explicitly written out the outer function g, or to think of the original function f as a single entity regardless of whether your input is x or h(x). To clarify, consider this example. The profit function P tells you how much profit your lucrative business yields. If you are given a demand curve such as p = 5q, then you can think of the profit which a production of 1 unit will give you, or the profit which a price of $5 per unit will make you - they both refer to the same number for your profit. But if the function taking a price and giving you back profit is called P, then the function taking a quantity demanded q and giving you back the corresponding profit is really P (5q), or P D, where D(q) = p is the demand curve. P is a different function than P D. Why do I say that P is a different function than P D? Even though they give you the same number?

But if we forget this because we like to write things that don t make sense, then we might talk just about The profit P and not specify it s domain (either p or q), as though it s domain and the variable to which you apply it doesn t matter. In this case, if we differentiate P it is important to know whether we really mean the derivative of P with a domain of p, or the derivative of P with a domain of q (which is really P D). To specify that we want to think that the profit P has a domain the q variable, we write d P. If instead we want the derivative of the function P dq that takes a price p and returns the profit earned, we write d dp P. Note that we can think of p as though it were a variable and this is how we differentiate things involving p when we see d dp ( but really for us it is a function of q : p = 5q. This is why the d dp notation is pretty poor.) So if we are told that P (p) = p 2, then d P (p) = 2p. dp But d dq P (q) = d dq (5q)2 = 2(5q) 5. Explain how we calculated d dp and d dq of P the way we did. Looking at d dq P (p), we see that we have d dq P (q) = d dp P d dq p. Check that this is true.

And this, it turns out, is another way of expressing the Chain Rule, in general. Given a function P of p, if we abuse notation and write P (q) = P (D(q)) (it s abuse since the P on the left and the P on the right refer to different functions), then P (q) = P (D(q)) D (q), but here the P on the left is a different function than the P on the right. Explain why that last sentence is true. It is not very easy to keep track of what s going on using s to denote differentiation. This is why we use Leibniz notation. Instead of P (q) = P (D(q)) D (q), we write d dq P = d dp P d dq p or in a slightly different notation dp dq = dp dp dp dq Why does this correspond to the usual Chain Rule, at least for our choice of P, p and q? That is, write what each term represents in the example P (p) = p 2 and p(q) = 5q

Going back to the example f(x) = (e x ) 2 +sin(e x )+2e x, we can think of f as two functions - f(e) = E 2 +sin(e)+2e, with d f(e) = 2E +cos(e)+2, de and f(x) = E(x) 2 + sin(e(x)) + 2E(x), where E(x) = e x. Use the Chain Rule in the form of Leibniz notation to calculate df dx. 1. Let f(x) = cos(x), x(t) = t 2. What is df dx df? What is? What is? dx xt dt

2. Show that the Chain Rule may be expressed as df = df dg. Can we just dh dg dh cancel the dg s for a new derivation of the Chain Rule? 3. Let V = 4 3 πr3. What is dr? If the radius changes with time, as described by r(t) = 5t, then what is? (Notice that we went from dt thinking of volume as a function of radius to now of volume as a function of time).

4. Let S = 4πr 2 and V = 4 3 πr3. Notice that dr = S. If the radius, r, of a spherical balloon is a function of the internal pressure, p, via the equation ( k p ) 1 3 to represent? for some constant k, what is? What is dp dp supposed 5. If in the above, I tell you that the volume V is increasing at a rate of 5 meters/pascal (pascals are pressure-units), and that when the pressure is 10, I calculate dr dp = 2, then what is dr real problem, you would need first to find dr dp when the pressure is 10? In a when p = 10 on your own, and might instead be asked to tell me the surface area at this time (you would have to remember that dr = S, surface area).

Anatomy of a Related Rates Problem The idea of a related rates problem is to give you an equation of the form df = df dh dg dg df, tell you dh dh dg and, and ask you to evaluate these expressions for dh a certain value of h and use those numbers to solve for df dg Except, you aren t given the equation df dh individually given dg dh = df dg at that value of h. dg, but instead you are dh df and, and have to figure out that they satisfy this dh related rates equation. Instead of being told df dh = 5hetc you are told that f changes at a certain rate (with respect to the units of h), and have to realize that this rate is the value of df dg. And you aren t actually given, but dh dh instead are told (or must read the story to figure out) an equation relating g and h, which you then differentiate to obtain dg dh. Example. Davie has one chocolatey scoop of icecream on top of his icecream cone. He notices that the icecream is very cold - so cold that the temperature in his room is falling as the ice-cream absorbs some of the heat (and consequently melts, falling in drips onto his floor). The puddle which is forming is a constant temperature (0 ) and contains the excess heat from the room (or so Davie reasons - his thermodynamics may not be strong, but it will suffice for this problem), and so he determines (based on the shape of the puddle, perhaps) that the size of the puddle is directly proportional to the square of the change in temperature in the room - he guesses that the relationship is approximately Puddle size = 2(initial room temp current room temp) 2, where puddle size is measured in mm 3. He notes

that the temperature is falling at a constant rate of 1 per minute. When the temperature has dropped by 5 degrees he wonders, how does the change in time correspond to the change in the amount of icecream on my cone? To solve this complicated example, the first thing we do is write down variables for the quantities under consideration. Looking through the paragrah, we make a list Temperature : T Puddle size : S Volume of ice-cream cone : V time passed : t It makes sense also to write down any equations and/or relationships between the variables which may be relevant. 1. Puddle size = 2(initial room temp current room temp) 2 or P = 2(constant T ) 2 2. Note that the size of the puddle is exactly how much icecream is lost from his cone, or P + V = original amount of icecream. We next make a note of the rates of change/ derivatives involved. In particular, the last vague sentence asks that we determine dt, the rate of change of time with respect to volume on his cone. Also, differentiating our equations gives us another set of relationships between derivatives.

1. dt =??? 2. dp dt = 2(constant T ) from equation 1 above 3. dp dt = 1 and = dt dp since V = P + constant (equation 2 above) We now put the available derivatives together using the chain rule. dp = dp dt dt dt dt We may now substitute in what we know to obtain dp = dp dt dt dt dt 1 = ( 2(constant T )) ( 1) dt Solving this, we find that dt = 1, where (constant T ) tells 2(constant T ) us the change in room temperature. So when the temperature has dropped by 5, the change in time measured in seconds with respect to the loss of volume of his ice-cream is 1 10 seconds per mm 3 of icecream. Although this problem was tremendously complicated, the process of naming variables, writing down all derivatives involved, all equations involved, deriving the equations to get relationships between variables, and

plugging what is known into the chain rule is guarenteed to result in an answer.