CLASS XI CHAPTER 3. Theorem 1 (sine formula) In any triangle, sides are proportional to the sines of the opposite angles. That is, in a triangle ABC

Similar documents
National Quali cations

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

National Quali cations

Chapter 3 Fourier Series Representation of Periodic Signals

(HELD ON 22nd MAY SUNDAY 2016) MATHEMATICS CODE - 2 [PAPER -2]

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

ASSERTION AND REASON

Linear Algebra Existence of the determinant. Expansion according to a row.

SOLVED EXAMPLES. Ex.1 If f(x) = , then. is equal to- Ex.5. f(x) equals - (A) 2 (B) 1/2 (C) 0 (D) 1 (A) 1 (B) 2. (D) Does not exist = [2(1 h)+1]= 3

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Integration by Guessing

Chapter Taylor Theorem Revisited

IIT JEE MATHS MATRICES AND DETERMINANTS

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Emil Olteanu-The plane rotation operator as a matrix function THE PLANE ROTATION OPERATOR AS A MATRIX FUNCTION. by Emil Olteanu

Chapter 9 Infinite Series

H2 Mathematics Arithmetic & Geometric Series ( )

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

1985 AP Calculus BC: Section I

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

Problem Value Score Earned No/Wrong Rec -3 Total

MAHESH TUTORIALS SUBJECT : Maths(012) First Preliminary Exam Model Answer Paper

Q.28 Q.29 Q.30. Q.31 Evaluate: ( log x ) Q.32 Evaluate: ( ) Q.33. Q.34 Evaluate: Q.35 Q.36 Q.37 Q.38 Q.39 Q.40 Q.41 Q.42. Q.43 Evaluate : ( x 2) Q.

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

PREPARATORY MATHEMATICS FOR ENGINEERS

DETERMINANT. = 0. The expression a 1. is called a determinant of the second order, and is denoted by : y + c 1

How much air is required by the people in this lecture theatre during this lecture?

PURE MATHEMATICS A-LEVEL PAPER 1

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

Lectures 5-8: Fourier Series

TOPIC 5: INTEGRATION

Vtusolution.in FOURIER SERIES. Dr.A.T.Eswara Professor and Head Department of Mathematics P.E.S.College of Engineering Mandya

[Q. Booklet Number]

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Qn Suggested Solution Marking Scheme 1 y. G1 Shape with at least 2 [2]

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Section 5.1/5.2: Areas and Distances the Definite Integral

terms of discrete sequences can only take values that are discrete as opposed to

ENGI 3424 Appendix Formulæ Page A-01

page 11 equation (1.2-10c), break the bar over the right side in the middle

LEVEL I. ,... if it is known that a 1

PESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru -100 Department of Basic Science and Humanities

CONTINUITY AND DIFFERENTIABILITY

National Quali cations AHEXEMPLAR PAPER ONLY

Chapter 7 Infinite Series

Sharjah Institute of Technology

Lectures 2 & 3 - Population ecology mathematics refresher

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

EEE 303: Signals and Linear Systems

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

IX. Ordinary Differential Equations

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

Some Common Fixed Point Theorems for a Pair of Non expansive Mappings in Generalized Exponential Convex Metric Space


Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Appendix A Examples for Labs 1, 2, 3 1. FACTORING POLYNOMIALS

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Rectangular Waveguides

Add Maths Formulae List: Form 4 (Update 18/9/08)

IV. The z-transform and realization of digital filters

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

EXERCISE - 01 CHECK YOUR GRASP

EVALUATING DEFINITE INTEGRALS

PhysicsAndMathsTutor.com

Discrete Fourier Transform (DFT)

PROGRESSIONS AND SERIES

UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

POWER SERIES R. E. SHOWALTER

Math 1272 Solutions for Fall 2004 Final Exam

Right Angle Trigonometry

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

. Determine these to one correct decimal accuracy using the bisection method: (a) 2. The following equations all have a root in the interval ( 0,1.

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

MASTER CLASS PROGRAM UNIT 4 SPECIALIST MATHEMATICS SEMESTER TWO 2014 WEEK 11 WRITTEN EXAMINATION 1 SOLUTIONS

LIMITS AND DERIVATIVES

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

( a n ) converges or diverges.

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Problem Session (3) for Chapter 4 Signal Modeling

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

MTH 146 Class 16 Notes

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Linear Programming. Preliminaries

STIRLING'S 1 FORMULA AND ITS APPLICATION

Instructions for Section 1

LIMITS AND DERIVATIVES NCERT

Chapter 3 Higher Order Linear ODEs

MAT 270 Test 3 Review (Spring 2012) Test on April 11 in PSA 21 Section 3.7 Implicit Derivative

Frequency-domain Characteristics of Discrete-time LTI Systems

Restricted Factorial And A Remark On The Reduced Residue Classes

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

The z-transform. Dept. of Electronics Eng. -1- DH26029 Signals and Systems

Transcription:

CLSS XI ur I CHPTER.6. Proofs d Simpl pplictios of si d cosi formul Lt C b trigl. y gl w m t gl btw t sids d C wic lis btw 0 d 80. T gls d C r similrly dfid. T sids, C d C opposit to t vrtics C, d will b dotd by c, d b, rspctivly (s Fig..5). c b Torm (si formul) I y trigl, sids r proportiol to t sis of t opposit gls. Tt is, i trigl C si si si C b c Proof Lt C b itr of t trigls s sow i Fig..6 (i) d (ii). Fig..5 C c c b C D b D C (i) (ii) Fig..6 T ltitud is drw from t vrt to mt t sid C i poit D [i (i) C is producd to mt t ltitud i D]. From t rigt gld trigl D i Fig..6(i), w v si, i.., c si () c d si (80 C) sic From () d (), w gt c si si C, i.., si si C c () ()

Similrly, w c prov tt si si b From () d (4), w gt si si si C b c For trigl C i Fig..6 (ii), qutios () d (4) follow similrly. Torm (Cosi formul) Lt, d C b gls of trigl d, b d c b lgts of sids opposit to gls, d C, rspctivly, t b + c bccos b c + ccos c + b bcosc Proof Lt C b trigl s giv i Fig..7 (i) d (ii) (4) c c b C D D b C (i) Fig..7 Rfrrig to Fig..7 (ii), w v C D + DC D + (C D) D + D + C C.D + or b + c bc cos Similrly, w c obti C C cos b c + c d cos c + b bcosc Sm qutios c b obtid for Fig..7 (i), wr C is obtus. covit form of t cosi formul, w gls r to b foud r s follows: (ii) b + c cos bc c + b cos c + b c cos C b

Empl 5 I trigl C, prov tt C b c t cot b + c C c t cot c + b C t cot + b Proof y si formul, w v Trfor, b c ksy ( ). si si si C b c k(si si C) b+ c k(si + si C) + C C cos si + C C si cos (+C) ( C) cot t π C cot t C t cot C b c Trfor, t cot b + c Similrly, w c prov otr rsults. Ts rsults r wll kow s Npir s logis. Empl 6 I y trigl C, prov tt si ( C) + b si (C ) + C si ( ) 0 Solutio Cosidr si ( C) [si cosc cos sic] () si si si C Now k(sy) b c Trfor, si k, si bk, si C ck Substitutig t vlus of si d sic i () d usig cosi formul, w gt + b c c + b si( C) bk ck b c

k k( b ( + b c c + b ) c ) Similrly, b si (C ) k (c ) d csi ( ) k ( b ) Hc L.H.S k (b c + c + b ) 0 R.H.S. Empl 7 T gl of lvtio of t top poit P of t vrticl towr PQ of igt from poit is 45 d from poit, t gl of lvtio is 60, wr is poit t distc d from t poit msurd log t li wic mks gl 0 wit Q. Prov tt d ( ) Proof From t Fig..8, w v PQ 45, Q 0, PH 60 P 5 45 d 0 60 H Q Fig..8 Clrly PQ 45, PH 0, givig P 5 gi P 5 P 50 From trigl PQ, w v P + (Wy?) or P pplyig si formul i Δ P, w gt P d si5 si50 si5 si50 i.., d si5 si 0 ( ) (wy?) Empl 8 lmp post is situtd t t middl poit M of t sid C of trigulr plot C wit C 7m, C 8m d 9 m. Lmp post subtds gl 5 t t poit. Dtrmi t igt of t lmp post. Solutio From t Fig..9, w v 9 c, C 7 d C 8 b. 4

Fig..9 M is t mid poit of t sid C t wic lmp post MP of igt (sy) is loctd. gi, it is giv tt lmp post subtds gl θ (sy) t wic is 5. pplyig cosi formul i ΔC, w v + b c 49 + 64 8 cos C () b 7 8 7 Similrly usig cosi formul i ΔMC, w gt M C + CM C CM cos C. Hr CM C4, sic M is t mid poit of C. Trfor, usig (), w gt M 49 + 6 7 4 7 49 or M 7 Tus, from ΔMP rigt gld t M, w v PM t θ M 7 or t(5 ) 7 (wy?) or 7( )m. EXERCISE.5 I y trigl C, if 8, b 4, c 0, fid 4. cos, cos, cosc (s. 5, 5, 0). si, si, sic (s. 5, 4 5, ) For y trigl C, prov tt. cos + b c C si 4. si b c C cos 5

5. C b c si cos 6. (b cos C c cos ) b c 7. (cos C cos ) (b c) cos 8. si( C) si( + C) b c 9. C C ( b + + c)cos cos 0. cos + b cos + c cos C si si C.. cos cos cos C + b + c + +. (b c ) cot + (c ) cot + ( b ) cotc 0 b c bc b c c b si+ si+ sic 0 b c 4. tr stds vrticlly o ill sid wic mks gl of 5 wit t orizotl. From poit o t groud 5m dow t ill from t bs of t tr, t gl of lvtio of t top of t tr is 60. Fid t igt of t tr. (s. 5 m) 5. Two sips lv port t t sm tim. O gos 4 km pr our i t dirctio N45 E d otr trvls km pr our i t dirctio S75 E. Fid t distc btw t sips t t d of ours. (s. 86.4 km (ppro.)) 6. Two trs, d r o t sm sid of rivr. From poit C i t rivr t distc of t trs d is 50m d 00m, rspctivly. If t gl C is 45, fid t distc btw t trs (us.44). (s. 5.5 m) 5.7. Squr-root of Compl Numbr CHPTER 5 W v discussd solvig of qudrtic qutios ivolvig compl roots o pg 08-09 of ttbook. Hr w pli t prticulr procdur for fidig squr root of compl umbr prssd i t stdrd form. W illustrt t sm by mpl. Empl Fid t squr root of 7 4i Solutio Lt + iy 7 4i T ( + iy) 7 4i or y + yi 7 4i Equtig rl d imgiry prts, w v y 7 () y 4 W kow t idtity ( ) ( ) + y y + ( y) 49 + 576 65 Tus, + y 5 () 6

From () d (), 9 d y 6 or ± d y ±4 Sic t product y is gtiv, w v, y 4 or,, y 4 Tus, t squr roots of 7 4i r 4i d + 4i EXERCISE 5.4 Fid t squr roots of t followig:. 5 8i ( s. 4i, + 4i). 8 6i (s. i, + i). i (s. + ± μ i ) 4. i (s. ± m i ) 5. i (s. i + ± ± ) 6. + i (s. ± ± i ) 9.7. Ifiit G.P. d its Sum CHPTER 9 G. P. of t form, r, r, r,... is clld ifiit G. P. Now, to fid t formul for fidig sum to ifiity of G. P., w bgi wit mpl. Lt us cosidr t G. P., 4,,,... 9 Hr, r. W v S Lt us study t bviour of s bcoms lrgr d lrgr: 5 0 0 0.6667 0.68748 0.074599 0.000007866 W obsrvr tt s bcoms lrgr d lrgr, bcoms closr d closr to zro. Mtmti- clly, w sy tt s bcoms sufficitly lrg, bcoms sufficitly smll. I otr words s 7

, 0. Cosqutly, w fid tt t sum of ifiitly my trms is giv by S. Now, for gomtric progrssio,, r, r,..., if umricl vlu of commo rtio r is lss t, t ( r ) r S ( r) r r I tis cs s, r 0 sic r <. Trfor S r Symboliclly sum to ifiity is dotd by S or S. Tus, w v S r. For mpls (i) +.... + + + (ii) + +... + EXERCISE 9.4 Fid t sum to ifiity i c of t followig Gomtric Progrssio..,,,... (s..5). 6,.,.4,... (s. 7.5) 9. 5, 0 80,,... 7 49 (s. 5 ) 4.,,,... 4 6 64 (s. ) 5 5. Prov tt 4 8... 6. Lt + + +... d y + b + b +..., wr < d b <. Prov tt y + b + b +... + y CHPTER 0 0.6 Equtio of fmily of lis pssig troug t poit of itrsctio of two lis Lt t two itrsctig lis l d l b giv by + y + C 0 () d + y + C 0 () From t qutios () d (), w c form qutio ( ) + y+ C+ k + y + C 0 () 8

wr k is rbitrry costt clld prmtr. For y vlu of k, t qutio () is of first dgr i d y. Hc it rprsts fmily of lis. prticulr mmbr of tis fmily c b obtid for som vlu of k. Tis vlu of k my b obtid from otr coditios. Empl 0 Fid t qutio of li prlll to t y-is d drw troug t poit of itrsctio of 7y + 5 0 d + y 7 0 Soluio T qutio of y li troug t poit of itrsctio of t giv lis is of t form 7 y + 5 + k( + y 7) 0 () i.., ( + k) + ( k 7) y + 5 7k 0 If tis li is prlll to y-is, t t cofficit of y sould b zro, i.., k 7 0 wic givs k 7. Substitutig tis vlu of k i t qutio (), w gt 44 0, i.., 0, wic is t rquird qutio. EXERCISE 0.4. Fid t qutio of t li troug t itrsctio of lis + 4y 7 d y + 0 d wos slop is 5. (s. 5 7y + 8 0 ). Fid t qutio of t li troug t itrsctio of lis + y 0 d 4 y + 7 0 d wic is prlll to 5 + 4y 0 0 (s. 5 + y 7 0). Fid t qutio of t li troug t itrsctio of t lis + y 4 0 d 5y 7 tt s its -itrcpt qul to 4. (s. 0 + 9y + 40 0. ) 4. Fid t qutio of t li troug t itrsctio of 5 y d + y 0 d prpdiculr to t li 5 y 0. (s. 6 + 05y 78 0.) 0.7. Siftig of origi qutio corrspodig to st of poits wit rfrc to systm of coordit s my b simplifid by tkig t st of poits i som otr suitbl coordit systm suc tt ll gomtric proprtis rmi ucgd. O suc trsformtio is tt i wic t w s r trsformd prlll to t origil s d origi is siftd to w poit. trsformtio of tis kid is clld trsltio of s. T coordits of c poit of t pl r cgd udr trsltio of s. y kowig t rltiosip btw t old coordits d t w coordits of poits, w c study t lyticl problm i trms of w systm of coordit s. Fig. 0. To s ow t coordits of poit of t pl cgd udr trsltio of s, lt us tk poit P (, y) rfrrd to t s OX d OY. Lt O X d O Y b w s prlll to OX d OY rspctivly, wr O is t w origi. Lt (, k) b t coordits of O rfrrd to t old s, i.., OL d LO k. lso, OM d MP y (s Fig.0.) 9 Y O L Y' 0' M' k P{(, y) ( ', y')} M X' X

Lt O M d M P y b rspctivly, t bsciss d ordits of poit P rfrrd to t w s O X d O Y. From Fig.0., it is sily s tt OM OL + LM, i.., + d MP MM + M P, i.., y k + y Hc, +, y y + k Ts formul giv t rltios btw t old d w coordits. Empl Fid t w coordits of poit (, 4) if t origi is siftd to (, ) by trsltio. Solutio T coordits of t w origi r, k, d t origil coordits r giv to b, y 4. T trsformtio rltio btw t old coordits (, y) d t w coordits (, y ) r giv by + i.., d y y + k i.., y y k Substitutig t vlus, w v d y 4 6 Hc, t coordits of t poit (, 4) i t w systm r (, 6). Empl Fid t trsformd qutio of t strigt li y + 5 0, w t origi is siftd to t poit (, ) ftr trsltio of s. Solutio Lt coordits of poit P cgs from (, y) to (, y ) i w coordit s wos origi s t coordits, k. Trfor, w c writ t trsformtio formul s + d y y. Substitutig, ts vlus i t giv qutio of t strigt li, w gt ( + ) (y ) + 5 0 or y + 4 0 Trfor, t qutio of t strigt li i w systm is y + 4 0 EXERCISE 0.5. Fid t w coordits of t poits i c of t followig css if t origi is siftd to t poit (, ) by trsltio of s. (i) (, ) (s (4, )) (ii) (0, ) (s. (, )) (iii) (5, 0) (s. (8, ) ) (iv) (, ) (s. (, 0)) (v) (, 5) (s. (6, )). Fid wt t followig qutios bcom w t origi is siftd to t poit (, ) (i) + y y y + 0 (s. y + y + 6y+ 0) (ii) y y + y 0 (iii) y y + 0 (s. y y 0 ) (s. y 0 ) CHPTER.5. Limits ivolvig potil d logritmic fuctios for discussig vlutio of limits of t prssios ivolvig potil d logritmic fuctios, w itroduc ts two fuctios sttig tir domi, rg d lso sktc tir grps rougly. 0

Lord Eulr (707D 78D), t grt Swiss mtmtici itroducd t umbr wos vlu lis btw d. Tis umbr is usful i dfiig potil fuctio d is dfid s f (), R. Its domi is R, rg is t st of positiv rl umbrs. T grp of potil fuctio, i.., y is s giv i Fig... Y O grp of y X Fig.. Similrly, t logritmic fuctio prssd s log : R + Ris giv by log y, if d oly if y. Its domi is R + wic is t st of ll positiv rl umbrs d rg is R. T grp of logritmic fuctio y log is sow i Fig... Y O X grp of y log Fig.. I ordr to prov t rsult lim, w mk us of iqulity ivolvig t prssio 0 wic rus s follows: + + ( ) olds for ll i [, ] ~ {0}.

Torm 6 Prov tt lim 0 Proof Usig bov iqulity, w gt lso + lim 0 + + lim + ( ), [, ] ~ {0} 0 + 0 d lim[ + ( ) ] + ( )lim + ( )0 0 0 Trfor, by Sdwic torm, w gt lim 0 log( + ) Torm 7 Prov tt lim 0 Proof Lt log (+ ) log ( + ) y + y y y or. y y y. T y lim lim y (sic 0 givs y 0) y 0 y 0 y lim y s lim 0 y 0 y log ( + ) lim 0 Empl 5 Comput lim 0 Solutio W v lim lim 0 0 y lim, wry y 0 y.

Empl 6 Comput lim 0 si si si Solutio W v lim lim 0 0 si lim lim 0 0 0 log Empl 7 Evlut lim Solutio Put +, t s 0. Trfor, log log ( + ) log ( + ) lim lim sic lim 0 0 EXERCISE. Evlut t followig limits, if ist 4 +. lim (s. 4). lim 0 0 5 si. lim (s. 5 ) 4. lim 5 5 0 5. 7. lim log( + ) lim 0 (s. ) 6. (s. ) 8. ( ) lim 0 cos log ( + ) lim 0 si (s. ) (s. ) (s. ) (s. )