SOLUTION OF TRIANGLE GENERAL NOTATION : 1. In a triangle ABC angles at vertices are usually denoted by A, B, C

Similar documents
SOLUTION OF TRIANGLES

15 - TRIGONOMETRY Page 1 ( Answers at the end of all questions )

Q.1 If a, b, c are distinct positive real in H.P., then the value of the expression, (A) 1 (B) 2 (C) 3 (D) 4. (A) 2 (B) 5/2 (C) 3 (D) none of these

GEOMETRICAL PROPERTIES OF ANGLES AND CIRCLES, ANGLES PROPERTIES OF TRIANGLES, QUADRILATERALS AND POLYGONS:

DEEPAWALI ASSIGNMENT

Trigonometric Functions

Objective Mathematics

1. If y 2 2x 2y + 5 = 0 is (A) a circle with centre (1, 1) (B) a parabola with vertex (1, 2) 9 (A) 0, (B) 4, (C) (4, 4) (D) a (C) c = am m.

Andrew Ryba Math Intel Research Final Paper 6/7/09 (revision 6/17/09)

STRAIGHT LINES EXERCISE - 3

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

SCORE JEE (Advanced)

Sect 10.2 Trigonometric Ratios

1 cos. cos cos cos cos MAT 126H Solutions Take-Home Exam 4. Problem 1

ICSE Board Class IX Mathematics Paper 4 Solution

Lesson-5 ELLIPSE 2 1 = 0

42nd International Mathematical Olympiad

Golden Sections of Triangle Centers in the Golden Triangles

NARAYANA I I T / N E E T A C A D E M Y

IMPORTANT QUESTIONS FOR INTERMEDIATE PUBLIC EXAMINATIONS IN MATHS-IB

TRIGONOMETRY INTRODUCTION. Objectives. SESSION 1-5 ANGLES A positive angle measures a rotation in an anticlockwise direction.

Triangles The following examples explore aspects of triangles:

PYTHAGORAS THEOREM,TRIGONOMETRY,BEARINGS AND THREE DIMENSIONAL PROBLEMS

3.1 Review of Sine, Cosine and Tangent for Right Angles

STUDY PACKAGE. Subject : Mathematics Topic: Trigonometric Equation & Properties & Solution of Triangle ENJOY MATHEMA WITH


PROPERTIES OF TRIANGLES

US01CMTH02 UNIT Curvature

Set 1 Paper 2. 1 Pearson Education Asia Limited 2017

MT - w A.P. SET CODE MT - w - MATHEMATICS (71) GEOMETRY- SET - A (E) Time : 2 Hours Preliminary Model Answer Paper Max.

Chapter 6. Basic triangle centers. 6.1 The Euler line The centroid


/ 3, then (A) 3(a 2 m 2 + b 2 ) = 4c 2 (B) 3(a 2 + b 2 m 2 ) = 4c 2 (C) a 2 m 2 + b 2 = 4c 2 (D) a 2 + b 2 m 2 = 4c 2

+ R 2 where R 1. MULTIPLE CHOICE QUESTIONS (MCQ's) (Each question carries one mark)

PARABOLA EXERCISE 3(B)

Higher Checklist (Unit 3) Higher Checklist (Unit 3) Vectors

Drill Exercise Find the coordinates of the vertices, foci, eccentricity and the equations of the directrix of the hyperbola 4x 2 25y 2 = 100.

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

Alg. Sheet (1) Department : Math Form : 3 rd prep. Sheet

Maharashtra Board Class X Mathematics - Geometry Board Paper 2014 Solution. Time: 2 hours Total Marks: 40

Preview from Notesale.co.uk Page 2 of 42

Linear Inequalities: Each of the following carries five marks each: 1. Solve the system of equations graphically.

Chapter 8: Methods of Integration

Polynomials and Division Theory

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING/ TECHNOLIGY- OCTOBER, TECHNICAL MATHEMATICS- I (Common Except DCP and CABM)

Calgary Math Circles: Triangles, Concurrency and Quadrilaterals 1

Solutions to RSPL/1. Mathematics 10

Actual Formula Test #1 Test #2 Formula. (x h) 2 + (y k) 2 = r 2 General equation of a circle

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

A nest of Euler Inequalities

Time : 3 hours 03 - Mathematics - March 2007 Marks : 100 Pg - 1 S E CT I O N - A

03 Qudrtic Functions Completing the squre: Generl Form f ( x) x + x + c f ( x) ( x + p) + q where,, nd c re constnts nd 0. (i) (ii) (iii) (iv) *Note t

The circumcircle and the incircle

JEE(MAIN) 2015 TEST PAPER WITH SOLUTION (HELD ON SATURDAY 04 th APRIL, 2015) PART B MATHEMATICS

3-Isoincircles Problem. Trigonometric Analysis of a Hard Sangaku Chalenge.

Lesson-3 TRIGONOMETRIC RATIOS AND IDENTITIES

Lesson-5 PROPERTIES AND SOLUTIONS OF TRIANGLES

( β ) touches the x-axis if = 1

PREVIOUS EAMCET QUESTIONS

A LEVEL TOPIC REVIEW. factor and remainder theorems

SUBJECT: MATHEMATICS ANSWERS: COMMON ENTRANCE TEST 2012

DEEPAWALI ASSIGNMENT CLASS 11 FOR TARGET IIT JEE 2012 SOLUTION

Mathematics 2260H Geometry I: Euclidean geometry Trent University, Fall 2016 Solutions to the Quizzes

MH CET 2018 (QUESTION WITH ANSWER)

1. If * is the operation defined by a*b = a b for a, b N, then (2 * 3) * 2 is equal to (A) 81 (B) 512 (C) 216 (D) 64 (E) 243 ANSWER : D

Invention of the plane geometrical formulae - Part II

KEY CONCEPTS. satisfies the differential equation da. = 0. Note : If F (x) is any integral of f (x) then, x a

(D) (A) Q.3 To which of the following circles, the line y x + 3 = 0 is normal at the point ? 2 (A) 2

Diophantine Steiner Triples and Pythagorean-Type Triangles

6 CHAPTER. Triangles. A plane figure bounded by three line segments is called a triangle.

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 1

MT - GEOMETRY - SEMI PRELIM - I : PAPER - 2

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1?

Circle and Cyclic Quadrilaterals. MARIUS GHERGU School of Mathematics and Statistics University College Dublin

Part r A A A 1 Mark Part r B B B 2 Marks Mark P t ar t t C C 5 Mar M ks Part r E 4 Marks Mark Tot To a t l

R(3, 8) P( 3, 0) Q( 2, 2) S(5, 3) Q(2, 32) P(0, 8) Higher Mathematics Objective Test Practice Book. 1 The diagram shows a sketch of part of

Chapter 1: Fundamentals

Year 12 Trial Examination Mathematics Extension 1. Question One 12 marks (Start on a new page) Marks

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

An Introduction to Trigonometry

Trigonometry Revision Sheet Q5 of Paper 2

Chapter 6 Techniques of Integration

MATHEMATICS CLASS : XI. 1. Trigonometric ratio identities & Equations Exercise Fundamentals of Mathematics - II Exercise 28-38

LESSON 11: TRIANGLE FORMULAE

TRIGONOMETRIC RATIOS & IDENTITY AND EQUATION. Contents. Theory Exercise Exercise Exercise Exercise

SSC [PRE+MAINS] Mock Test 131 [Answer with Solution]

Integration Techniques

STRAND J: TRANSFORMATIONS, VECTORS and MATRICES

Figure 1: Problem 1 diagram. Figure 2: Problem 2 diagram

NORMALS. a y a y. Therefore, the slope of the normal is. a y1. b x1. b x. a b. x y a b. x y

Time : 2 Hours Preliminary Model Answer Paper Max. Marks : 40. [Given] [Taking square roots]

6.2 CONCEPTS FOR ADVANCED MATHEMATICS, C2 (4752) AS

MT - MATHEMATICS (71) GEOMETRY - PRELIM II - PAPER - 6 (E)

Prerequisite Knowledge Required from O Level Add Math. d n a = c and b = d

MATHEMATICS PAPER IA. Note: This question paper consists of three sections A,B and C. SECTION A VERY SHORT ANSWER TYPE QUESTIONS.

Well Centered Spherical Quadrangles


Form 5 HKCEE 1990 Mathematics II (a 2n ) 3 = A. f(1) B. f(n) A. a 6n B. a 8n C. D. E. 2 D. 1 E. n. 1 in. If 2 = 10 p, 3 = 10 q, express log 6

Lesson Notes: Week 40-Vectors

4037 ADDITIONAL MATHEMATICS

Transcription:

GENERL NOTTION : SOLUTION OF TRINGLE In tringle BC ngles t vertices re usully denoted by, B, C PGE # sides opposite to these vertices re denoted by, b, c respectively Circumrdius is denoted by R 3 Inrdius is denoted by r 4 Ex-rdii re denoted by r, r, r 3 opposite to vertices, B, C respectively 5 s + b + c s c + b c + b c (s c) + c b (s b)

PGE # b c b c b c 4s(s c) b c b c b c 4s s b s, s b, s c will be lwys +ve 6 or S is used for re of tringle 7 p p perpediculr r of opp side 8 B C D BD c b D 4 D b c length of medin, D b c In tringle the ngle opp to gretest side will be gretest 3 In centroid nd incenter will lwys lie within it wheres orthocentre nd circumcentre my lie outside the 4 The rtio of the re of the tringles mde on sme bse (ltitudes) will be equls to rtio of ltitudes (bse) r BD BD r DC DC

PGE # 3 r BC p r DBC p 4 In BC (i) sin, sin B, sin C > 0 (ii) () sin( + B) sin C (b) cos( + B) cos C (c) tn( + B) tn C (iii) () B C sin cos (b) B C cos sin B C (c) tn cot 5 # Sine Rule : In BC b c R sin sinb sinc In BD & CD : PROOF : D D c sinb bsinc In BD CD b sinb sin O is circumcentre In BOM BM sin R sin we hve b c R sin sinb sinc

PTTERN IDENTIFICTION : (i) sin (ii) b PROOF : b sin B sin B sincsin B 4R sin sin B 4R sin B sin B 4R sin B sinc (ie nd sin() re mutully convertible) PGE # 4 b sin sinb (iii) c sinc b R sin sinb B B 4R sin cos C B 4R sin sin (iv) cosb sin (v) tn cos 6 To find side indentify the in which it lies preferbly right ngle or the tringle one side of which nd two of the ngles re known 7 If in the ques two of the ngles sy & B nd one of the corresponding sides sy is given this my implies sine rute NPIER S NLOGY : b c sinb sinc b c sinb sinc B C B C sin cos B C B C sin cos B C B C tn cot B C tn tn B C b c tn cot b c

which gives the result : PGE # 5 B C b c tn tn b c Similrly C c B tn tn c & B tn b tn C b NOTE : If trigonometric rtio of difference of two of the ngles (sy B) nd the corresponding sides ( & b) re given in the ques this my imply Npier s nlogy PROJECTION FORMUL : BC BD + DC c cosb b cosc c cosb b cosc Similrly b cosc c cos & c cosb bcos COSINE RULE : In BD (refer bove figure) B D D C b cosc b sin C b cos C bcosc b sin C C b bcosc b c c cosb b c bc cos cosc b c b Similrly b c cos bc c b cosb c GENERL NOTE : (i) for three quntities, b, c (i) b 0 (ii) b (iii) b c 0

b c (iv) (v) b b b PGE # 6 NOTE: If two of the sides (sy & b) nd the third ngle (C) is given in the ques then this my imply ppliction of cosine rule bc cos b c 3 cot cot sin b c bc sin b c 4 c 4 4 b c 4 4 If BCD is cyclic qudrilterl : BD BD d dcos b c bc cos cos d bc b b c d b c cos d bc b c d cosb b cd cos C bc d b c d d bc b cd c bd BD Similrly b cd c bd d bc C

PGE # 7 BD C c bd BDC c + bd BDC BCD + DBC (Ptolemy s Theorem) NOTE : If then cos 3 cos 3 b c bc b c bc b c bc Q (i) If 5, b 4 & cos ( B) 3 3 find C Q PT b c cos Q3 PT bcos c c cosb b c Q4 If 3, b & c 60, Find other sides & ngles Q5 If C, 3, b 4 nd D is on B such tht BCD 6 Find CD 6 If,, re legnth of ltitudes of BC 7 PT cot TPT sin B b csin 8 If b c c b 3 TPT cos cosb cosc 7 5 b c sin 0 9 PT 0 PT sec tnbtnc cosb cosc

PGE # 8 B cos B tn cos B B cos B tn cos B Using Npier s 3/ 3 3/ 3 3 7 B b c tn cot b c cot 3 7 9 c 7 tn 3 7 / 9 cosc 7 / 9 cosc 8 c b bcosc 5 6 5 4 36 8 c 6 Q LHS bcos c cos + cosb c cos B + cosc bcos C c + b + Q3 bcosc c cosb b c c b b c Q4 cosine Rule : b c c b bcosc 3 4 3

3 3 4 3 3 4 6 PGE # 9 c 6 Q5 BCD : CD BC sinb sin B 6 CD 3sinB sin B 6 4 3 5 3 3 4 5 5 Q6 b c 4 b c 4 Q7 consider cot b c sinb sinc sin B C B C sin cos sin cos B C cos sin B C (s cos sin )

PGE # 0 C B cos sin B B cos sin b csin cos B sin B Q8 b c c b 3 b c 36 (Using C & D) c b 5 6 7 c 5 b 6 7 pply cosine rule b c cos bc 36 5 49 60 etc Q9 b c sin b c sin cos b c R cos b c b c Rbc b c 4 b c 0 Rbc 0 cosbcosc cos cosbcosc cos

PGE # cos cosbcosc R sin cos R 4sin sinbsinc cos cosbcosc (using sin 4 sin sec tnb tnc ) HLF NGLE FORMULE : cos b c bc b c cos bc b c cos bc b c bc bc b c bc s s bc s s cos bc Similrly B cos s s b c, C s s c cos b gin cos sin b c bc b c sin bc b c bc s b s c sin bc Similrly B sin s s c c lso, s b s c tn s s, s s c B tn s s b RE OF TRINGLE : ht bse c sinb

PGE # c sinb bc sin [using sin B b sin ] RsinB R sinc sin R lso C sin bc sin bcsin cos s bs c ss bc bc Ss s b s c bc bsinc R sin Ss s b s c * s b s c tn S s s b s c ss * Ss b B cot s s c s s c s s b * sin bc * If ques contins hlf s nd sides, then use bove formul for mnipultion COT - m-n THEOREM : If bse BC is divided by pt D in rtio m : n, then

() (m + n) cot m cot n cot () (m + n) cot n cot B m cot C Proof : in BD : PGE # 3 D sin In CD : BD sin () D DC sin sin () () () sin sin sin sin BD sin DC sin m sin n sin nsin sincos cossin msin sin cos cos sin Dividing by sin sin sin, we get (m + n) cot m cot n cot * If in question, one of the side is bisected/trisected etc then this my imply ppliction of cot m n theorem Q PT cot cot Q If b c, then find tn Q3 Let C, 75, If D is on C 3 r (BD) 3 r (BCD) Find BD Q4 If medin D B, in, PT tn + tn B 0 Q5 If medins D & BE intersects t, then PT b 5c Q6 Find, if ( + b + c) (b + c ) 3bc Q7 If, TPT 3 4D b bc c, where D is medin Q8 If, B, C re in P, nd if 3c b, then find ngles of

PGE # 4 Q9 In, PT B c tn tn b c Q0 If medin D is 'r to C, TPTs c cos cosc 3c ns cot ss ss 3s s lso lt : b c cot cot cot 4 cot 3 4 cot s s s b s c b c b c 4s b s c s s s s b s c 4 tn 4 s b s c tn s s s b s c tn tn tn 4 6 8 5 3 cot m n th : 3 75 cot 75 3 cot 60

PGE # 5 4 cot B cot cot tnb tn tn tnb 0 5 Dist of frm centroid G D 3 b c 3 E G GE (where is mid pt of C) 6 b b c 9 s s 3 s s 3bc bc 4 + c b 36 cos 3 4 3 cos 3 lt : b c 3bc b c bc b c cos bc 3 7 3 b c bc lso

D b c 4D b c b c b c bc PGE # 6 b c bc 8, B, C P B 3 3c b c sinc b 3 sinb 3 sinc sin 3 3 3 C 4 3 4 9 B tn tn s b s c s s c s s s s b s c c c c s b c 0 b c b D b 4 4b b c c 3b b c cos bc b c cosc b

PGE # 7 b 3b b c 4b cos cosc 3bc b c 3c Q PT B C cos b c + B C sin b c Q BCD is trpezium such tht B & DC re & BC is 'r to then If DB, BC p & CD q, Q3 If TPT p q sin B bcos qsin b c tn sin, b TPT c b sec Q4 PT c c c b cos b sin Q5 PT cosbcosc cos c cos cosb cosc bcos cos C cosb Q6 cos B b cos bcos B c Q7 Q8 Q9 Q0 bc cos s b c cos 0 cos tn b c Sol LHS B C B C cos sin b c b c

PGE # 8 B C cos 4R sin B sin C + B C sin 4R sin B sin C 4R B C B C 4sin 4cos B C B C sin cos 4R B C B C 4sin cos 4R sin B C Sol In BD B sin BD sin B sin BD sin cos cos sin sin p q q p sin p q p q cos p q sin qsin pcos Sol3 sec tn C 4b sin b b b cosc b b bcos C b C b

PGE # 9 C C b cos b sin Sol4 C C b cos sin C C b cos sin b bcosc C Sol5 cos Bcos C cos cosbcosc cos B C cos B cos C cos BcosC sinbsin C sinbsinc Rsin sinb sinc Using symt ll terms re equls to R sin Sol6 cosb b cos bcos B cos B sin B + b cos sin + b cos cos B sin sinb cos B b cos b cos cos B sin B b sin b sin sinb cos B bcos sinb b sin c 0 c Sol7 bccos ss bc s s bc s(s) s Sol8 b c cos b c ss s b c s bc bc s s b c b c 0 bc

DIFFERENT CENTRES OF TRINGLE : PGE # 0 Circum centre : bc () R 4 () OM R cos Dist of BC frm cc B Incentre : Dist of side frm cc R cos, R cos B, R cos C () BD c DC b () () BD ly DC c b c b b c (3) In BD : I ID B BD c c b c b c (4) IB (5) (i) In BD : B c D sinb BD sin D sinb C [using sin B b sin ] sin / b c bc cos b c length of r bisector similrly, c B BE cos c (ii) r BC r IBC r (IC) + r(ib) rs r s r br r

PGE # (iii) r s s s r s s tn B s b tn C s c tn (iv) B C 4R sin sin sin s b s c s s c 4R bc c s s b b 4R s s b s c bc ss 4R bc s r s s r 4R sin (i) r s s tn 4R sin (iv) In BPI BI B r cosec C 4R sin sin Dis of vertex B from incenter Dis of vertices from incenter rcsc, rcsc B nd rcsc C

In BPI PGE # B r tn BP BP r s b B tn length of tngent from B to incircle BP BR s b CP CQ s c Q R s (vi) IO B B C B B C I O R In IO B C 4R sin sin IO I O OIcos IO B C IO R 6R sin sin B C B C R 4R sin sin cos B C B C B C R 8R sin sin sin sin cos R 8R sin IO R 8 sin R (i) R r (ii) Rr sin 8 Orhocentre : (i) BD ccosb (ii) DC bcos C

(iii) BD DC (iv) BD c cos B tn C bcos C tn B BH ccosb cosec C PGE # 3 c sinc Rcos B cos B HD c cosb cotc cos C ccos B sin C Rcos B cosc Hence Dis of verteces from orthocenter will be R cos () Rcos B, Rcos C nd the distnce of the sides from orthocenter will be R cos(b) cos(c), Rcos Ccos nd Rcos cosb HO B C H R cos() O R HC C OM B OM B HO C B B C OH O H OHcos B C R 4R cos RRcos cosb C R 4cos cos cosb C R 4cos cos B C cos B C R 8R cos OH R 8 cos (iii) EX-CIRCLE : (i) r s

(ii) r s b PGE # 4 (iii) r 3 s c B C r 4R sin cos cos B C r 4R cos sin cos 3 () r s tn B (b) r s tn C (c) r3 s tn 4 B r r s tn tn r r s 5 Proof: r r s s 3s s s r 6 r r r3 r Proof: s s b s c s s s Q Prove tht r cos R

Sol cos 4sin PGE # 5 4R sin R + r R Q Prove tht if r, r, r 3 in HP then BC re in P Sol,, r r r P 3 s s b s c,, r P s, s b, s c P, b, c P, b, c P Q3 Let dis of orthocenter from vertices is p, q, r then prove tht Proof: qr bc p Rcos q Rcos B r Rcos C LHS qr Rsin RcosB Rcos C 3 8R sin cosb cos C 3 8R sin bc LT : r BC + + 3 qrsin B C qr 4R 3 bc qr bpr cpr 4R 4R 4R 4R

PGE # 6 bc qr Q If r r r 3 r PT is right ngled Q If B / PT r b c Q3 If ltitudes from, B, C re produced to meet circum centre, if length of produced prts is,, then prove tht centre, if length of produced prts is,, then prove tht tn Q4 If,, re length of internl bisectors TPT cos Q5 Q6 b Rr b c 0 r Q7 If,, re the distnce of the vertex of from the corresponding pts of contect with the in-circle TPT r s s b s c s s s s b s c s s s s s b c s b s c s s s b c s bc s b c bc b c b c bc b c bc bc b c B r s b tn 4 s b tn 4 s b

s b c b PGE # 7 5 b c bc c bc s bc 4 s bc R r b c s 6 b c s b c b c 0 b c r b c s s b c b c 0 7 s s b s c s s s s s s s r r 4 bc cos b c cos b c bc b c cos b c

PGE # 8 b c 3 s BP BC BP c lso, In BDP BDcot C cos C ccos B sin C Rcos BcosC Rcos B cos C sin cos B cos C C sin B C B C C tnb tnc q t B t C t Q If p, p, p 3 re length of (i) (ii) p r cos p R 'r from vertices to sides then PT (iii) bp c + cp + cp3 b b c R Q PT pro I bc B C tn tn tn Q3 If x, y, z re respectively distnce of the vertex from its orthocentre then prove tht x R r Q4 If x, y, z respectively re the 'r from the circum center to the sides of the tringle BC then PT bc x 4xyz Q5 (i) PT in tringle tn

PGE # 9 (ii) (iii) (iv) cos 3 4 s 3 3 sin 4 ns p p (iii) cos p s r cos R R sin 4 sin R sin R b (iii) bp c bp b bc pb p c bc R TP I tn LHS B C 4R sin sin 3 B C B C 64R s s s s s s Q3 x Rcos 3 s s B s C B C 64R t 8 bc tn

Rsin x Rcos tn PGE # 30 x tn tn x Rcos x R 4 sin R 4R sin R r Q4 x R cos x Rsin Rcos tn() tn x tn x 4 x Q5 pply M GM on tn, B tn B B tn tn tn tn similrly dding tn (s B tn tn ) (ii) cos b c cos cos

R sin 4R sin PGE # 3 4 sin 4 4 cos 8 sin 4 8 3 (Using sin 4 8 4 ) 8 / 3 s s b s c s 3 (iii) 3 s s 3 4 s s s 3 s 3 3 s mx 3 3 ------****-----