Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.

Similar documents
Temperature dependent behavior of lead sulfide quantum dot solar cells and films.

University of Groningen. Photophysics of nanomaterials for opto-electronic applications Kahmann, Simon

University of Groningen. Laser Spectroscopy of Trapped Ra+ Ion Versolato, Oscar Oreste

SUPPLEMENTARY INFORMATION

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

University of Groningen. Hollow-atom probing of surfaces Limburg, Johannes

Citation for published version (APA): Kooistra, F. B. (2007). Fullerenes for organic electronics [Groningen]: s.n.

Citation for published version (APA): Sok, R. M. (1994). Permeation of small molecules across a polymer membrane: a computer simulation study s.n.

University of Groningen

University of Groningen. Extraction and transport of ion beams from an ECR ion source Saminathan, Suresh

University of Groningen. Event-based simulation of quantum phenomena Zhao, Shuang

Citation for published version (APA): Fathi, K. (2004). Dynamics and morphology in the inner regions of spiral galaxies Groningen: s.n.

Can a Hexapole magnet of an ECR Ion Source be too strong? Drentje, A. G.; Barzangy, F.; Kremers, Herman; Meyer, D.; Mulder, J.; Sijbring, J.

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

University of Groningen

University of Groningen

Superfluid helium and cryogenic noble gases as stopping media for ion catchers Purushothaman, Sivaji

Spin caloritronics in magnetic/non-magnetic nanostructures and graphene field effect devices Dejene, Fasil

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter

Published in: ELECTRONIC PROPERTIES OF NOVEL MATERIALS - PROGRESS IN MOLECULAR NANOSTRUCTURES

University of Groningen. Statistical inference via fiducial methods Salomé, Diemer

University of Groningen. Taking topological insulators for a spin de Vries, Eric Kornelis

Citation for published version (APA): Raimond, J. J. (1934). The coefficient of differential galactic absorption Groningen: s.n.

University of Groningen

Citation for published version (APA): Andogah, G. (2010). Geographically constrained information retrieval Groningen: s.n.

University of Groningen. Enantioselective liquid-liquid extraction in microreactors Susanti, Susanti

Dual photo- and redox- active molecular switches for smart surfaces Ivashenko, Oleksii

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

System-theoretic properties of port-controlled Hamiltonian systems Maschke, B.M.; van der Schaft, Arjan

Substrate and Cation Binding Mechanism of Glutamate Transporter Homologs Jensen, Sonja

Theoretical simulation of nonlinear spectroscopy in the liquid phase La Cour Jansen, Thomas

Citation for published version (APA): Ruíz Duarte, E. An invitation to algebraic number theory and class field theory

Citation for published version (APA): Halbersma, R. S. (2002). Geometry of strings and branes. Groningen: s.n.

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

University of Groningen

University of Groningen. Water in protoplanetary disks Antonellini, Stefano

Citation for published version (APA): Hoekstra, S. (2005). Atom Trap Trace Analysis of Calcium Isotopes s.n.

University of Groningen. Bifurcations in Hamiltonian systems Lunter, Gerard Anton

University of Groningen. Managing time in a changing world Mizumo Tomotani, Barbara

UvA-DARE (Digital Academic Repository)

Citation for published version (APA): Mendoza, S. M. (2007). Exploiting molecular machines on surfaces s.n.

The role of camp-dependent protein kinase A in bile canalicular plasma membrane biogenesis in hepatocytes Wojtal, Kacper Andrze

Citation for published version (APA): Sarma Chandramouli, V. V. M. (2008). Renormalization and non-rigidity s.n.

University of Groningen

Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices Wojtaszek, M.; Vera-Marun, I. J.; Maassen, T.

University of Groningen. Levulinic acid from lignocellulosic biomass Girisuta, Buana

Supplementary Figure S1. The maximum possible short circuit current (J sc ) from a solar cell versus the absorber band-gap calculated assuming 100%

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

University of Groningen

University of Groningen

University of Groningen. Statistical Auditing and the AOQL-method Talens, Erik

System theory and system identification of compartmental systems Hof, Jacoba Marchiena van den

University of Groningen

Citation for published version (APA): Martinus, G. H. (1998). Proton-proton bremsstrahlung in a relativistic covariant model s.n.

University of Groningen

Citation for published version (APA): Nouri-Nigjeh, E. (2011). Electrochemistry in the mimicry of oxidative drug metabolism Groningen: s.n.

Citation for published version (APA): Brienza, M. (2018). The life cycle of radio galaxies as seen by LOFAR [Groningen]: Rijksuniversiteit Groningen

University of Groningen

Citation for published version (APA): Boomsma, R. (2007). The disk-halo connection in NGC 6946 and NGC 253 s.n.

Citation for published version (APA): Borensztajn, K. S. (2009). Action and Function of coagulation FXa on cellular signaling. s.n.

Diffusion-enhanced hole transport in thin polymer light-emitting diodes Craciun, N. I.; Brondijk, J. J.; Blom, P. W. M.

Citation for published version (APA): Kootstra, F. (2001). Time-dependent density functional theory for periodic systems s.n.

University of Groningen. Life cycle behavior under uncertainty van Ooijen, Raun

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide

University of Groningen

Enhancement of proximity effects due to random roughness at a superconductor/metal interface Palasantzas, Georgios

SUPPLEMENTARY INFORMATION

Citation for published version (APA): Gobius du Sart, G. (2009). Supramolecular triblock copolymer complexes s.n.

Peptide folding in non-aqueous environments investigated with molecular dynamics simulations Soto Becerra, Patricia

Citation for published version (APA): Hoefman, M. (1999). A study of coherent bremsstrahlung and radiative capture s.n.

Enhanced Charge Extraction in Organic Solar Cells through. Electron Accumulation Effects Induced by Metal

Current density functional theory for optical spectra Boeij, P.L. de; Kootstra, F.; Berger, Johannes; Leeuwen, R. van; Snijders, J.G.

Optical hole burning and -free induction decay of molecular mixed crystals Vries, Harmen de

Computer animation of electron motion in nano-meter scale devices Raedt, Hans De; Michielsen, Kristel

University of Groningen. Study of compression modes in 56Ni using an active target Bagchi, Soumya

Citation for published version (APA): Mollema, A. K. (2008). Laser cooling, trapping and spectroscopy of calcium isotopes s.n.

University of Groningen. Molecular Solar Cells Hummelen, Jan. Published in: EPRINTS-BOOK-TITLE

and Technology, Luoyu Road 1037, Wuhan, , P. R. China. *Corresponding author. ciac - Shanghai P. R.

Morphology of CdSe/ZnS core/shell QDs coated on textured surface with SiN X film of a

Demystifying Transmission Lines: What are They? Why are They Useful?

Quantum Dots for Advanced Research and Devices

University of Groningen. Apparent Superluminal Behavior Jackson, A. D.; Lande, A.; Lautrup, B. Published in: Default journal

ZnO nanoparticle based highly efficient CdS/CdSe quantum dot-sensitized solar cells

Highly efficient hybrid perovskite solar cells by interface engineering

Supplementary information

Elastodynamic single-sided homogeneous Green's function representation: Theory and examples

University of Groningen

Application of the penetration theory for gas - Liquid mass transfer without liquid bulk van Elk, E. P.; Knaap, M. C.

University of Groningen. The opacity of spiral galaxy disks. Holwerda, Benne

Chapter 3 Modeling and Simulation of Dye-Sensitized Solar Cell

Citation for published version (APA): Kole, J. S. (2003). New methods for the numerical solution of Maxwell's equations s.n.

Inexpensive Colloidal SnSb Nanoalloys as Efficient Anode Materials for Lithium- and Sodium-Ion Batteries

Carbon dioxide removal processes by alkanolamines in aqueous organic solvents Hamborg, Espen Steinseth

Citation for published version (APA): Terluin, I. J. (2001). Rural regions in the EU: exploring differences in economic development s.n.

The Role of Multinational Enterprises in the Transition Process of Central and Eastern European Economies Marek, Philipp

Unique Behaviour of Nonsolvents for Polysulphides in Lithium-Sulphur Batteries.

Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by uppercritical

Novel device Substrates and Materials for Organic based Photovoltaics

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES

Transcription:

University of Groningen Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots Lai, Lai-Hung; Protesescu, Loredana; Kovalenko, Maksym V.; Loi, Maria Published in: Physical Chemistry Chemical Physics DOI: 10.1039/c3cp54145b IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 14 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lai, L-H., Protesescu, L., Kovalenko, M. V., & Loi, M. A. (14). Sensitized solar cells with colloidal PbS- CdS core-shell quantum dots. Physical Chemistry Chemical Physics, 16(2), 736-742. DOI: 10.1039/c3cp54145b Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 04-07-18

1 2 3 4 5 6 7 8 9 ASSOCIATE CONTENT Supporting Information Sensitized Solar Cells with Colloidal PbS/CdS Core/Shell Quantum Dots Lai-Hung Lai, a Loredana Protesescu, b,c Maksym V. Kovalenko b,c and Maria Antonietta Loi a a Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands b Department of Chemistry and Applied Biosciences, ETH Zürich, Wolfgang-Pauli-Str. 10, Zurich, 8093, Switzerland c EMPA-Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland 10 11 12 Figure S1. PbS/CdS (1.1 nm) QD sensitized solar cells in the polysulfide electrolyte with and without methanol. 13 1

14 15 Figure S2. Absorbance of oleic-acid passivated colloidal QDs in chloroform. 16 2

R%, T% and A% A% R% T% Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics 17 (a) 30 R% PbS R% PbS/CdS(0.5nm) R% PbS/CdS(1.1nm) A% PbS A% PbS/CdS(0.5nm) A% PbS/CdS(1.1nm) 50 30 10 10 18 0 0 0 600 800 1000 10 10 Wavelength (nm) 100 (b) 80 60 PbS PbS/CdS(0.5nm) PbS/CdS(1.1nm) 19 0 0 600 800 1000 10 Wavelength (nm) (c) 100 80 60 R% T% A% 0 0 600 800 1000 10 10 Wavelength (nm) 21 22 23 Figure S3. (a) Reflectance and transmittance of QD sensitized electrodes (Glass/FTO/TiO 2 /QDs) (b) Absorbance spectra of QD sensitized electrodes (TiO 2 /QDs) (c) Reflection, transmission and absorption of Glass/FTO substrate. 3

24 25 26 27 Figure S4. (a) Nyquist plot of IMVS spectra of PbS/CdS(1.1nm) QD sensitized solar cells, measured by employing a 528 nm LED, scanned from 10 ma (corresponding to 0.22mW/cm 2 light intensity) to 500 ma (corresponding to 5.57 28 mw/cm 2 light intensity). (b) Light intensity dependent mean electron lifetime 29 determined by IMVS measured under 528 nm LED illumination. 4

30 31 Figure S5. Charge injection efficiencies for cells with different CdS shell 32 thicknesses. The charge injection efficiency is obtained by, where 33 the is measured at 10 mw/cm 2 (Table S1) is used. 34 35 5

36 Table S1. Equivalent circuit fitting results and other parameters of cells a Light Intensity c μ b r ct c r r d τ n e τ d f D e g μ e h L d i η c j mwcm -2 μfcm -2 μm -1 Ω cm 2 μm -1 Ω cm 2 μm ms ms m 2 s -1 cm 2 V -1 s -1 μm % PbS 100.0 358.08 32.19 109.68 39.27 5.94E+02 2.69E-11 1.05E-05 1.0 31.7 91.2 170.53 31.38 155.68 26.55 3.36E+02 4.76E-11 1.85E-05 1.1 34.2 79.4 166.65 38.34 158.96 26.49 4.02E+02 3.98E-11 1.55E-05 1.0 31.7 50.1 180.79 63.98 199. 36.01 6.76E+02 2.37E-11 9.21E-06 0.9 29.0 31.6 189.94 103.13 291.92 55.45 9.42E+02 1.70E-11 6.61E-06 1.0 31.7 10.0 132.69 161.50 960.00 127.38 2.69E+03 5.94E-12 2.31E-06 0.9 29.0 PbS/CdS(0.5nm) 100.0 315.79 1.58 130.00 41.05 4.90E+01 3.27E-10 1.27E-04 3.7 75.6 91.2 316.45 1.33 139.00 43.99 3.86E+01 4.15E-10 1.62E-04 4.3 82.3 79.4 314.59 1.87 8.00 65.43 4.55E+01 3.51E-10 1.37E-04 4.8 84.5 50.1 361.82 1.39 155.00 56.08 7.21E+01 2.22E-10 8.64E-05 3.5 74.2 31.6 356.04 2.41 292.00 103.96 8.36E+01 1.91E-10 7.45E-05 4.5 83.1 10.0 367.23 3.30 610.00 224.01 1.10E+02 1.46E-10 5.68E-05 5.7 88.2 PbS/CdS(1.1nm) 100.0 892.45 0.26 195. 174.21 2.13E+01 7.50E-10 2.92E-04 11.4 96.6 91.2 891.09 0.38 222. 198.18 3.48E+01 4.60E-10 1.79E-04 9.5 95.2 79.4 880.38 0.42 253.76 223.41 3.38E+01 4.74E-10 1.84E-04 10.3 95.9 50.1 847.88 0.45 397.84 337.32 3.65E+01 4.38E-10 1.71E-04 12.2 97.0 31.6 817.18 0.51 606. 495.54 4.29E+01 3.73E-10 1.45E-04 13.6 97.6 37 38 39 41 42 43 10.0 718.56 0.56 1312.80 943.32 4.28E+01 3.74E-10 1.45E-04 18.8 98.7 a values are determined based on the data measured at open-circuit condition under different light intensity by transmission line model fitting as the equivalent circuit shown in Fig. 3a. b the chemical capacitance per cm 2 produced by the accumulation of electrons in the TiO 2 and interface, C μ (= c μ L), where L is the thickness of the TiO 2. C Q 2 f, where Q is constant phase element (CPE), α is a constant, and f p is the peak frequency 1 of Nyquist impedance plots. c electron transport resistance, R ct (= r ct L) d interfacial charge recombination resistance, R r (= r r /L) p 6

44 45 46 47 48 49 50 51 52 53 54 e the average electron lifetime in TiO ' 2, C f the average electron transit time, τ d =L 2 /D e g electron diffusion coefficient, h electron mobility, e D e / k B T i electron diffusion length, L d =( τ n D e ) 0.5 j D charge collection efficiency S1-S3, e ' n R r 2 r / r L / 2 r ct n ( ( ) ( ) ) ( )( ) ( ), where α is the extinction coefficient of quantum dot-sensitized TiO 2 film. Here we assume theαl equals to 1 for the calculation. Another well-adopted formula for the charge collection efficiency is ( ). However, it is only valid when the cell active layer is thin enough so that the photo-generated electrons either immediately transport to the electrodes or recombine. In the case L=L d results in, indicating this formula obviously deviates the real situation of the quantum dot-sensitized solar cells. 7

55 56 57 58 59 60 61 62 Supplementary References S1. J. Halme, P. Vahermaa, K. Miettunen and P. Lund, Adv Mater, 10, 22, E210-234. S2. X. Dang, H. Yi, M. H. Ham, J. Qi, D. S. Yun, R. Ladewski, M. S. Strano, P. T. Hammond and A. M. Belcher, Nature nanotechnology, 11, 6, 377-384. S3. L. Bertoluzzi, S. Ma, Physical chemistry chemical physics : PCCP, 13, 15, 4283. 8